Can we go beyond Wilks theorem for significance calculation? Estimating p-values with importance sampling

Francisco Matorras IFCA Instituto de Física de Cantabria (Santander)

Introduction & Motivation

Quark confinement, August 2024

Motivation

- > We are all familiar with the 5σ convention for discoveries and its "issues"
 - □ It is almost always taken as a sharp cut
 - □ Often struggling to reach that 5 or discussing if it is 4.9 or 5.0
- But almost always p-value calculation is based on Wilks theorem
 - □ Often without guarantee the conditions are fulfilled or that asymptotic regime can be trusted (to probs~10⁻⁷)
- The alterative is running toys
 - \Box but O(10⁸) needed, usually impractical
- Most interpretations limited to local p-values

Is there a better approach?

- Quote from "Data Analysis in High Energy Physics" O.
 Behnke, K. Kröninger, G. Schott, and T. Schörner-Sadenius (Ed. WILEY-VCH)
 - For computing very small p-values with reasonable precision, a large number of MC iterations is required. In that case the tail of the distribution of q is most important. The procedure above may be improved by resorting to techniques such as importance sampling which concentrates on generating Monte Carlo datasets that lie in those tails."
- > But how to concentrate events in those tails?
- Some ideas already presented at a previous Quark Confinement:
 - □ promising, but didn't always work (biased results in some cases)
 - Better understanding today

Importance sampling

Quark confinement, August 2024

Importance sampling

> Note: theory considerations based on

[1] "Simulation and the Monte Carlo Method" by Reuven
 Y. Rubinstein Dirk P. Kroese, Ed Wiley

> The basic idea behind IP,

- □ Sample from a more convenient pdf
- Assign weights so that the expectation values asymptotically converge to the desired value
- If you play your cards, it will converge faster (i.e., need less toys)

Importance sampling

> In general, given a pdf $\rho(\vec{x})$, we want to estimate the expectation **h** of an observable $H(\vec{x})$

- $\Box h = E[H(\vec{x})] = \int H(\vec{x}) \rho(\vec{x}) d\vec{x}$
- or with sampling $h = \sum H(\vec{x_i})$ with $\vec{x_i}$ drawn from $\rho(\vec{x})$
- > The importance sample trick
 - Use a *better* pdf $\tilde{\rho}(\vec{x})$ and reweight: $h = \int H(\vec{x}) \frac{\rho(\vec{x})}{\tilde{\rho}(\vec{x})} \tilde{\rho}(\vec{x}) d\vec{x} = \int H(\vec{x}) W(\vec{x}) \tilde{\rho}(\vec{x}) d\vec{x} = E_{\sim} [H(\vec{x}) W(\vec{x})]$
 - □ We average or sample over $\tilde{\rho}(\vec{x})$, correcting with a weight $W(\vec{x}) = \frac{\rho(\vec{x})}{\tilde{\rho}(\vec{x})}$
- > Given some conditions (basically avoid infinites) you should get correct results asymptotically independently of $\tilde{\rho}(\vec{x})$
- > ... but not all improve the sampling

Importance sampling II

- An optimal (in the sense of minimizing the variance of the estimation) can be derived [1]:
 - $\Box \rho^*(\vec{x}) = \frac{H(\vec{x})\rho(\vec{x})}{\int H(\vec{x})\rho(\vec{x})d\vec{x}}$
 - □ But useless ⁽²⁾, the integral in the denominator is the quantity we want to get!
- > In practice, one can instead use a family of pdf, $\tilde{\rho}(\vec{x}, \vec{\alpha})$
- > An optimal $\tilde{\rho}$ can be obtained minimizing the variance, look for the $\vec{\alpha}$ which provides a smaller variance on the p-value estimation
 - □ Minimize the variance as a function of $\vec{\alpha}$, now a parametric minimization
 - \Box Or maximize cross entropy w.r.t. $\rho^*(\vec{x})$
 - Note, we do not guarantee the global best, but if the pdf is chosen wisely, we can still gain a lot

Importance sampling in discoveries

Quark confinement, August 2024

How to relate IP to p-values?

