

Production of double-strangeness systems near the threshold in the ${}^{12}C(K^-, K^+)X$ reaction at 1.8 GeV/c

Woo Seung Jung (Korea University) for the J-PARC E42 Collaboration

XVIth Quark Confinement and the Hadron Spectrum

arins, Austrailia Aug 22, 2024

aswell@korea.ac.kr

New experiment J-PARC E42 searches H-dibaryon

H-dibaryon search via ${}^{12}C(K^-, K^+)$ reaction

- SU(3) flavor-singlet dibaryon consisting of uuddss
- Invariant-mass measurement of $\Lambda\Lambda$ and Ξ^-p systems with HypTPC
- Collected 0.3 M (K^-, K^+) reaction data

aswell@korea.ac.kr

High statistics and better resolution

J-PARC E42:Study of Ξ^- -nucleus Interaction for ${}^{12}C(K^-, K^+)$ Reaction

H-dibaryon search via ${}^{12}C(K^-, K^+)$ reaction

• Recent researches including Lattice QCD calculation indicate an <u>attractive EN potential</u> with a weak $\Xi N - \Lambda \Lambda$ coupling

*K. Sasaki et al. / Nuclear Physics A 998 (2020) 121737

J-PARC E42 : Measurement of all charged decays from $^{12}C(K^-, K^+)X$ reaction with high statistics

aswel1@korea.ac.kr

EH

Study of Ξ^- -nucleus Potential

 Ξ^{-} -nucleus Potential

$$U_{\Xi^{-}} = [V_0^{\Xi} + iW_0^{\Xi}g(E)]f(r)$$

where,

BNL-E885

 $^{12}C(K^-, K^+)$ reaction at 1.8 GeV/c

- (DWIA) $V_{0\Xi} \sim -14$ MeV by neglecting the $W_{0\Xi}$
- (SCDW) $V_{0\Xi} \sim 0$ with $\Gamma/2=2$ MeV

aswell@korea.ac.kr

 $V_{0\pi}$: Strength of the potential $W_{0\Xi}$: Absorption processes ($\Xi^- p \to \Lambda\Lambda, \Xi^- p \to \Xi^0 n$) **BNL-E906** $^{9}\text{Be}(K^{-}, K^{+})$ reaction at 1.8 GeV/c $U_{\Xi}(r) = (V_{0\Xi} + iW_{0\Xi})/[1 + \exp(r - R)/a]$ -2 40 $\Delta \chi^2 = 2.30$ (68%) (MeV)30 $^{-4}$ $\chi^2_{\rm min}$ ^{™ 0} –6 $\Delta \chi^2 = 4.61$ (90%) 20 $\Delta \chi^2 = 9.21$ (99%) -810Not sensitive to $W_{0,\tau}$ -10^{1} -10-20-300 10 V_0^{Ξ} (MeV) *T.Harada and Y. Hirabayashi, Phys. Rev. C 103, 024605 (2001)

Experiments for Ξ^- -nucleus Potential for ${}^{12}C(K^-, K^+)$ Reaction

• Relative experiments with ${}^{12}C(K^-, K^+)_{\Xi}^{12}Be$ spectroscopy

*P. Khaustov et al., PRC 61 (2000) 054603

• E42 is sensitive to determine $W_{0\Xi}$ by decomposing the inclusive spectrum into $\Xi^- p \rightarrow \Lambda \Lambda$ conversion and others by HypTPC.

aswell@korea.ac.kr

- J-PARC E05/E70(in progress) Experiments
- ${}^{12}C(K^-, K^+)$ spectrum with wide range 8 MeV

20

40 -B₌ [MeV]

FWHM

• High-resolution 2 MeV measurement

*T. Gogami et al., WPJ Web Conf. 271 (2022) 11002

c.f) E42 MM resolution: 24 MeV (FWHM)

J-PARC E42 Detector at the J-PARC K1.8 beam line

- J-PARC E42 detector consists with two detector systems.
- Both were utilized simultaneously for different analysis.

Forward angle Spectrometer for *K*⁺

- Particle identification for K^+ selection
- <u>Missing-mass spectroscopy for (K⁻, K⁺) reactions</u>

Hyperon Spectrometer

- Charged particle reconstruction by Time-projection chamber called HypTPC
- Reconstruction of Λ and Ξ^- and its sequential decays.

aswell@korea.ac.kr

J-PARC E42 Detector at the J-PARC K1.8 beam line

aswell@korea.ac.kr

J-PARC E42 Detector: Hyperon Spectrometer

- HTOF (Multiplicity trigger detector)

aswell@korea.ac.kr

고려대학교 KOREA UNIVERSITY

Particle Identification by Hyperon Spectrometer

HypTPC dE/dx

- $\langle dE/dx \rangle_{20\% \ truncated}$ vs p/z for reconstructed tracks of ${}^{12}C(K^-, K^+)$ reactions
- $\sigma_{\langle dE/dx \rangle} / \langle dE/dx \rangle \sim 20\%$ for the range 0.40 < $p_T < 0.45$ GeV/c

