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An IAIFI story

NuCLR: Nuclear Co-

Learned Representations

Kitouni, Nolte, 

Trifinopoulos, Kantameni, 

Williams 2307.01457 (ICML 
SynS & ML 2023)

From Neurons to 

Neutrons: A Case Study in 

Interpretability

Kitouni, Nolte, Perez-Diaz, 

Trifinopoulos, Williams 

2405.17425 (ICML 2024)

https://inspirehep.net/literature/2667551
https://arxiv.org/abs/2307.01457
https://inspirehep.net/literature/2790836
https://arxiv.org/abs/2405.17425
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Predictions

large set of nuclear observables (e.g. binding 
& decay energies, charge radii etc.)

Multi-Task Learning

achieve world-leading precision Large-scale Optimization

Reliability understand the AI causative mechanisms Latent Space Topography

Interdisciplinary 
Research

address open problems in particle, nuclear 
& astrophysics

Domain Knowledge
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Towards a general-purpose AI

Objectives Tasks Methods

NuCLR is an interpretable deep-learning model that predicts various nuclear observables.
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The architecture

neutrons (N)

protons (Z)

+

+

+
+

Multi-layer Perceptron: Targets (nuclear observables):
Input:

4 Residual blocks

& SiLU activation

Readout

Embedding 

layer (3x1024)

loss of relational 

properties

trainable

parameters

~107 parameters
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➢Training simultaneously on all tasks exploits 

data correlations over multiple tasks and 

leverages joint information, improving

generalization compared to single-task 

training (MT > ST).

➢Novel: we introduce the tasks also as 

trainable embeddings (MTE) and 

concatenate them together with the Z & N 

embeddings for processing by the MLP.

➢Structure formation in the embedding space 

encodes task-independent information!
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More Tasks, More Information!

A proof of concept is provided with a toy model:

The model can make inferences for all tasks 

corresponding to a (Z,N) pair, for which there 

exist at least one task with a measured value.
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➢Binding energy: It represents the energy required to break apart a nucleus into its nucleons.

➢Separation energies: The stability of a nuclide is determined by its separation energies, which 

refers to the energies needed to remove a specific number of nucleons from it.

➢Charge radius: A basic measure of the size of the nucleus is the RMS radius of its proton 

distribution. Empirically, heavier radii (𝐴 > 20) follow the relation 𝑅ch = 𝑟0𝐴
1/3.
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Tasks / Nuclear observables

Weizsäcker, Zeitschrift für Physik, 96(7):431–458, Jul 1935.

SEMF

When training, we must avoid 

prediction biases such as correlations 

between separation energies and 

binding energies of neighboring nuclei.

Solution: 100-fold cross-validation
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🗹 World-leading accuracy
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Database (charge radii):  Angeli & Marinova,  Atom. Data Nucl. Data 

Tabl., 99(1):69–95, 2013

Database (energies):  Wang et al (AME2020), Phys. Lett. B, 734:

215–219, 2014

Liquid-

drop 

model

NuCLR
➢The achieved accuracy for charge radii 𝜎𝑅𝑀𝑆 =

0.01 fm is higher than all theoretical and STL NN 

models, i.e. 0.02 fm & 0.015 fm , respectively.

𝐴 > 8
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➢The success of MTL gives the first hint towards the potential of creating a foundation model 

that can internalize the fundamental laws governing the nucleus. But, how can we actually trust 

the inferences of the model?
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What are ML models actually learning?

M I

➢Manifold hypothesis: Real-world data presented in high 

dimensional spaces are expected to concentrate in the 

vicinity of a manifold of much lower dimensionality, 

embedded in high dimensional input space.

➢Mechanistic Interpretability (MI) encompasses  

techniques of identifying low-rank structures in high-D

datasets, and uncovering (partially) the algorithms that are 

implemented.

Bengio, Courville, Vincent 1206.5538
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➢Latent space topography (LTA) is an MI procedure which consists of the following steps:

1) extract high quality features of the NN using a dimensionality reduction method on the 

latent space; here: principle component (PC) analysis,

2) identify the emergent geometry in the first PC dimensions using domain knowledge,

3) study the effects of small perturbations of the geometry on the tasks and vice verse. 

➢Let’s consider again a toy model: (𝐴 + 𝐵) mod 𝑝.                            used LTA to study

grokking. They found that generalization coincides with structure formation in the PC-

transformed embedding space and identified the predictive algorithm that the NN employs.
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Interpretable AI via: Latent Space Topography

Liu et al 2205.10343
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1) PCs capture most of the performance!
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Are the PCs meaningful?