- > We have an H₀ (background) driven by $\rho(\vec{x})$
- > We have a H₁ (signal) driven by $\rho'(\vec{x})$, usually in a parametric way and such H₀ is contained $\rho'(\vec{x}) = \rho(\vec{x}, \vec{\alpha})$ and very often just depending on a signal strength $\rho'(\vec{x}) = \rho(\vec{x}, \mu)$ such that μ =0 means no signal
- > We define a test statistic based on the likelihood ratio $q(\vec{x}) = -2 \log \left(\frac{\rho(\vec{x}|\mu = 0)}{\rho(\vec{x}|\mu = \mu best)} \right)$
- > And have an observed data \vec{x}_0 with $q_0 = q(\vec{x}_0)$
- > P-value is defined as $p = \int_{q(\vec{x}) > q_0} \rho(\vec{x}) d\vec{x}$
 - □ Is it sufficient to claim discovery?

My proposal

Turn this calculation into an IP problem

□ Calculate the expectation of $H(\vec{x}) = \theta(q(\vec{x}) - q_0)$

 $\circ~(\theta~\text{is the step function}~1$ if argument positive 0 otherwise)

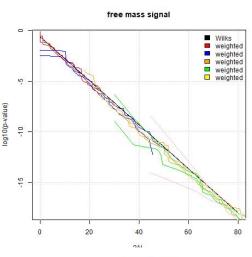
•
$$p = \int_{q(\vec{x}) > q_0} \rho(\vec{x}) d\vec{x} = \int_{\vec{x}} \theta(q(\vec{x}) - q_0) \rho(\vec{x}) d\vec{x}$$

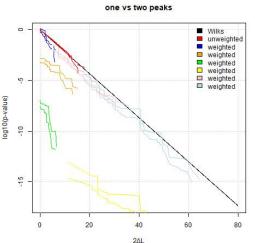
• $p = \frac{1}{M} \sum_{1}^{M} \theta(q(\vec{x}^j) - q_0))$

- > Use as pdf family those from H_1 , our S+B model (function of μ and possibly other params)
 - These pdfs are known and available for some points if derived from full MC
 - Take advantage from the fact that our LR resembles the weights
 - Suggest that minimizing the variance could be related to the MLE

My conjecture

- At the time of '21 (virtual) quark confinement I wondered:
- Why not using as sampling pdf, your signalincluded model which better fits your data?
 - □ Take as μ for importance sampling the one obtained from the MLE fit to the data μ_0
 - Easy and convenient, you already have the model, either analytical of with simulation
 - examples showed impressive performance
 - Some mathematical arguments supported the idea (populating the tails, similar LR)
- ➢ But it didn't always work ☺
 - Struggling with some cases... now I understand when and why it does not work





One-sided, one POI

1 POI Monotonic dependence of q

Quark confinement, August 2024

One POI with monotonic dependence

- > Quite general case, for example one sided signal strength, μ >0
- Monotonic in the sense that larger values of the parameter, imply larger q and lower p-values
- > Conjecture can be proved to be exact, $\mu = \mu_0$ optimal, in this case provided that
 - \Box it is not far from Wilks conditions or if $q(x|\mu)$ not too wide
- Improves variance several orders of magnitude
- > Improvement still valid over a wide range of μ
 - Don't need the exact solution, for example can use the nearest MC sample

