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Further understanding of the Higgs boson…

Totally
 compatib

le with the SM

Higgs boson ~125 GeV 

Searched up here few TeV 

Why is the Higgs boson so light?

However, triviality calls for UV completion
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Composite Higgs models: Hierarchy of scales
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Composite Higgs models: Generic features
2.1. VACUUM MISALIGNEMENT 19

!F 〈θ〉

v
H

Figure 2.1: A geometrical illustration of EWSB through vacuum misalignment, in
the case of the spatial rotations group G = SO(3) with H = SO(2). The SO(2)
breaking from vacuum misalignment is proportional to the projection of ~F on the
SO(2) plane, v = f sinh✓i.

are exact NGB’s, therefore they have no potential and their VEV’s h✓âi are
completely arbitrary. Moreover the VEV’s are unobservable because any con-
stant ✓ configuration merely corresponds to one equivalent vacuum obtained
by acting on

#„
F with the G transformation exp[�ih✓âi bT â]. Technically, we

will be able to get rid of any h✓âi by a suitable redefinition of the ✓ fields that
induces the transformation

#„
� ! exp[�ih✓âi bT â]

#„
�. In this way it is possible

to set, in full generality, h✓âi = 0. The concept that the composite Higgs
VEV is unobservable in the absence of explicit breaking of G is often useful
in the study of composite Higgs theories.

When we take G-breaking into account and ✓ becomes a pseudo NGB
(pNGB) the situation changes. First of all, ✓ develops a potential and its
VEV is not arbitrary anymore. Moreover, h✓i becomes observable as it can
not be set to zero by an exact symmetry transformation. Its physical e↵ect
is to break GEW, embedded in H , giving rise to EWSB. Geometrically, as
depicted in Fig. 2.1, h✓i measures the angle by which the vacuum is misaligned
with respect to the reference vector

#„
F , which we have chosen to be orthogonal

to the plane of H ◆ GEW. The convenience of this choice should now be clear:
the field ✓ defined by Eq. (2.1.3) behaves exactly like the SM Higgs field in the
sense that its non-vanishing VEV triggers EWSB. More precisely, we expect
all the EWSB e↵ects such as the SM particle masses to be controlled by the
projection of

#„
F on the GEW plane, i.e. we expect the EWSB scale to be set

by v = f sinh✓i where f = | #„F | is the scale of G ! H spontaneous breaking.
This expectation is confirmed by the examples that follow.

The actual value of h✓i depends on the details of the composite sector and
on those of the symmetry-breaking perturbations. It can be obtained, in each
given explicit model, by minimizing the pNGB potential. In the absence of
some special mechanism or of an ad-hoc cancellation, we generically expect

Figure from G. Panico and A. Wulzer, 1506.01961

VacuumGlobal symmetry  broken to G H

Standard model global GW ⊂ H

The Higgs boson ∈ G/H
c.f., technicolour where Higgs ∈ H

1

GHC = Sp(4), G/H = {SU(4)⇥ SU(6)}/{Sp(4)⇥ SO(6)}

GHC = SU(4), G/H = {SU(4)⇥ [SU(2)L ⇥ SU(2)R]}/{SO(4)⇥ SU(2)V }

GHC = SU(2), G/H = SU(4)/Sp(4)

q q

SU(2)L ⇥ SU(2)R ⇢ H

v << fsinh✓i, f = |�!F | ⇠ ⇤HC
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  Higgs mass generated via vacuum misalignment

D.B. Kaplan, 1991

  Top-quark mass generated via partial compositeness
Spin-  bound states mixing with top quark 1/2
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Fermion representations and global symmetry

102 P.H. Damgaard et al. / Nuclear Physics B 633 (2002) 97–113

theory with Nf flavors of massless quarks transforming according to the fundamental
representation of gauge group G = SU(3). An order parameter is the well-known
condensate of !ΨΨ , which includes a summation of both color and flavor indices. Let us
make this explicit, and at the same time write the fermion bilinear in terms of the two-
component spinors:

(10)!ΨΨ = εαβχ ia
β ψαia + h.c.

Here α and β are the two-component spinor indices, while i and a denote flavor and color
indices, respectively. Now, ψαia transforms like a 3-representation under color while χβia

transforms like a 3̄ (see Eq. (7)). It is thus convenient to relabel the latter spinor as a
ψ-spinor with the color transformation property made explicit:

(11)!ΨΨ = εαβψ
i(3̄)
β ψ

(3)
αi + h.c.

Then it is immediately clear that the generalization to an arbitrary complex representation
r of gauge group G is

εαβψ
i(r̄ )
β ψ

(r)
αi + h.c.

Note how the left-handed and right-handed pieces trivially are invariant under the same
symmetries, since the right-handed part is just the Hermitian conjugate of the left-handed
part. The term above is in fact the G-invariant fermion bilinear of maximum vectorlike
flavor symmetry, and if it attains a non-vanishing expectation value it is thus consistent
with the Vafa–Witten theorem. The flavor symmetry remaining of the above expression is
only SU(Nf ), and the symmetry breaking pattern, if realized, thus corresponds to

(12)SU(Nf ) × SU(Nf ) → SU(Nf )

for all complex representations.
For real representations r of the gauge group G the representation r is equivalent to its

complex conjugate r̄ . The initial symmetry is then bigger, enlarged to SU(2Nf ) because
ψ and Sχ (with S symmetric, as discussed above) transform in the same way under color,
and thus can mix. The G-invariant fermion bilinear of maximal flavor symmetry is then

εαβψ ia
β ψ

b
αiS

−1
ab ,

where S is the symmetric matrix described above. Because of Fermi statistics this bilinear
can have non-vanishing expectation value. The continuous flavor symmetries remaining
are only those of orthogonal transformations, so the symmetry breaking in that case should
be

(13)SU(2Nf ) → SO(2Nf ).

