

Factorial growth of perturbation theory, power corrections, and extraction of quark masses and α_s

Andreas S. Kronfeld Fermilab & IAS TU München

XVIth QCHSC 23 August 2024

Consider an "effective charge" with a single hard scale:

$$\mathscr{R}(Q) = R(Q) + C_p \frac{\Lambda^p}{Q^p}$$

Consider an "effective charge" with a single hard scale:

physical quantity
$$\mathscr{R}(Q) = R(Q) + C_p \frac{\Lambda^p}{Q^p}$$

Consider an "effective charge" with a single hard scale:

physical quantity

$$\mathcal{R}(Q) = R(Q) + C_p \frac{\Lambda^p}{Q^p}$$

"perturbative part"

Consider an "effective charge" with a single hard scale:

"perturbative part"

· Consider an "effective charge" with a single hard scale:

"perturbative part"

perturbative series in mass-independent scheme

$$R(Q) = \sum_{l=0}^{\infty} r_l(\mu/Q) \alpha_{\rm s}(\mu)^{l+1}$$

Consider an "effective charge" with a single hard scale:

Consider an "effective charge" with a single hard scale:

Perturbative part and power correction inseparable.

Factorial Growth

- Even in quantum mechanics, high orders of perturbation theory grow factorially [e.g., Bender & Wu 1971, 1973].
- Also in QFT [e.g., Gross & Neveu 1974, Lautrup 1977].
- In pQCD, r_l grow factorially (known for a long time):

$$r_l \sim R_0^{(p)} \left(\frac{2\beta_0}{p}\right)^l \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \equiv R_l^{(p)}$$

for
$$l \gg 1$$
. Here $b = \beta_1/2\beta_0^2 \stackrel{n_f=3}{=} 32/81 \approx 0.4$.

• Does $r_l = \{1, 1.38, 5.46, 26.7\}$ start growing by l = 3?

Factorial Growth

- Even in quantum mechanics, high orders of perturbation theory grow factorially [e.g., Bender & Wu 1971, 1973].
- Also in QFT [e.g., Gross & Neveu 1974, Lautrup 1977].
- In pQCD, r_l grow factorially (known for a long time):

$$r_l \sim R_0^{(p)} \left(\frac{2\beta_0}{p}\right)^l \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \equiv R_l^{(p)}$$

for
$$l \gg 1$$
. Here $b = \beta_1/2\beta_0^2 \stackrel{n_f=3}{=} 32/81 \approx 0.4$.

• Does $r_l = \{1, 1.38, 5.46, 26.7\}$ start growing by l = 3?

Examples

- Static energy = energy between two static sources, p = 1:
 - its Fourier transform, p > 1;
 - its derivative, the "static force" $(p \ge 9)$;
- Bjorken sum rule, $p \in \{2, 4, 6, ...\}$.
- Quark mass, $p \in \{1, 2, 3, ...\}$.
- Adler function, $p \in \{4, 6, 8, ...\}$.

Outline

- Introduction
- Power Corrections and Factorial Growth
- New Approximation for Perturbative Series
- Borel Summation
- Worked Example: Static Energy
- Two or More Power Corrections
- Conclusions & Outlook

Power Corrections and Factorial Growth

Summary of Math in arXiv:2310.151137 [in JHEP]

- Use some simple steps and the RGE (which connects μ independence of R(Q) to Q dependence of R(Q)—
 - obtain a more slowly growing set of coefficients, $f_k^{(p)}$.
- Invert an infinite matrix (lower triangular).

• Simplify and clarify "minimal renormalon subtraction (MRS)" of arXiv:1701.00347 and arXiv:1712.04983 [Komijani].

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$

- In some problems, the $f_k^{(p)}$ grow, but more slowly (i.e., same formula with p' > p).
- Another result is generalization to cascade of powers.

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
 well-known growth

- In some problems, the $f_k^{(p)}$ grow, but more slowly (i.e., same formula with p' > p).
- Another result is generalization to cascade of powers.

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
well-known growth Komijani R_{0} (with finite # of terms)

- In some problems, the $f_k^{(p)}$ grow, but more slowly (i.e., same formula with p' > p).
- Another result is generalization to cascade of powers.

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
well-known growth Komijani R_{0} (with finite # of terms) extra

- In some problems, the $f_k^{(p)}$ grow, but more slowly (i.e., same formula with p' > p).
- Another result is generalization to cascade of powers.

Exact result ("=" not "~"):

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
well-known growth Komijani R_{0} (with finite # of terms) extra

We will use this form for a resummation.

- In some problems, the $f_k^{(p)}$ grow, but more slowly (i.e., same formula with p' > p).
- Another result is generalization to cascade of powers.

Growth ↔ Power

• Larger $p \Rightarrow$ growth takes over at larger l.