Quark confinement, August 2024

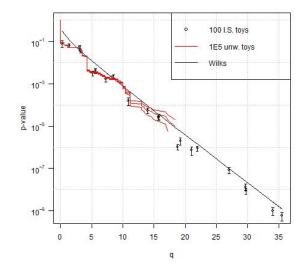
Algorithm

- I. Fit the **data** to H_1 , B+S, model and get μ_0
- 2. Generate a handful (M) of pseudoexperiments
 - $\Box \{\vec{x}\}_j, \sim \rho(\vec{x}, \mu_0)$
 - \square Or sample from the available full MC sample closer to μ_0
- 3. Fit each set $\{\vec{x}\}_j$ get μ_j and q_j (repeat the full analysis on this pseudodata)
- 4. Calculate the weights of **each psexp** $w_j = \frac{\rho(\vec{x}^{j}, \mu=0)}{\rho(\vec{x}^{j}, \mu=\mu_0)}$
 - 1. if independent, ρ is factorized and become products of N event weights

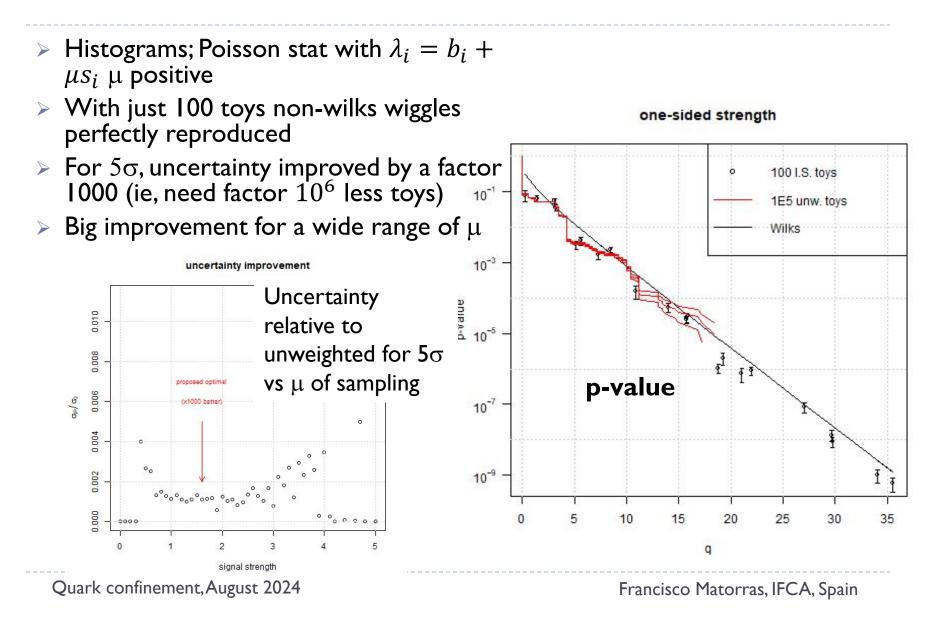
5. Calculate p as
$$\frac{1}{M} \sum_{q_j > q_0} w_j$$

A few simple examples

- Next and following simplistic examples to illustrate the result
- Few, O(100), pseudo-experiments to highlight the power of the method
- P-value calculated with weighted events and compared to Wilks prediction and large-size unweighted toys, O(1e5)
- > Uncertainty on weights calculated
- Shown as a function of q