Because of the doubling in symmetries it is in this case possible to consider also the
breaking pattern of Majorana fermions, which effectively corresponds to replacing 2Nf

by Nf (real, Majorana fermions).
Finally there is the pseudo-real case. Although the representation r in that case is not

equivalent to r̄ , it is possible to arrange for a fermion transforming according to, say,
r̄ to transform according to r by multiplying by the antisymmetric matrix S of Eq. (6).
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We can thus again, by this relabelling, work with fields that only transform according to
the representation r . Because of its antisymmetry, the only way to form a non-vanishing
bilinear out of anticommuting fermion fields is by multiplying with a matrix antisymmetric
in flavor indices. The result is

εαβψ ia
β ψ

jb
α S−1

ab Eij ,

where now S = −ST, and also E = −ET. The group of continuous flavor transformations
leaving this quadratic form invariant is Sp(2Nf ), and the expected symmetry breaking
pattern is thus

(14)SU(2Nf ) → Sp(2Nf ).

All of this is standard. What is perhaps puzzling is that these considerations in no way
involve the symmetries of the Dirac operator, the starting point for the analysis in terms
of Random Matrix Theory. The conjectured symmetry breaking patterns were originally
based on the intuitive idea of maximally breaking chiral symmetry without breaking flavor
symmetries, an idea which subsequently found its justification in the Vafa–Witten theorem.
This suggests that the Random Matrix Theory approach, and its associated three chiral
matrix ensembles [23], in some way should contain the same ingredients that enter in
the proof of the Vafa–Witten theorem. This idea is not totally far-fetched because in
fact the main assumption on which the Vafa–Witten theorem rests [2] is positivity of the
measure, which for the fermionic part can be traced back to the fact that Dirac eigenvalue
density is even in λ: ρ(λ) = ρ(−λ). This property is automatically built into the chiral
Random Matrix Theory, with ρ(λ) now being replaced by the eigenvalue density of the
random matrices. As for the precise symmetry breaking patterns, we have seen that the
classification in terms of Random Matrix Theory goes parallel with the classification
based on the assumption of maximal chiral symmetry breaking (without breaking flavor
symmetries) in that it depends on the color representation only. Without any reference to
Random Matrix Theory, in a chiral basis the Dirac operator matrix elements are complex
for complex representations, can be chosen real for pseudo-real representations, and can
be chosen quaternion-real for real representations [23]. In the latter case the Dirac operator
eigenvalues are doubly degenerate. In this sense the classification according to the Dyson
indices β can be done independently of the specific chiral Random Matrix Theories. The
fact that the chiral Random Matrix Theories in the microscopic limit can be mapped to
precisely the zero-momentum mode effective chiral Lagrangian corresponding to just the
right cosets of symmetry breaking [25] is a remarkable fact for which there is clearly no
simple explanation based only on group theoretic arguments.

3. Staggered fermions

For staggered fermions the situation is both simpler and more complicated. More
complicated is the pattern of symmetry breaking. Simpler are the symmetries of the Dirac
operator. Since the staggered Dirac operator does not have any γ -matrices, but only sign
factors, the (real) Kogut–Susskind phases, ηµ(x) = ±1, the potential antiunitary symmetry

Gauge group representation Global symmetry breaking pattern

Complex

Real

Pseudo-real

For  flavours of Dirac fermionsNf
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SU(4)/Sp(4)

QCD colour SU(3)

• SU(3) embedded in antisymmetric 
representation:


SU(6) → SO(6) ⊃ SU(3)

11

Our choice of model
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Lattice studies of Sp(4) gauge theory 
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Quenched Fully dynamical

Anti. nf = 3Fund. Nf = 2

- Parameter scan[2202.05516]

- GRID with Sp(2N) [2306.11649]

- Singlet meson [2405.05765]

- Spectral densities [2405.01388 ]

- F. and AS. Meson spectra [1712.04220,1912.06505]

- Glueball [2010.15781] 

- Topology [2205.09254,  2205.09364]

- Chimera baryon [2311.14663]

- large-N meson [2312.08465]

- Meson [1911.00437]

- Singlet [2304.07191]

Review:

Sp(2N) [2304.01070]

- Meson [2210.08154]

Sp(4) gauge [1712.04220]

Major works from our collaboration
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Quenched chimera baryons

Scan of parameter space

Wilson plaquette and Wilson fermion actions

6

TABLE 2: Gauge ensembles generated for the Sp(4) theory. We report the bare coupling �, the lattice size, Nt ⇥

N
3
s , the average plaquette hP i, and the gradient-flow scale w0/a. The gradient-flow scales are taken from Ref. [45].

Ensemble � Nt ⇥N
3
s hP i w0/a

QB1 7.62 48⇥ 243 0.6018898(94) 1.448(3)
QB2 7.7 60⇥ 483 0.6088000(35) 1.6070(19)
QB3 7.85 60⇥ 483 0.6203809(28) 1.944(3)
QB4 8.0 60⇥ 483 0.6307425(27) 2.3149(12)
QB5 8.2 60⇥ 483 0.6432302(25) 2.8812(21)

one-plus-four combinations of heat bath plus over-relaxation update algorithms. Two successive configurations in
the Markov chain are separated by twelve such updates of the whole lattice. More details of the implementation of
this procedure can be found in Ref. [43]. Also, in every Markov chain, the initial 600 configurations are treated as
thermalization steps and discarded from the measurements of physical observables. For each ensemble, we generate
200 configurations. We monitor the topological charge and its evolution, to ascertain that there is no evidence of
topological freezing. We denote the dimensionless lattice volume as Nt ⇥N

3
s , where Nt and Ns are the temporal and

spatial lattice extents, respectively. Periodic boundary conditions are imposed on gauge fields, in all directions. For
hyperquark fields, periodic and anti-periodic boundary conditions are implemented in spatial and temporal directions,
respectively.

