

Implementation of amplitude analysis and machine learning at BESIII

Xiao-Rui Lyu (吕晓睿) *University of Chinese Academy of Sciences (UCAS)* **(On behalf of the BESIII collaboration)**

XVIth Quark Confinement and the Hadron Spectrum Conference Cairns Convention Centre, Cairns, Queensland, Australia 19-24 August 2024 (inclusive)

- **Introduction**
- **Amplitude analysis tools**
- **Machine learning**
- **Summary**

Physics at tau-charm Energy Region

- **Hadron form factors**
- Y(2175) resonance
- **MutItiquark states** with s quark, Zs
- **MLLA/LPHD and QCD** sum rule predictions
- Light hadron spectroscopy \bullet
- **Gluonic and exotic states** \bullet
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton
- **XYZ particles**
- D mesons
- f_D and f_{Ds}
- D_0 - D_0 mixing
- **Charm baryons**

 \bullet

BESIII data sample

2009: 106M $\psi(2S)$ $225M$ J/ψ **2010:** 975 pb⁻¹ at ψ (3770) **2011**: 2.9 fb⁻¹ (total) at ψ (3770) 482 pb-1 at 4.01 GeV **2012:** 0.45B (total) $\psi(2S)$ 1.3B (total) J/ψ 1092 pb^{-1} at 4.23 GeV 2013: 826 pb⁻¹ at 4.26 GeV 540 pb-1 at 4.36 GeV 10×50 pb⁻¹ scan $3.81 - 4.42$ GeV 2014: 1029 pb⁻¹ at 4.42 GeV 110 pb-1 at 4.47 GeV 110 pb⁻¹ at 4.53 GeV 48 pb⁻¹ at 4.575 GeV 567 pb-1 at 4.6 GeV 0.8 fb⁻¹ R-scan $3.85 - 4.59$ GeV

in total ~55/fb

2015: R-scan $2 - 3$ GeV + 2.175 GeV 2016: ~ 3 fb⁻¹ at 4.18 GeV (for D_s) 2017: 7×500 pb⁻¹ scan $4.19 - 4.27$ GeV **2018:** more J/ψ (and tuning new RF cavity) **2019:** 10B (total) J/ψ 8×500 pb⁻¹ scan 4.13, 4.16, 4.29 - 4.44 GeV 2020: 3.8 fb⁻¹ scan 4.61-4.7 GeV **2021**: 2 fb⁻¹ scan 4.74-4.95 GeV; 2.55B ψ (2S) **2022**: 5 fb⁻¹ at ψ (3770) **2023**: 8.2 fb⁻¹ at ψ (3770) **2024**: ~5 fb⁻¹ at ψ (3770); ψ (3770) scan data **BESIII Publication**

Xiao-Rui LYU QCHSC 2024, Cairns

Amplitude analysis tools

Introduction

- Amplitude analysis / Partial wave analysis (PWA) is a powerful method to study multi-body decay processes, e.g.
	- \checkmark to search for (exotic) resonances and measure their properties
	- \checkmark to understand CP violation over phase space
- Increasing data statistics and more profound involved physics demand fast PWA fitter and easy coding for different intermediate processes and couple channels
- A general PWA framework using modern acceleration technology (such as GPU, AD, …) is eagerly needed.

Discovered hadrons

QCHSC 2024, Cairns

Main [tools in BE](http://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.032010)

- Closed source / hand coded
	- Tensor formulism: most of charm decays. $[D^+ \to K_S^0 \pi^+ \pi^0 \pi^0$: JHEP09, 0
	- Helicity formulism: $[e^+e^- \rightarrow \omega \pi^+ \pi^-: \underline{\text{JHEP08},159(2023)}]$
- [GPUPWA:](https://github.com/mashephe/AmpTools)
	- [First PWA](https://gitlab.ep1.rub.de/pwa/Pawian) tool based on GPU
	- Used in many PWA of light [mesons:](https://arxiv.org/pdf/2006.02800.pdf) $[J/\psi \rightarrow \gamma \eta \eta$: PRD87, 092009(2013)
- FDC-PWA:
	- Feynman Diagram Calculation
	- Used in some baryon final states $[\psi' \rightarrow p\bar{p}\eta$: PRD88, 032010(2013); e^+e^+
- TF-PWA:
	- TensorFlow-based, configurable, GPU acceleration, AD
	- as an example: $[\Lambda_c^+ \to \Lambda \pi^+ \pi^0$: JHEP12, 033(2022)]
- Other tools:
	- $-$ Amptools: $[\chi_{c1} \to \eta \pi^+ \pi^-: \underline{\text{PRD95,032002}(2017)}]$
	- $-$ PAWIAN: $[e^+e^- \rightarrow \phi K^+K^-: PRD108, 032004 (2023)]$
	- ComPWA: $[D^0 \to K_S K^+ K^-$: arXiv:2006.02800]