Binned low stat one sided



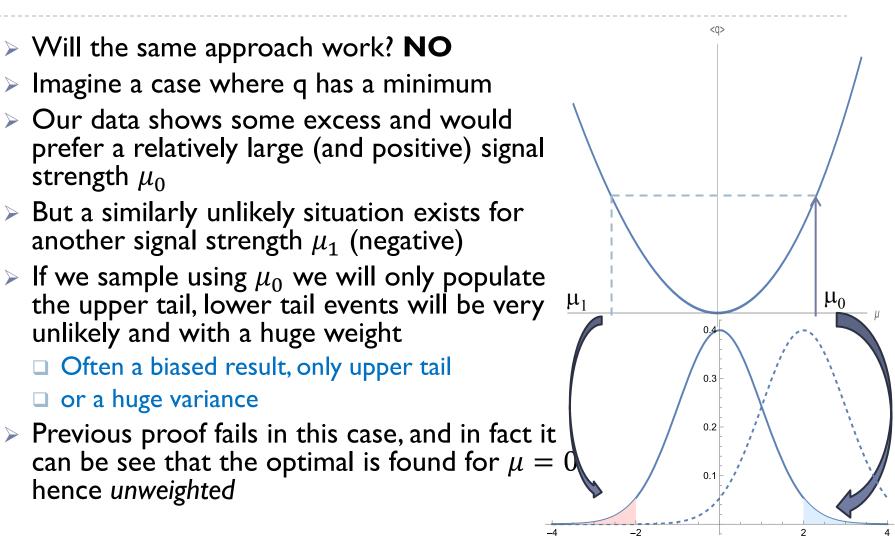
More general one POI

Two sided

Two minima

Quark confinement, August 2024

One POI two sided



Quark confinement, August 2024

Any way out?

- Some ad-hoc cases can be solved (symmetric or well separated) but with some care of avoiding double counting
- > I propose instead a more general approach:
 - \square use a mixture of both μ_0 and μ_1 , the one preferred by the data and the other solution giving the same q
- > Sample from $\tilde{\rho} = \frac{1}{2}\rho(\vec{x}^j, \mu = \mu_0) + \frac{1}{2}\rho(\vec{x}^j, \mu = \mu_1)$
- Drawbacks
 - Need to scan to get the second point
 - \Box Waste $\frac{1}{2}$ of toys

But it works!

Quark confinement, August 2024

Algorithm (two-sided)

- 1. Fit the data to H_1 , S+B, model and get q_0 and μ_0
- 2. Scan μ values, for each generate psexps $\{\vec{x}\}_j, \sim \rho(\vec{x}, \mu)$ run the analysis, get q_j and calculate the average (note there might be a spread). Can be the available MC points
- 3. From <q> as a function of μ get the two values μ_0 and μ_1 in your scan closer to q_0
- 4. Get M psexp $\{\vec{x}\}_{j}, \sim \frac{1}{2}\rho(\vec{x}^{j}, \mu = \mu_{0}) + \frac{1}{2}\rho(\vec{x}^{j}, \mu = \mu_{1})$
- or a combination of the **two** closer full MC samples 5. Fit $\{\vec{x}\}_j$ get μ_i and q_i (repeat the full analysis on this
 - pseudódata)
- 6. Calculate weights $W_j = \frac{\rho(\vec{x}^j, \mu=0)}{\frac{1}{2}\rho(\vec{x}^j, \mu=\mu_0) + \frac{1}{2}\rho(\vec{x}^j, \mu=\mu_1)}$

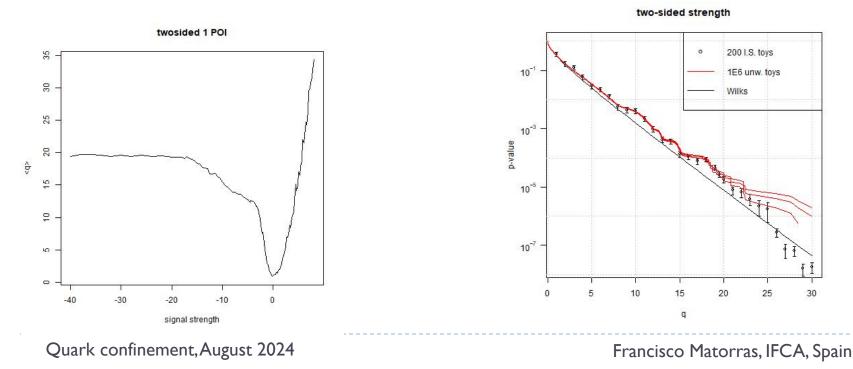
7. Calculate p as
$$\frac{1}{M} \sum_{q_j > q_0} w_j$$