We generate five ensembles with di↵erent values of the lattice bare coupling �. We summarize in Tab. 2 the
defining properties of each ensemble. We set the scale of dimensionful physical observables by employing the gradient-
flow method [92–94]. The procedure outlined in Ref. [95] yields the quantity w0/a, where w0 has dimension of an
inverse mass. This scale-setting exercise was already carried out and reported in detail in previous publications—see
Table II of Ref. [45], as well as the extensive discussions in Ref. [84]—hence we borrow results for w0/a from Ref. [45].
We notice that, in respect to Eq. (2.3) of Ref. [95], we use the di↵erent reference value W0 = 0.35, rather than 0.30.
The information presented in Tab. 2 shows that the spread of our choices of the lattice bare coupling corresponds
to a variation of the lattice spacing roughly by a factor of two, which allows us to perform a first extrapolation of
our results towards the continuum limit. In this work, when a dimensional quantity is expressed in units of w0, the
corresponding dimensionless quantity is denoted with the caret symbol. For instance, â ⌘ a/w0 and m̂ ⌘ w0m, where
m stands for a generic mass. The lattice parameters being identical, the relevant autocorrelation times can be found
in Table III in Ref. [45].

C. Interpolating operators and correlation functions

Following the notation introduced in Ref. [53], we denote the generic structure of the chimera baryon interpolating
operators, built out of two (f) and one (as) hyperquarks, as

OCB,⇢(x) ⌘
⇣
Q

i a
↵(x) �

1↵�
Q

j b
�(x)

⌘
⌦ad⌦bc�

2 ⇢� k cd
�(x) , (9)

where �1,2 are gamma matrices and ⌦ is the 4⇥ 4 symplectic matrix defined in Eq. (3), with a, b, c, d being Sp(4)-
hypercolor, i, j, k flavor, and ↵, �, �, ⇢ spinor indices. Operators given in Eqs. (1) and (2) are special cases of this
generic structure. The Dirac conjugate operator of OCB,⇢(x) is

OCB,⇢(x) ⌘  k cd
�(x)⌦cb⌦da�

2�⇢
⇣
Qj b

�(x)�
1 �↵

Qi a
↵(x)

⌘
. (10)

The zero momentum, two-point correlation functions of interest, restricted to consider only i 6= j, are written as

CCB,�⇢(t) ⌘

X

~x

hOCB,�(x)OCB,⇢(0)i

= �

X

~x

⇣
�2Sk cd

 c0d0(x, 0)�2
⌘

�⇢
⌦cb⌦

b0c0⌦ad⌦
d0a0

Tr
h
�1Sb

Q b0(x, 0)�
1S

a
Q a0(x, 0)

i
, (11)

where x ⌘ (t, ~x), while � ⌘ �
0�†�0. The trace is taken over the spinor indices. The hyperquark propagators are

S
i a
Q b↵�(x, y) = hQ

i a
↵(x)Q

i b
�(y)i , and S

k ab
 cd↵�(x, y) = h k ab

↵(x) 
k cd

�(y)i . (12)



16

Parity partners: who is lighter?

8

this investigation. In addition, we also manually check the results, to demonstrate the correctness of the automated
analysis.

We anticipate here that throughout this work, in the data analysis of correlation functions, estimates of the
statistical errors are obtained via the bootstrap method. For each measurement we generate 800 bootstrap samples.
Technical details on the intermediate steps are relegated to the appendix. In particular, fit results of the ground-state
masses are presented in Appendix A, while the choices of smearing parameters are reported in Appendix C.

A. Spin and Parity projection

Correlation functions involving the (chimera) baryon operators in Eqs. (9) and (10) can be further decomposed
into components with di↵erent spin and parity quantum numbers [53, 68, 101]. We denote by O

µ
CB,⇢ the operator

with Dirac matrix structure (�1
,�2) = (C�µ, 1), with µ running from 1 to 3. It overlaps with both spin-1/2 and 3/2

states. The corresponding two-point function with vanishing momentum, ~p = ~0, can be written as

C
µ⌫
CB,�⇢(t) ⌘

X

~x

hO
µ
CB ,�(x)O

⌫
CB ,⇢(0)i . (16)

The lightest baryons dominate the large Euclidean-time behaviors of the spin-1/2 and 3/2 components of Cµ⌫
CB,�⇢, and

we identify them with ⌃CB and ⌃⇤
CB (see Section I), respectively. We define the following two correlation functions:

C⌃CB,�⇢(t) ⌘
h
P

1/2
µ⌫ C

µ⌫
CB(t)

i

�⇢
and C⌃⇤

CB,�⇢(t) ⌘
h
P

3/2
µ⌫ C

µ⌫
CB(t)

i

�⇢
, (17)

where the spin projectors [102] are (for µ, ⌫ = 1, 2, 3)

P
1/2
µ⌫ ⌘

1

3
�
µ
�
⌫ and P

3/2
µ⌫ ⌘ �

µ⌫
�

1

3
�
µ
�
⌫
. (18)

We define as O
5
CB,⇢ the operator obtained from Eq. (9) by considering (�1

,�2) = (C�
5
, 1). This operator only

overlaps with spin-1/2 states, the ground state of which is the ⇤CB introduced in Section I. Therefore, we define

C⇤CB,�⇢(t) ⌘
X

~x

hO
5
CB,�(x)O

5
CB,⇢(0)i . (19)

For notational simplicity, in the rest of this article we will not write explicitly the spinor indices, � and ⇢, in the
correlation functions in Eqs. (17) and (19), but leave them understood. Furthermore, we use the symbol CCB(t) to
denote generically C⇤CB(t), C⌃CB(t), or C⌃⇤

CB
(t).