HTOF Time-of-flight

• Flight length about 200 ~ 500 mm, $\sigma_t \sim 120$ ps for π^-

Ξ^- Production in the ${}^{12}C(K^-, K^+)$ reaction

aswell@korea.ac.kr

KOREA UNIVERSITY

Individual Elementary Processes in ${}^{12}C(K^-, K^+)X$

- Both one-step and two-step processes may contribute to the ${}^{12}C(K^-, K^+)X$ reactions.
- Past experimental data(KEK E176) with Intranuclear cascade model calculation

**T. Iijima et al., Nucl. Phys. A* 546, 588 (1992) *Y. Nara, A. Ohnishi, T. Harada, A. Engel, Nucl. Phys. A 614, 433 (1997)

• One step processes

aswell@korea.ac.kr

Double differential cross-sections for exclusive processes in ${}^{12}C(K^-, K^+)X$ reactions

Binding Energy Spectrum for ${}^{12}C(K^-, K^+)X$ reaction

 $B_{\Xi^{-}} = M_{X} - M(\Xi^{-}) - M(^{11}B)$ where $M_{X} : {}^{12}C(K^{-}, K^{+})X$

- emission for potential study and we are also interested in \underline{z}^-p system.
- interest.

aswell@korea.ac.kr

**Y. Ichikkawa et al., PTEP(will be published)* $d^2\sigma/d\Omega/dE > (nb/sr/MeV)$ 200 ----- BNL E885 ----- J-PARC E05 - J-PARC E42 150 θ_{lab} <14° 100 50 -50 50 800 $-B_{\Xi}$ (MeV)

*P. Khaustov et al., PRC 61 (2000) 054603

E42 data can provide information on **individual processes** including Ξ^- and $\Lambda\Lambda$

The escaping probability of quasi-free Ξ^- in the ¹²C nucleus is approximately 2/3.

Measurement of **sequential decays of hypernuclei** involving two pions is also our

Reconstructed AA Production Events

~3000 events with $\Lambda\Lambda$ pairs in the signal box

- <u>Two orders of magnitude</u> more <u>AA</u> events then ever in past experiments
- Blind analysis for H-dibaryon search is now underway.

- J-PARC E42 searches for the H-dibaryon via ${}^{12}C(K^-, K^+)$ reaction. all charged decays using HypTPC.
- We report preliminary J-PARC E42 results on differential cross-section measurement for ${}^{12}C(K^-, K^+)X$ reactions.
- processes of Ξ^- in ¹²C nucleus.

We collected approximately 0.3M (K^-, K^+) reaction events and measured

• This result can provide crucial information for determining **the imaginary** term in Ξ^-N potential which corresponds to the strength of assumption

aswel1@korea.ac.kr

J-PARC E42 byproducts

- (K^-, K^+) reaction at 1.8 GeV/
 - Differential Cross-section Meas $^{12}C(K^-, K^+)X$ Reactions $(\Xi^{-}$ -nucleus potential study)

- Differential Cross-section Measurement of $K^-p \rightarrow K^+\Xi(1535)^-$
- $\Xi^{-}/\Xi(1535)^{-}$ Polarization Measurement
- (K^-, p) reaction at 1.8 GeV/c
- Kaonic Nucleus Search by ${}^{12}C(K^-, p)X$

where,
$$U_{\Xi^-} = [V_0^{\Xi} + iW_0^{-\Xi}g(E)]f(r)$$

surement for
 $V_{0\Xi}$: Strength of the potential
 $W_{0\Xi}$: Absorption processes
 $(\Xi^-p \to \Lambda\Lambda, \Xi^-p \to \Xi^0 n)$

E42 is sensitive to determine W_{0Z} by decomposing the inclusive spectrum into $\Xi^-p \rightarrow \Lambda\Lambda$ conversion and other processes by HypTPC.

• Cross-section Measurement of $\mathbf{p}(K^-, p)K^*(892)X$ and ${}^{12}\mathbf{C}(K^-, p)K^*(892)X$

where, Ξ^{-} -nucleus Potential

$$U_{\Xi^{-}} = [V_0^{\Xi} + iW_0^{\Xi}g(E)]f(r) \qquad V_{0\Xi} :$$

$$W_{0\pi} :$$

• Recent emulsion experiments $(\Xi^{-} - {}^{14}N bound state)$:

J-PARC E07(IRRAWADDY, IBUKI), KEK E373 (KISO) -> Attractive Ξ^- nucleus potential with a weak $\Xi N - \Lambda \Lambda$ coupling

aswel1@korea.ac.kr

Strength of the potential

 $W_{0\Xi}$: Absorption processes ($\Xi^- p \to \Lambda\Lambda, \Xi^- p \to \Xi^0 n$) • Past experimental data on low-energy $\Xi^- p$ elastic, $\Xi^- p \rightarrow \Lambda \Lambda$ cross-section (KEK E224)

> The total cross-section of $\Xi^- p \rightarrow \Lambda \Lambda$ and the width of Ξ^- state in nuclear matter

> > $\sigma_{\Xi^- p \to AA} = 4.3^{+6.3}_{-2.7} \text{ mb, } \Gamma_{\Xi^-} \sim 3 \text{ MeV}$

*J.K. Ahn et al. / Physics Letters B 633 (2006) 214–218

*M. Yoshimoto, Prog. Theor. Exp. Phys. 2021, 073D02. *S. H. Hayakawa et al./ Phys. Rev. Lett. 126, 062501 (2021).