Perturbative Series

- In practice, the r_l are in the literature for l < L.
- The f_l , l < L, are obtained from them, and the formula returns these r_l (as it must).
- For $l \ge L$, the formula tells us (formally) the largest part:

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
 well-known growth Komijani R_{0} (truncated) drop

use the approximate formula for the uncalculated terms.

Perturbative Series

- In practice, the r_l are in the literature for l < L.
- The f_l , l < L, are obtained from them, and the formula returns these r_l (as it must).
- For $l \ge L$, the formula tells us (formally) the largest part:

$$r_l pprox \left(\frac{2\beta_0}{p} \right)^l \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \left(\sum_{k=0}^{L-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_0} \right)^k f_k^{(p)} \right)$$
well-known growth

Komijani R_0 (truncated)

use the approximate formula for the uncalculated terms.

Recap & Compendium

• That means $\sum_{l=0}^{\infty} r_l \alpha_{
m s}^{l+1} o \sum_{l=0}^{L-1} r_l \alpha_{
m s}^{l+1} + \sum_{l=L}^{\infty} R_l^{(p)} \alpha_{
m s}^{l+1}$

with

$$R_l^{(p)} \equiv R_0^{(p)} \left(\frac{2\beta_0}{p}\right)^l \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)}$$

$$R_0^{(p)} \equiv \sum_{k=0}^{L-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_0}\right)^k f_k^{(p)}$$

 Justified because the retained terms are formally larger than the ones omitted.

Recap & Compendium

• That means $\sum_{l=0}^{\infty} r_l \alpha_{\mathrm{s}}^{l+1} o \sum_{l=0}^{L-1} r_l \alpha_{\mathrm{s}}^{l+1} + \sum_{l=L}^{\infty} R_l^{(p)} \alpha_{\mathrm{s}}^{l+1}$

 Justified because the retained terms are formally larger than the ones omitted.

Borel Summation

Rearrange and React

We have

$$R(Q) = \sum_{l=0}^{\infty} r_{l} \alpha_{s}^{l+1} \to \sum_{l=0}^{L-1} r_{l} \alpha_{s}^{l+1} + \sum_{l=L}^{\infty} R_{l}^{(p)} \alpha_{s}^{l+1}$$

$$= \underbrace{\sum_{l=0}^{L-1} \left(r_{l} - R_{l}^{(p)} \right) \alpha_{s}^{l+1}}_{R_{p,s}^{(p)}(Q)} + \underbrace{\sum_{l=0}^{\infty} R_{l}^{(p)} \alpha_{s}^{l+1}}_{R_{p,s}^{(p)}(Q)}$$

- · The "renormalon subtracted" part and the "Borel" part.
- The R_l from above yield divergent sum for R_B , but we're not done yet: use Borel summation to assign meaning.

Assignment

Thus, we now define

$$R_{\rm B}^{(p)}(Q) = R_0^{(p)} \frac{p}{2\beta_0} \mathscr{J}(pb, p/2\beta_0 \alpha_{\rm g}(Q))$$
$$\mathscr{J}(c, y) = e^{-y} \Gamma(-c) \gamma^*(-c, -y)$$

where $\gamma^*(a,x)$ is an analytic function of both a and x:

limiting function of the incomplete gamma function

- convergent expansion in $x = -1/2\beta_0 \alpha_g$;
- asymptotic expansion in α_g regenerates the starting point; the dropped term is $O(e^{-p/2\beta_0\alpha_g})$.

Static Energy

Static Energy

- Quantity extracted from oblong Wilson loops:
 - perturbative potential has IR divergences starting at 3 loops [Appelquist, Dine, Muzinich 1978];
 - compensated by multipole (retardation) term [Brambilla, Pineda, Soto, Vairo 1999, 2000].
- Perturbative series:

$$E_0(r) = -\frac{C_F}{r} \sum_{l=0} v_l(\mu r) \alpha_s(\mu)^{l+1} + \Lambda_0$$

• In notation used above, $Q \rightarrow 1/r$, $\Re(1/r) = -rE_0(r)/C_F$.

Related Quantities

Perturbation theory carried out in momentum space:

$$\tilde{R}(q) = \sum_{l=0}^{\infty} a_l (\mu/q) \alpha_s(\mu)^{l+1}$$

- Leading power/factorial comes from Fourier transform, so $\tilde{R}(q)$ has p > 1.
- The "static force"

$$\mathfrak{F}(r) = -\frac{\mathrm{d}E_0}{\mathrm{d}r} \qquad \qquad \mathfrak{F}(r) = F^{(1)}(1/r) = -r^2 \mathfrak{F}(r)/C_F$$

has no power corrections (until instantons at $p \ge 9$).