The chimera baryon interpolating operators, O5
CB,⇢ and O

µ
CB,⇢, couple to both even- and odd-parity states. At

large Euclidean time, due to the use of anti-periodic boundary conditions in the temporal direction for hyperquark
fields, the two-point correlation function of a chimera baryon, following the convention in Ref. [103], behaves asymp-
totically as

CCB(t)
0⌧t⌧T
�����! P+

h
c+e

�m+t
� c�e

�m�(T�t)
i
+ P�

h
c�e

�m�t
� c+e

�m+(T�t)
i
, (20)

where the parity projectors are

P± ⌘
1± �

0

2
, (21)

while m
± are the masses of the even- and odd-parity states, and c± the corresponding baryon-to-vacuum matrix

elements. We define even- and odd-parity correlation functions, C+
CB(t) and C

�
CB(t), by applying the P± projectors:

C
±
CB(t) ⌘ P± CCB(t) . (22)

For finite but large extent of the temporal lattice, T , we therefore find that the projected correlation functions at
large Euclidean time, 0 ⌧ t ⌧ T , behave as

C
±
CB(t) �! c±e

�m±t
� c⌥e

�m⌥(T�t)
. (23)
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this investigation. In addition, we also manually check the results, to demonstrate the correctness of the automated
analysis.

We anticipate here that throughout this work, in the data analysis of correlation functions, estimates of the
statistical errors are obtained via the bootstrap method. For each measurement we generate 800 bootstrap samples.
Technical details on the intermediate steps are relegated to the appendix. In particular, fit results of the ground-state
masses are presented in Appendix A, while the choices of smearing parameters are reported in Appendix C.

A. Spin and Parity projection

Correlation functions involving the (chimera) baryon operators in Eqs. (9) and (10) can be further decomposed
into components with di↵erent spin and parity quantum numbers [53, 68, 101]. We denote by O

µ
CB,⇢ the operator

with Dirac matrix structure (�1
,�2) = (C�µ, 1), with µ running from 1 to 3. It overlaps with both spin-1/2 and 3/2

states. The corresponding two-point function with vanishing momentum, ~p = ~0, can be written as
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µ
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⌫
CB ,⇢(0)i . (16)

The lightest baryons dominate the large Euclidean-time behaviors of the spin-1/2 and 3/2 components of Cµ⌫
CB,�⇢, and

we identify them with ⌃CB and ⌃⇤
CB (see Section I), respectively. We define the following two correlation functions:
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�⇢
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We define as O
5
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5
, 1). This operator only

overlaps with spin-1/2 states, the ground state of which is the ⇤CB introduced in Section I. Therefore, we define

C⇤CB,�⇢(t) ⌘
X

~x

hO
5
CB,�(x)O

5
CB,⇢(0)i . (19)

For notational simplicity, in the rest of this article we will not write explicitly the spinor indices, � and ⇢, in the
correlation functions in Eqs. (17) and (19), but leave them understood. Furthermore, we use the symbol CCB(t) to
denote generically C⇤CB(t), C⌃CB(t), or C⌃⇤

CB
(t).

The chimera baryon interpolating operators, O5
CB,⇢ and O

µ
CB,⇢, couple to both even- and odd-parity states. At

large Euclidean time, due to the use of anti-periodic boundary conditions in the temporal direction for hyperquark
fields, the two-point correlation function of a chimera baryon, following the convention in Ref. [103], behaves asymp-
totically as

CCB(t)
0⌧t⌧T
�����! P+

h
c+e

�m+t
� c�e

�m�(T�t)
i
+ P�

h
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, (20)

where the parity projectors are

P± ⌘
1± �

0

2
, (21)

while m
± are the masses of the even- and odd-parity states, and c± the corresponding baryon-to-vacuum matrix

elements. We define even- and odd-parity correlation functions, C+
CB(t) and C

�
CB(t), by applying the P± projectors:

C
±
CB(t) ⌘ P± CCB(t) . (22)

For finite but large extent of the temporal lattice, T , we therefore find that the projected correlation functions at
large Euclidean time, 0 ⌧ t ⌧ T , behave as

C
±
CB(t) �! c±e

�m±t
� c⌥e

�m⌥(T�t)
. (23)
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FIG. 1: Illustrative examples of chimera baryon correlation functions, (a), and e↵ective mass plots, (b) and (c), ob-

tained on the ensemble QB1 with hyperquark masses am(f)
0 = �0.77 and am

(as)
0 = �1.1. (a): the parity-projected

correlators, C±
⇤CB

(t). (b) e↵ective masses, ame↵ , extracted from correlation function obtained with, C±
⇤CB

(t), and
without parity projection, C⇤CB(t). (c): e↵ective masses, ame↵ , extracted from correlation functions upon which
spin and parity projections are applied, C+

⌃CB
(t) and C

+
⌃⇤

CB
(t), or without any projection, CCB,µ⌫(t).

To improve statistics, in the analysis we employ the averaged correlator,

C
±
CB(t) =

C
±
CB(t)� C

⌥
CB(T � t)

2
, (24)

which exhibits the same asymptotic behavior as in Eq. (23).

For both even- and odd-parity states, we define the e↵ective masses as

am
±
e↵,CB(t) = ln

"
C

±
CB(t)

C
±
CB(t+ 1)

#
, (25)

and restrict our attention to ranges of Euclidean time 0 ⌧ t < T/2. From Eqs. (23) and (24), one expects that
am

±
e↵,CB(t), when plotted against time, will asymptotically display a plateau dominated by either the even-parity or

odd-parity ground states, in C
+
CB(t) and C

�
CB(t), respectively. By studying and comparing the resulting e↵ective mass

plots, we determine the parity of the lowest-lying chimera baryon state for each choice of spin and global symmetry
quantum numbers of interest, as listed in Tab. 1. As a cross-check of our results, we consider also the e↵ective mass
computed with unprojected correlation functions, CCB. In analogy with Eq. (25), for 0 ⌧ t < T/2, we define it as

ame↵,CB(t) = ln


CCB(t)

CCB(t+ 1)

�
. (26)

Given the asymptotic behavior expected in Eq. (20), the value of the plateau in ame↵,CB(t) should appear at a value
compatible with the lightest between am

+
e↵,CB(t) and am

�
e↵,CB(t).