An (extreme) example

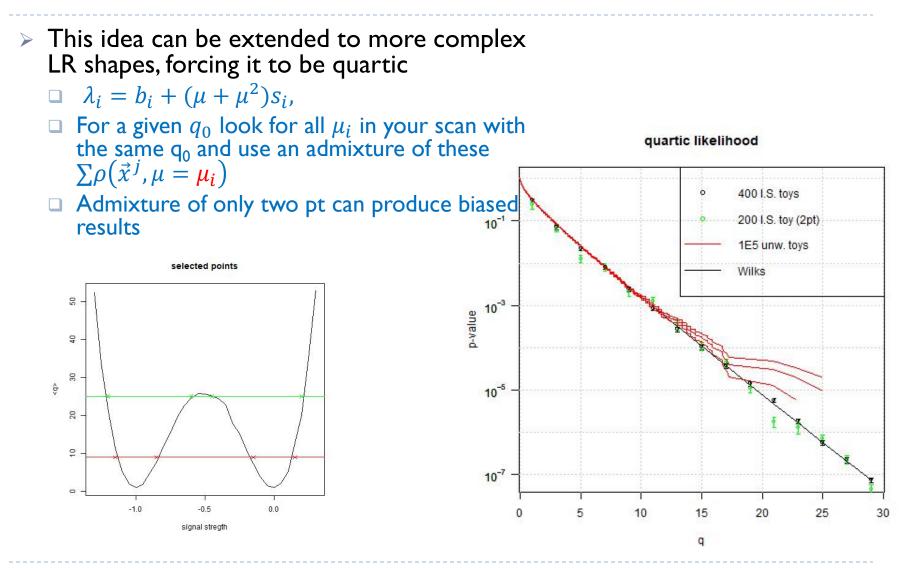
> Same low stat histogram, but allowing μ to be negative (forcing λ to be nonnegative)

□ Poisson stat with $\lambda_i = \max(b_i + \mu s_i, 0) \mu$ positive or negative

Note that Wilks does not work that well, but 200 weighted toys provide good results



Quartic and more



Quark confinement, August 2024

A glance to 2 or more POI

Quark confinement, August 2024

2 or more POI

- Can we extrapolate to several POIs?
 - □ Not trivially...
 - Need to populate an n-D region defined by <q>=q₀
- In principle can use the same trick of an admixture
 - But a continuous set of values to mix from
 - The sum on the weight denominator becomes an integral
 - No closed form except from trivial examples (and nontrivial solution, modified Bessel functions for n-D gaussian)

Efficiency degraded as one goes to higher dimensions

My proposal:

- \Box do a grid scan of parameters $\vec{\alpha}$
- □ find *a* few points $\vec{\alpha}_i$ in the POI space compatible with q_0
- As before, use an admixture of these $\frac{1}{n} \sum_{i} \rho(\vec{x}^{j}, \vec{\alpha} = \vec{\alpha}_{i})$
- Drawbacks: unclear how many points needed; n-D scanning can be time consuming...

But seems to work

An example

A Gaussian signal over an exponential background Free signal strength and mass

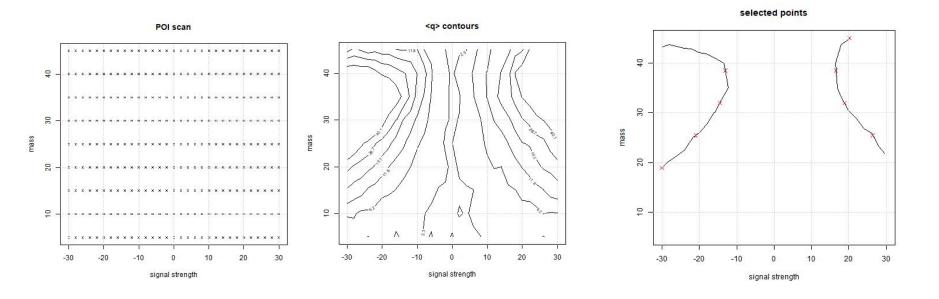
Quark confinement, August 2024

2 POI

- > Exponential background $A e^{-\alpha x}$ (A and α , fixed)
- > Gaussian signal $\frac{\mu}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}} (\mu)$ and m free, σ fixed to 5 times the bin width)