2) PCs exhibit rich structure:

i. orderness =
1

𝑀
σ𝑖=1
𝑀−1𝟏 PC1

𝑖 − PC1
𝑖+1

ii. parity split =
2∙𝑑(even,odd)

𝑑 even,even +𝑑(odd,odd)

PC1

PC4
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LST on the embedding space

Embedding

layers

Magic Numbers (Goeppert-Mayer and Jensen, Nobel 1963) 

→Pauli exclusion (Nobel 1945)

3) In the first 3 PC dimensions, a robust spiral emerges.
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➢Parametrization:
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Deciphering the nuclear spirals I

➢Let’s train on a simplified SEMF:
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➢Parametrization:
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Deciphering the nuclear spirals I

➢Let’s train on a simplified SEMF:

−𝟐
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Deciphering the nuclear spirals I

➢The change in 𝑎𝑠
corresponds to a change in 

the spiral geometry: 

1) 𝑅𝑧 → 1.2 × 𝑅𝑧, 

𝜑𝛧,2 → 𝜑𝛧,2 −
3𝜋

2

2) 𝑅𝑁→ 1.4 × 𝑅𝑁, 

𝜑𝛮,2 → 𝜑𝛮,2 +
𝜋

4
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➢Overlaying the two spirals (as we did with modular addition) and project on the PC1-PC3 plane: 
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Deciphering the nuclear spirals II

➢The Z and N spirals align so that the most stable nuclei are the ones corresponding to 

antipodal points!

Simplified SEMF:
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➢Overlaying the two spirals (as we did with modular addition) and project on the PC1-PC3 plane: 
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Deciphering the nuclear spirals II

➢The Z and N spirals align so that the most stable nuclei are the ones corresponding to 

antipodal points!

Full data: 82
204−208Pb 50

117−126Sn



16 Sokratis Trifinopoulos 

LST on the penultimate layer

Penultimate

layer

MACHINE
(NuCLR)

HUMAN
(Liquid-drop 
Model + shell 
corrections)

vs

Kitouni, Richardson, Trifinopoulos, Williams TBA

We perform Symbolic Regression on 

the extracted features:

PC 1

Kirson, 

Nucl.Phys.A 79
8 (2008) 29-60

➢ The final prediction is a linear

combination of the PL features.
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➢Physics ⇒ AI: 

❖ Nuclear physics offers a fertile ground for interpretability research and has the advantage 

that many effects are theoretically understood, i.e. there exists a solid ground truth.

❖ Principal components are surprisingly faithful to human derived knowledge and useful to 

understand neural networks through the lens of MI!

➢AI ⇒ Physics: 

❖ NuCLR already achieves state-of-the-art performance predicting nuclear observables 

using a MT approach with shared representations. The predictions can be useful in many 

exciting topics in nuclear (astro)physics (e.g. r-process nucleosynthesis, the nuclear 

neutron skin, the boundaries the nuclear landscape, exotic nuclei, and (even) the CKM 

unitarity puzzle)

❖We can use LST to understand how the network makes predictions and rediscover

nuclear theory. Can we also discover novel analytical terms and macro nuclear effects?
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Conclusions & Future Outlook
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Thank you!

8

Cosmology

r-process 
nucleosynthesis

Neutron Stars

Artificial Intelligence

Nuclear Physics

Drip lines

Exotic 
Nuclei

Mechanistic 

Interpretability

Particle Physics

New 
Physics 

Searches

CKM 
unitarity

NuCLR
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Principle Component Analysis

➢Goal: Reduce the dimensionality of data while preserving as much variance as possible.

➢Procedure:

1. Center the data (𝑥𝑖 → 𝑥𝑖 − ҧ𝑥) and calculate the covariance matrix 𝐶 =
1

𝑛−1
XT X.

2. Solve the EV problem: 𝐶 𝐯𝑖 = 𝜆𝑖𝐯𝑖 .

3. Project the data onto the PC space: ෠𝑋 = 𝑋 𝐕.

➢ Interpretation: The first PC 𝐯1 (with the highest EV 𝜆1) captures most of the data's 

variance, i.e. 𝐯1 = argmax
𝐯 =1

(𝐯T𝐶𝐯), the second captures most of the variance of the 

transformed data ෠𝑋1 = 𝑋 − (𝑋 𝐯1) 𝐯1
T, and so on.