In order to graphically illustrate how projectors a↵ect the e↵ective mass extraction, we present in Fig. 1a the
parity-projected correlation functions, C±

⇤CB
(t), obtained from the ensemble QB1 (see Tab. 2) with the bare hyperquark

masses in the Wilson-Dirac action set to am
f
0 = �0.77 and am

as
0 = �1.05. Notice the logarithm scale on the vertical

axis. The lattice used to generate this ensemble has Euclidean time extent T/a = 48. By comparing the slopes with
the behavior expected in Eq. (20), one can infer that the parity-even state is lighter than its parity-odd partner, and
hence that the ⇤CB chimera baryon (a candidate top partner) has even parity.

Figure 1b shows the e↵ective masses, am±
e↵,⇤CB

, extracted with and without applying parity projectors. For the

⇤CB state, the plot clearly demonstrates that m
+
e↵,⇤CB

< m
�
e↵,⇤CB

. Furthermore, examination of the e↵ective mass
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FIG. 2: E↵ective masses of the lightest, even-parity chimera baryons measured in the ensemble QB4, for two repre-

sentative choices of hyperquark masses, am(as)
0 = �0.81 and (a) am(f)

0 = �0.6, or (b) am(f)
0 = �0.69.

extracted from the unprojected correlator, ame↵,⇤CB , confirms the hierarchy between the masses of the two parity
eigenstates. It is worthy of notice that in Fig. 1b we can clearly discern the emergence of a plateau for am

�
e↵,⇤CB

at smaller t/a. This negative-parity ground state happens to be substantially heavier, but not parametrically so. It
would be interesting to perform a systematic study of the spectra of this and other heavy baryons, but doing so would
go beyond the purposes of the present study, and requires the use of dedicated numerically strategies to optimize the
signal. We postpone such a study to the future.

Following the same procedure, applied to the correlation functions involving the operator Oµ
CB,⇢, we also demon-

strate that m+
e↵,⌃CB

< m
�
e↵,⌃CB

, as well as that m+
e↵,⌃⇤

CB
< m

�
e↵,⌃⇤

CB
. Therefore, it is established that ⇤CB, ⌃CB, and

⌃⇤
CB are all parity even, and we only discuss their masses (denoted as m⇤CB , m⌃CB and m⌃⇤

CB
) in the rest of this

paper. These baryon masses are extracted by performing single-exponential fits of the data for C
+
CB to Eq. (23) in

the interval 0 ⌧ t  T/2. The choice of fit range is guided by the range of the plateau of the e↵ective mass, and can
be optimized by tracking the value of �2

/Nd.o.f..

Besides parity, we perform also spin projections, as defined in Eq. (17), for the correlator Cµ⌫
CB(t). By doing so,

we can discriminate between ⌃CB and ⌃⇤
CB states. Figure 1c displays the e↵ective masses computed from C

µ⌫,+
CB (t)

measured on ensemble QB1 with spin projections and same hyperquark masses as in Figs. 1a and 1b. This plot shows
the expected hierarchy, m⌃CB < m⌃⇤

CB
. Furthermore, we also display the e↵ective mass obtained from C

µ⌫
CB(t) with

neither spin nor parity projections. As expected, the plateau value is compatible with that of the ⌃CB baryon, but
contamination with the heavier states results in some deterioration of the signal quality.

B. Mass hierarchy and hyperquark-mass dependence of chimera baryons

One interesting feature we observe is the hierarchy between the ground-state chimera baryons in the three
channels of interest. Figure 2 shows ame↵,⇤CB(t), ame↵,⌃CB(t), and ame↵,⌃⇤

CB
(t) for two representative choices of

bare hyperquark masses, (am(f)
0 , am

(as)
0 ) = (�0.6,�0.81) and (am(f)

0 , am
(as)
0 ) = (�0.69,�0.81), as measured in the

ensemble QB4 (see Tab. 2). In the former case, we find convincing evidence that ⌃CB is the lightest among these

states. In the latter case, the (f)-type bare hyperquark mass is reduced to am
(f)
0 = �0.69, and as shown in the

right panel of Fig. 2, ⇤CB and ⌃CB become almost degenerate, their masses cannot be discriminated with given
present uncertainties. For all choices we make of bare hyperquark masses, and in all available ensembles in Tab. 2,
⌃⇤

CB is always the heaviest amongst the three lowest-lying parity-even baryon states, and ⇤CB is never lighter than
⌃CB. More detailed investigations of the hierarchy in the chimera-baryon masses, in particular its dependence on the
hyperquark masses, will be discussed in this and the next subsections.

 is not lighter than ΛCB ΣCB

c.f., QCD where  mΛ < mΣ
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TABLE 3: List of the terms in Eq. (29) that are included in the choices of fit ansatz used in our analysis.

Fit Ansatz m̂
�
CB m̂

2
PS m̂

2
ps m̂

3
PS m̂

3
ps m̂

4
PS m̂

4
ps m̂

2
PSm̂

2
ps â m̂

2
PSâ m̂

2
psâ

M2 X X X - - - - - X - -
M3 X X X X X - - - X X X
MF4 X X X X X X - - X X X
MA4 X X X X X - X - X X X
MC4 X X X X X - - X X X X

Antisymmetric Fundamental
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TABLE 3: List of the terms in Eq. (29) that are included in the choices of fit ansatz used in our analysis.