Xiao-Rui LYU QCHSC 2024, Cairns **9**

Properties and requirements of PWA tools

- Complex formula
	- Avoid hard coding, automatic formula generation
	- Rule-based amplitude evaluation
	- Constraints in special process
- Multiple dimension.
	- Study relation between many variables, e.g., masses and angles.
	- Proper way to consider resolution
	- Large size MC sample for integration to normalize the PDF.
- Large size of data (e.g., $10B J/\psi$ decays)
	- Fast calculation to reduce time cost.
	- Distribute the calculation into multi devices.

Configurable

Configuratio[n](https://github.com/jiangyi15/tf-pwa)

 $\overline{\mathbf{S}}$

 $\overline{\mathsf{I}}$

 $\overline{\mathsf{L}}$

 $\overline{\mathbf{C}}$

- Why configurable?
	- Global representation for automation and transpor
	- General way to support more decays
- Different level
	- No configuration: hand coding / code templates
	- Decay card like:
		- key-value / command-parameters / structured
		- specify all possible decays (interactions)
		- with addition simplification rules
	- Auto search:
		- provide a large particle database
		- use rules to find all possible intermediate states
		- filter with requirement.

Symbolic and numerical approximate

- Symbolic approach
	- require a Computer Algebra System (CAS) to simplify formulae
	- write/generate code from CAS outputs
	- procedure: configuration \rightarrow CAS \rightarrow formula \rightarrow generated code \rightarrow function \rightarrow amplitude
	- simplifying the formula is difficult and time-consumi
- Numerical approach
	- combine function directly
	- rule based evaluation
	- procedure:
		- configuration \rightarrow function call \rightarrow amplitude
	- $-$ w/o simplified formula, more computation might be a
	- allow caching rule to reduce computation

TF-PWA: Partial Wave Anal

- Fast
- **General**
- Easy to use
-
- GPU based
- Vectorized calculation
- [Automatic differentiation](https://github.com/jiangyi15/tf-pwa) Quasi-Newton Method: sc
- Model customization
- Simple configuration
- Most processing is au
- All necessary functions
- · Rich function suppor
-

Open access https://github.com/jiangyi15/tf-p

TF-PWA architecture

Example fit of Λ_c^+ $\begin{array}{c} + \\ c \end{array} \rightarrow$

 Λ_c^+

- Simultaneous fit to 7 energy points from 4.6 to 4.7 GeV
	- \checkmark in total around 10k events and 854k MC
	- 38 free parameters
	- \checkmark dominated by $Λ_c^+$ → $Λρ$: 57.2 ± 4.2%
	- v clear peak for $Λ_c^+$ \rightarrow $π\Sigma(1385)$

Λ

 ρ^+

 $-0.789 \pm 0.098 \pm 0.056$

Xiao-Rui LYU QCHSC 2024, Cairns **16**

Xiao-Rui LYU **17** QCHSC 2024, Cairns

Machine learning

Active directions in HEP Machine Learning

- **Machine Learning (ML) is an increasingly important in many aspects of HEP studies**
- **Ideal platform of BESIII in ML studies:**
	- \checkmark large labeled background-free training samples: e.g., $10B J/\psi$ events
	- \checkmark high-quality fully simulated MC samples
	- \checkmark rich topology: low-level detector response \rightarrow particle 4-momentum \rightarrow full decay tree
	- \checkmark energy-momentum conservation in event: hidden symmetry can inspire new ML structures

■ Experimental results

Example: hunting for $\Lambda_c^+ \to n e^+ \nu$

- Important process of semi-leptonic A_c^+ decay to probe strong **dynamics in charmed baryon**
- **Challenges:**
	- \checkmark neutrino is missing in detection
	- \checkmark dominant backgrounds from $\Lambda_c^+ \to \Lambda(\to n\pi^0)e^+\nu$, with ~10x yields than that of the pursuing signals
	- \checkmark elusive neutron detection due to neutral charge and contaminations from the photon showers (& noises) in electro-magnetic calorimeter (EMC)
- **Need advanced ML tool to identify neutron showers in EMC**

QCHSC 2024, Cairns

Why Graph Neural Networks (GNN)

- Many neural network architectures are specialized for sequential and image-like data such as RNNs, transformers and CNNs.
- GNN can model more arbitrary relations among data objects by treating them as edges between nodes in a graph.