> 50 bins

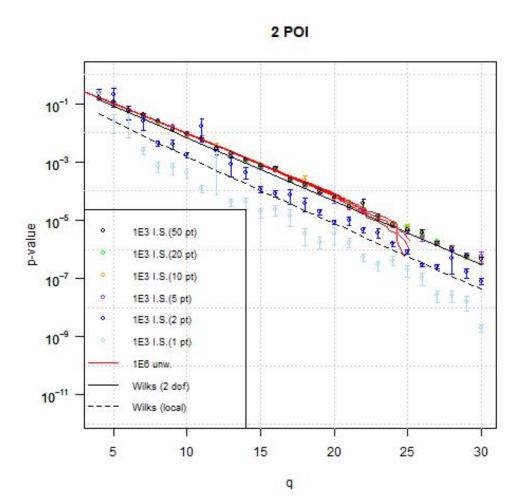
- Define a grid of parameters
- \Box Run psexp for each, calculate <q>
- Select n points along that contour
- Admixture of their pdfs
- Generate and reweight as before



Quark confinement, August 2024

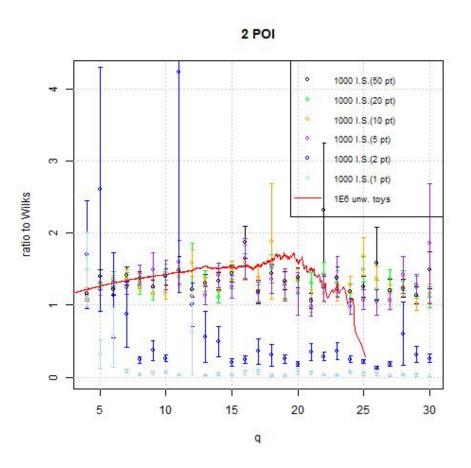
Results

- Less efficient but still can obtain good results (in the many sigma level) with O(1000) toys
- too few points along the contour provide biased results, but stabilize with pt~ 5



Results

- Same plot but normalized to Wilks prediction (dof=2)
- True p-values show small departure from 2 dof Wilks (~1.5 factor)
- additional 6-7 factor from "local p-value" (wilks and dof=1)
- Can easily calculate true significance, in this case usual calculation off by a factor 10



Summary & Conclusion

Quark confinement, August 2024

Summary

- The use of importance sampling to estimate very small p-values has been explored
 - based on sampling from pdf taken from S+B models
 - Avoid relying on Wilks
 - □ Can give a handle to step ahead of *local p-values*
- For models with only one POI and monotonic behavior, sample from the S+B pdf that best fits to the data
 - Rather general proof of validity
 - \square Reduce the toy sample size several order of magnitude for 5σ discoveries
 - □ Can use existing full MC for estimation
- A proposal to extend to more complex cases and to >1 POI is presented
 - $\hfill\square$ Based on building admixtures for similarly significant μ
 - Require a likelihood scan and less efficient
 - Encouraging results

> Accounting for nuisances underway, but looks straightforward

Conclusion

Importance sampling can provide a handle to calculate p-values for discovery when asymptotic calculations cannot be trusted and to calculate global p-values

Thank you for your attention

Quark confinement, August 2024

Additional material

Quark confinement, August 2024

How many points?

- > Rule of thumb: need to populate sufficiently all the regions along the contour $q(\vec{x}) = q_0$ (note this is a different contour)
- Each dashed circle represent the region sampled from the importance sampling
- Following sketch illustrates for a 2D normal
- > For 5σ pt $\approx \frac{5\pi}{k}$ with k~I-3 depending on the size of the sample