Fit Ansatz m̂
�
CB m̂

2
PS m̂

2
ps m̂

3
PS m̂

3
ps m̂

4
PS m̂

4
ps m̂

2
PSm̂

2
ps â m̂

2
PSâ m̂

2
psâ

M2 X X X - - - - - X - -
M3 X X X X X - - - X X X
MF4 X X X X X X - - X X X
MA4 X X X X X - X - X X X
MC4 X X X X X - - X X X X
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TABLE 4: The optimal choices of m̂PS,cut and m̂ps,cut for each fit ansatz in the continuum and massless-hyperquark
extrapolation of m̂⇤CB . Also shown are the corresponding value of �2

/Nd.o.f., AIC and W .

⇤CB

Ansatz m̂PS,cut m̂ps,cut �
2
/Nd.o.f. AIC W

M2 0.77 0.97 0.59 211.24 ⇠ 10�38

M3 1.07 1.87 0.83 143.48 ⇠ 10�8

MF4 1.02 1.87 0.82 145.11 ⇠ 10�9

MA4 1.07 1.87 0.84 146.36 ⇠ 10�10

MC4 1.07 1.87 0.68 125.8 0.51

ceptably large �2
/Nd.o.f.. Furthermore, di↵ferent choices of initial values of the fit parameters lead to di↵erent results

of the minized �
2
/Nd.o.f.. We interpret this result as evidence that the modeling of our data set encapsulated by

Eq. (29) is too general, so that the minimization of the �
2
/Nd.o.f. with 11 fitting parameters is not well-converged.

Hence, some of the LECs cannot be determined by the available data. In view of this, in this article, we do not
report results obtained by fitting our data to Eq. (29). Instead, we explore a di↵erent numerical approach that allows
for a variation of the set of free parameters included in the analysis, besides changing the number of incorporated
measurements.

We summarize in Tab. 3 the five fit ansatze included in our analysis. They are all based upon Eq. (29), but are
obtained by restricting the set of terms used in the fit, while setting the others to zero, to reduce the number of fitting
parameters. The first fit ansatz, dubbed M2, includes the polynomial terms in the first line of Eq. (29), i.e., m̂�

CB and
corrections quadratic in pseudoscalar-meson masses or linear in lattice spacing. In M3, we also incorporate corrections
up to the cubic terms in the pseudoscalar-meson masses, as well as the lattice-spacing corrections, m̂2

PSâ and m̂
2
psâ.

We further include the three highest-order terms in Eq. (29), one by one, in MF4, MA4, and MC4, corresponding to
the addition of only F4m̂

4
PS, A4m̂

4
ps, or C4m̂

2
PSm̂

2
ps, respectively.

By combining the 5 fit ansatz with the 263 data sets generated by imposing cuts on the data sets, we are left
with 263⇥5 = 1315 di↵erent analysis procedures. Following the ideas in Ref. [108], we select the best one by applying
the Akaike information criterion (AIC). For each analysis procedure, one computes the quantity

AIC ⌘ �
2 + 2k + 2Ncut , (30)

where �2 is the standard chi-square, k is the number of fit parameters, and Ncut is the number of data points removed
by the introduction of the cuts m̂PS,cut and m̂ps,cut.

TABLE 5: The optimal choices of m̂PS,cut and m̂ps,cut for each fit ansatz in the continuum and massless-hyperquark
extrapolation of m̂⌃CB . Also shown are the corresponding value of �2

/Nd.o.f., AIC and W .

⌃CB

Ansatz m̂PS,cut m̂ps,cut �
2
/Nd.o.f. AIC W

M2 0.62 0.72 0.69 246.4 ⇠ 10�28

M3 0.62 1.37 0.78 228.64 ⇠ 10�21

MF4 0.57 1.82 0.78 230.04 ⇠ 10�21

MA4 0.57 1.87 0.67 220.0 ⇠ 10�17

MC4 0.77 1.47 0.8 182.29 0.90

TABLE 6: The optimal choices of m̂PS,cut and m̂ps,cut for each fit ansatz in the continuum and massless-hyperquark
extrapolation of m̂⌃CB . Also shown are the corresponding value of �2

/Nd.o.f., AIC and W .

⌃⇤
CB

Ansatz m̂PS,cut m̂ps,cut �
2
/Nd.o.f. AIC W

M2 0.82 0.87 1.08 244.29 ⇠ 10�12

M3 0.87 1.22 0.95 220.18 0.20
MF4 1.02 1.17 0.96 222.22 0.03
MA4 0.97 1.67 1.39 226.13 ⇠ 10�4

MC4 0.87 1.22 1.01 225.97 ⇠ 10�4
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FIG. 7: Heat-map plots of �2
/Nd.o.f., W and m̂

�
CB (top to bottom) for the analysis of m̂⇤CB using di↵erent fit

ansatze in Tab. 3. The horizontal and vertical axes are m̂PS,cut and m̂ps,cut, respectively.

The corresponding probability weight is expected to be

W =
1

N
exp


�
1

2
AIC

�
, (31)

where N is a normalization factor that ensures the sum of W over all 1315 analysis procedures equals to one.
Maximizing the W over ansatze and data sets is equivalent to minimizing the AIC. We note that a smaller �2 value
can normally be obtained by considering more fit parameters, or by excluding data points that are not well described
by the ansatz, e.g., points in the region of heavy hyperquark masses in our case. These correspond to the last two
terms on the right-hand side of Eq. (30). They introduce a penalty by increasing the value of AIC, hence reducing
W . In Ref. [108], the aim was to estimate a measured quantity by averaging over results from all analysis procedures
with their probability weights. The �

2 therein was augmented to account for prior information. In this work, we
focus on the standard �

2, with the aim of selecting the best analysis procedure.