- Sharing of parameters across node and edge updates in the graph.
- Permutation invariance

- Nearly unlimited labeled samples
- Structured data
- Clear training objectives

This fits well to the final state particles in physics collisions, where we deal with various objects like tracks/showers and their kinematic relations.

Analysis strategy

- Threshold Λ_c^+ production: clean environment and Λ_c^+ tagging
- Train GNN with **ParticleNet** using control data from J/ψ $\rightarrow \overline{p}n\pi^{+}$, $\overline{p}\Lambda K^{+}$ and c.c. modes based on 10B J/ψ decays

Semi-Leptonic

Observation of $\Lambda_c^+ \to n e^+ \nu$

 $\mathcal{B}(\Lambda_c^+ \to n e^+ \nu_e) = (0.357 \pm 0.034_{\text{stat.}} \pm 0.014_{\text{syst.}})\%$ (>10 σ)

good control of systematics on GNN training

- **Model settings**: network weight initialization, batch processing sequence and dropout layer are randomly varied
- **Domain shift**: validation of independent control sample via $J/\psi \to \Sigma^+ (n\pi^+) \overline{\Sigma}^-(\overline{p}\pi^0)$ and $J/\psi \to \Xi^- (\Lambda \pi^-) \overline{\Xi}^+ (\overline{\Lambda}\pi^+)$

Incomplete list of ML efforts at BESIII

- AI assistant Dr. Sai for BESIII based on LLM Xiwu: *https://drsai.ihep.ac.cn*
- XGBoost regressor for cluster reconstruction in CGEM-IT
- MDC hit noise filtering via GNN
- MDC track clustering based on DBSCAN and RANCAS
- Simultaneous track finding and track fitting with DNN
- XGBoost classifier for particle identifications
- XGBoost for multi-dimensional kinematic reweighting
- Transformer in charm tagging
- Position reconstruction and energy regression for neutron/ K_L via advanced visual model

Anti-neutron reconstruction via Vision Calorimeter

- We introduce Vision Calorimeter (ViC), the first baseline of deep-learning-based reconstruction method to establish the mapping between EMC readouts and the physical properties of incident particles.
- Two tasks: incident position prediction and incident momentum regression

- \checkmark EMC hit maps from anti-neutron control sample in data
- ü convert Positions and Energies of EMC deposited hits to Pixel Intensities
- \checkmark convert each annotated incident position to a pseudo GT BBox
	- predict physical properties of incident particles with a unified deep learning network

Xiao-Rui LYU **25** QCHSC 2024, Cairns

BESIII

Implementation and Pe

- Backbone: Swin Transformer to generate the feature representation
- FPN: manages scale variations
- Detection head: RetinaNet to regress the position and momentum, a
- Code is available at https://github.com/yuhongtian17/ViC
- pretrained the backbone network on the vision dataset (i.e., ImageN
- baseline experiment on 12 epochs using $4 \times RTX$ 4090 GPUs

Xiao-Rui LYU **26** QCHSC 2024, Cairns

Summary

- Many amplitude analysis tools developed at BESIII, which produce many physics results
- An example of general propose tool **TF-PWA**
	- user friendly with simple configuration and automatic amplitude construction
	- GPU optimization, Automatic differentiation, Rich function support
- Many practices on machine learning at BESIII
- An example of GNN implementation in observation of $\Lambda_c^+ \to n e^+ \nu$
	- EMC shower discrimination between neutron and $\Lambda \to n \pi^0$
	- good understanding of systematics on GNN models taking advantage of clean control samples in $e^+e^$ experiments
- A baseline model ViC for anti-neutron reconstruction based on deep learning
	- showing a significant error reduction in incident position prediction compared to the conventional method
	- pioneering the implementation of incident momentum regression

Thanks for your attentions!

Xiao-Rui LYU QCHSC 2024, Cairns **27**

Backup

Automatic Angle Plot

Xiao-Rui LYU QCHSC 2024, Cairns **29**

BESIII

FDC-PWA

www1.ihep.ac.cn/wjx/pwa/index.html

- FDC: Feynman Diagram Calculation
	- Construct the Lagrangian and deduce Feynman ru automatically
	- Generation of all Feynman diagrams and amplitude process.
- FDC-PWA:
	- Construct effective strong interaction model
	- Generate Fortran code to calculate Partial waves a
	- Fit for coupling parameters with TensorFlow on G AD)

Data representations

- As **Particle Cloud (Point Cloud)**
	- Unordered, permutations-invariant set of particles
	- $-$ Each particle carries spatial coordinates $+$ additional features.
		- charge, momentum.... track & shower parameters, etc.
	- Symmetry-preserving, high expressiveness, low computational cost.

Point cloud of an aircraft generated by 3D scanning

Point cloud of a HEP event