Coefficients at $\mu = 1/r$ or $\mu = q$

	MS		geometric		α_2	
l	$a_l(1)$	$f_l(1)$	$a_l(1)$	$f_l(1)$	$a_l(1)$	$f_l(1)$
0	1	1	1	1	1	1
1	0.557042	-0.048552	0.557042	-0.048552	0.557042	-0.048552
2	1.70218	0.687291	1.83497	0.820079	1.83497	0.820079
3	2.43687	0.323257	2.83268	0.558242	3.01389	0.739452

	MS		geometric		α_2	
l	$v_l(1)$	$v_l(1) - V_l(1)$	$v_l(1)$	$v_l(1) - V_l(1)$	$v_l(1)$	$v_l(1) - V_l(1)$
0	1	0.206061	1	0.182531	1	0.177584
1	1.38384	-0.202668	1.38384	-0.249689	1.38384	-0.259574
2	5.46228	0.019479	5.59507	-0.009046	5.59507	-0.042959
3	26.6880	0.219262	27.3034	0.050179	27.4846	0.066468

Good Series (at most p > 1 growth)

Great Series (instanton power $p \ge 9$)

Horrible Series (p = 1)

MRS Series

Renormalon Subtracted Series

The part that is a convergent series in $1/\alpha_s$

Fitting with Power Corrections

- The Λ on the horizontal axis is $\Lambda_{\overline{\rm MS}}-$
 - fits to data will have this as free parameter, i.e., optimization will stretch/shrink the curves to fit.
- Let's go back to the plots and get a feel for adding small amounts of order $(\Lambda/q)^2$ or 3 or 4, $(\Lambda r)^9$, or Λr .
- Disentangling power-law and logarithmic dependence seems hard for R(1/r), but not for $R_{MRS}(1/r)$.

- Start fits from $r/a = \sqrt{3}$
 - ullet From TUMQCD2019 PT works up to $\sim 0.13 fm$
 - Charm effects noticeable already at r > 0.1 fm
 - Charm effects:
 limit to 2-loop accuracy
 - Drop on-axis points due to large discretization effects
 - Model average (AIC) over valid fit ranges
 - Correlated fits, blocked jackknife
 - ← Example: Finest ensemble,2-loops no us-resum., MRS

Pole Mass's Horrible Series (p = 1, 2, 3, ...)

Pole Mass's MRS Series

Quark Mass Results

arXiv:1802.04248

Masses in numerical form:

$$\begin{split} & m_{l,\overline{\rm MS}}(2~{\rm GeV}) = 3.402(15)_{\rm stat}(05)_{\rm syst}(19)_{\alpha_s}(04)_{f_{\pi,\rm PDG}}~{\rm MeV} \\ & m_{u,\overline{\rm MS}}(2~{\rm GeV}) = 2.130(18)_{\rm stat}(35)_{\rm syst}(12)_{\alpha_s}(03)_{f_{\pi,\rm PDG}}~{\rm MeV} \\ & m_{d,\overline{\rm MS}}(2~{\rm GeV}) = 4.675(30)_{\rm stat}(39)_{\rm syst}(26)_{\alpha_s}(06)_{f_{\pi,\rm PDG}}~{\rm MeV} \\ & m_{s,\overline{\rm MS}}(2~{\rm GeV}) = 92.47(39)_{\rm stat}(18)_{\rm syst}(52)_{\alpha_s}(11)_{f_{\pi,\rm PDG}}~{\rm MeV} \\ & m_{c,\overline{\rm MS}}(3~{\rm GeV}) = 983.7(4.3)_{\rm stat}(1.4)_{\rm syst}(3.3)_{\alpha_s}(0.5)_{f_{\pi,\rm PDG}}~{\rm MeV} \\ & m_{b,\overline{\rm MS}}(m_{b,\overline{\rm MS}}) = 4201(12)_{\rm stat}(1)_{\rm syst}(8)_{\alpha_s}(1)_{f_{\pi,\rm PDG}}~{\rm MeV} \end{split}$$

Mass ratios:

$$m_c/m_s = 11.783(11)_{\text{stat}}(21)_{\text{syst}}(00)_{\alpha_s}(08)_{f_{\pi,\text{PDG}}}$$

 $m_b/m_s = 53.94(6)_{\text{stat}}(10)_{\text{syst}}(1)_{\alpha_s}(5)_{f_{\pi,\text{PDG}}}$
 $m_b/m_c = 4.578(5)_{\text{stat}}(6)_{\text{syst}}(0)_{\alpha_s}(1)_{f_{\pi,\text{PDG}}}$

Two or More Power Corrections

Bjorken Sum Rule's Horrible Series (p = 2)

Bjorken Sum Rule's MRS Series

Bjorken Sum Rule Experimental Data

Bjorken Sum Rule Two-Parameter Fits

Bjorken Sum Rule Two-Parameter Fits

Summary

Summary

- MRS revisited for any sequence of power corrections ↔
 dominant, subdominant, sub-subdominant, ... growth.
- Formulas for growth and normalization both follow from RGE and hold exactly at low orders.
- Standard to sum logarithms; let's sum factorials too—
 - reduction or elimination of truncation uncertainty!
- Better name needed: "renormalons" are not subtracted, but a class of (now) known contributions is summed.

Thank you for your attention

Questions?