Figures 7, 8, and 9 show, in heat-map format, the m̂PS,cut- and m̂ps,cut-dependence of the �
2
/Nd.o.f., the proba-

bility weight, W , in Eq. (31), and the fitted m̂
�
CB, for measurements of the masses of ⇤CB, ⌃CB, and ⌃⇤

CB, respectively.
In each row of a given figure, we display the results for the five distinct fitting strategies, M2, M3, MF4, MA4, and
MC4, listed in Tab. 3. In all the plots, the horizontal and vertical axes correspond to m̂PS,cut and m̂ps,cut, respectively.
The center of each pixel in a heat map represents a set of cuts (m̂PS,cut, m̂ps,cut). Notice that changing the values of



23

Fit results for mΛCB

M

M

0.52 0.82 1.07
0.52

0.97

1.42

1.87
M2

0.52 0.82 1.07
0.52

0.97

1.42

1.87
M3

0.52 0.82 1.07
0.52

0.97

1.42

1.87
MF4

0.52 0.82 1.07
0.52

0.97

1.42

1.87
MA4

0.52 0.82 1.07
0.52

0.97

1.42

1.87
MC4

0.52 0.82 1.07
0.52

0.97

1.42

1.87

0.52 0.82 1.07
0.52

0.97

1.42

1.87

0.52 0.82 1.07
0.52

0.97

1.42

1.87

0.52 0.82 1.07
0.52

0.97

1.42

1.87

0.52 0.82 1.07
0.52

0.97

1.42

1.87

0.52 0.82 1.07
0.52

0.97

1.42

1.87

0.52 0.82 1.07
0.52

0.97

1.42

1.87

0.52 0.82 1.07
0.52

0.97

1.42

1.87

0.52 0.82 1.07
0.52

0.97

1.42

1.87

0.52 0.82 1.07
0.52

0.97

1.42

1.87

0.6

0.9

1.2

m̂
‰ � C

B

0.0

0.2

0.4

W

0

0.5

1

1.5

Ø 2

‰
2 /
N

d.
o.

f.

m̂PS,cut

m̂
ps
,c

ut

M2

MF4 MA4 MC4

 Polynomial terms in baryon chiral 
perturbation theory


mCB = mχ
CB+F2m̂2

PS+A1m̂ps
2+L1 ̂a

+F3m̂3
PS+A3m̂3

ps+L2F ̂am̂2
PS+L2A ̂am̂2

ps

+F4m̂4
PS+A4m̂4

ps+C4m̂2
PSm̂2

ps

M3



21

0.0 0.2 0.4 0.6 0.8 1.0 1.2
m̂2

PS

0.8

1.0

1.2

1.4

1.6

1.8
m̂

CB
at
m̂

2 ps
=

0

0 1 2 3
m̂2ps

0.8

1.0

1.2

1.4

1.6

1.8

m̂
CB

at
m̂

2 PS
=

0

�CB �CB ��
CB

FIG. 12: Dependence on m̂
2
PS (left) and m̂

2
ps (right) of the mass of three chimera baryons, ⇤CB, ⌃CB, and ⌃⇤

CB, in
the limit where the lattice spacing vanishes, while m̂

2
ps = 0 (left) and m̂

2
PS = 0 (right). These plots are generated

using the best-fit LECs in Tab. 7, with the bands representing the statistical errors. These bands straddle in the
horizontal direction between zero and the optimal choices of m̂2

PS,cut (left) and m̂
2
ps,cut (right).

on m̂
2
PS and m̂

2
ps of the chimera-baryon masses in the continuum limit, in Fig. 12. That is, the plots in this figure are

generated using Eq. (29) with â = 0. The left (right) panel of this figure shows the evolution of m̂⇤CB , m̂⌃CB , and
m̂⌃CB as a function of m̂PS (m̂ps) in the limit where m̂ps = 0 (m̂PS = 0). The color bands represent the statistical
errors, and they straddle in the horizontal direction from 0 to the values m̂PS = m̂PS,cut (left) and m̂ps = m̂ps,cut

(right). The mass hierarchy,

m̂⌃CB . m̂⇤CB < m̂⌃⇤
CB

, (34)

emerges in the whole range of hyperquark masses investigated in this work. The masses m̂⇤CB and m̂⌃CB become
compatible with one another only in the regime of heavier (as) hyperquarks. The hierarchy in Eq. (34) can have
non-trivial implications in constructing viable models for top partial compositeness [66].

It is interesting to compare the masses of the chimera baryons with those of other states in the theory, as we do in
Fig. 13. Meson and glueball masses are taken from our previous measurements in the quenched approximation [45, 109]
(see also Refs. [110, 111] for related studies). In this figure, mesons denoted by capital letters are those composed of
(f) hyperquarks, while those expressed by lowercase letters contain (as) hyperquarks only. All the masses presented in
the plot have been extrapolated to the continuum and massless-hyperquark limit, and are shown in both gradient-flow
units (vertical axis on the left-hand side), as well as in units of the fundamental pseudoscalar meson decay constant [45]
(vertical axis on the right-hand side). The height of the bands represents statistical errors. As shown in the figure, we
find that the masses of the top-partner candidates, ⇤CB and ⌃CB, are comparable to those of the (as) vector mesons.

The spectrum of CHMs with top partial compositeness has also been studied using other methods, such as
Schwinger-Dyson equations, Nambu-Jona-Lasinio models, or in the framework of holography [112–117]. To facilitate
comparison with these as well as other future studies, and in view of possible phenomenological applications, we
express our final results for the massless-hyperquark and continuum extrapolations for the chimera baryon states in
units of the mass, mv, of the lightest vector meson with (as)-type constituents. We find

m⇤CB/mv = 1.234(32) , m⌃CB/mv = 1.016(25) , and m⌃⇤
CB

/mv = 1.576(47) , (35)
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for the chimera baryons are original to this work.

where the quoted error is statistical errors without including systematic e↵ects, for example due to the quenched
approximation.

IV. SUMMARY AND OUTLOOK

The strongly interacting Sp(4) gauge theory coupled to Nf = 2 fundamental, (f), and nf = 3 two-index antisym-
metric, (as), Dirac fermions (hyperquarks) is the minimal model amenable to lattice investigations that can provide
a UV completion of CHMs with top partial compositeness [27]. Chimera baryons are composite states formed by
two (f) and one (as) hyperquarks, and are sourced by the operators O

5 in Eq. (1) and O
µ in Eq. (2). The lightest

state sourced by O
5 is the spin-1/2 chimera baryon, ⇤CB, while O

µ can source spin-1/2 and -3/2 baryons, and we
denote by ⌃CB and ⌃⇤

CB, respectively, the two lightest states with definite spin. Either ⇤CB or ⌃CB are candidate
top partners [66].

Because this is the first systematic lattice calculation of the chimera baryon spectrum in the Sp(4) gauge theory,
we perform it in the quenched approximation, in which the hyperquark determinant in the path integral is set to
a constant—see Ref. [53] for pioneering work on the theory with Nf = 2 (f)-type and nf = 3 (as)-type dynamical

Quenched spectrum 
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representation. It is real if there exists a unitary S so that

(5)
(

T a
)∗ =

(

T a
)T = −S−1T aS, SS∗ = 1.

For such a representation, U = exp[iωaT a] is equivalent to its complex conjugate (equal
after a similarity transformation). It is then possible to find a basis in which all T a are
purely imaginary (but of course still Hermitian). A pseudo-real representation is one for
which there exists a unitary S so that

(6)
(

T a
)∗ =

(

T a
)T = −S−1T aS, SS∗ = −1.

It is then no longer possible to find a basis in which all generators T a are purely imaginary.
The fundamental representation of SU(2) with its conventional Pauli matrices τ a/2 is
a good example. Since (5) implies S = ST, and (6) implies S = −ST, the one major
distinction between real and pseudo-real is whether S is symmetric or antisymmetric.
For a real representationwe thus find (V K)2 = −1 and the Dirac operator will belong to

the symplectic ensemble, β = 4, while for a pseudo-real representation (V K)2 = 1 and the
Dirac operator belongs to the orthogonal ensemble, β = 1. This is a little counter-intuitive,
compared to the symmetry breaking patterns. The reason is the behavior of the γ -matrices
in the Dirac operator under complex conjugation.
So far we have only been concerned with the symmetries of the (massless) Dirac

operator. In fact there is an intimate connection between the symmetries of the Dirac
operator and the pattern of spontaneous symmetry breaking. This may seem surprising,
since the conjectured symmetry breaking patterns are based on the symmetries of the
condensate 〈$ΨΨ 〉 rather than those of the Dirac operator. In order to elucidate the relation
between the two, let us first quickly recall how the appearance of the three different
patterns of spontaneous chiral symmetry breaking can be understood [1]. For this purpose
it is convenient to introduce the two-component van der Waerden notation of dotted and
undotted spinor indices, so familiar from, e.g., supersymmetry. We consider 4-component
massless Dirac spinors Ψ (x), and choose to work in a chiral basis of γ -matrices. Then
upper and lower parts of the 4-spinors simply correspond to the left-handed and right-
handed components:

(7)Ψ =
(

ΨL

ΨR

)

≡
(

ψα

χ̄ β̇

)

=
(

ψα
(

χβ
)∗

)

,

and the charge conjugate spinor is then given by

(8)Ψ C = C$Ψ T = −iγ 0γ 2$Ψ T =
(

χα

ψ̄β̇

)

.

In other words, instead of working with one 4-component Dirac spinor Ψ , we can equally
well work with two left-handed spinors from Ψ and its charge conjugate Ψ C ,

(9)ψα and χβ = εβγ χ
γ ,

where in the last equation we have made use of the fact that the two-component spinor
indices are raised and lowered by means of the antisymmetric ε-tensor. Consider now
a well-known example of spontaneous chiral symmetry breaking, that of a QCD-like
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theory with Nf flavors of massless quarks transforming according to the fundamental
representation of gauge group G = SU(3). An order parameter is the well-known
condensate of !ΨΨ , which includes a summation of both color and flavor indices. Let us
make this explicit, and at the same time write the fermion bilinear in terms of the two-
component spinors:

(10)!ΨΨ = εαβχ ia
β ψαia + h.c.

Here α and β are the two-component spinor indices, while i and a denote flavor and color
indices, respectively. Now, ψαia transforms like a 3-representation under color while χβia

transforms like a 3̄ (see Eq. (7)). It is thus convenient to relabel the latter spinor as a
ψ-spinor with the color transformation property made explicit:

(11)!ΨΨ = εαβψ
i(3̄)
β ψ

(3)
αi + h.c.

Then it is immediately clear that the generalization to an arbitrary complex representation
r of gauge group G is

εαβψ
i(r̄ )
β ψ

(r)
αi + h.c.

Note how the left-handed and right-handed pieces trivially are invariant under the same
symmetries, since the right-handed part is just the Hermitian conjugate of the left-handed
part. The term above is in fact the G-invariant fermion bilinear of maximum vectorlike
flavor symmetry, and if it attains a non-vanishing expectation value it is thus consistent
with the Vafa–Witten theorem. The flavor symmetry remaining of the above expression is
only SU(Nf ), and the symmetry breaking pattern, if realized, thus corresponds to

(12)SU(Nf ) × SU(Nf ) → SU(Nf )

for all complex representations.
For real representations r of the gauge group G the representation r is equivalent to its

complex conjugate r̄ . The initial symmetry is then bigger, enlarged to SU(2Nf ) because
ψ and Sχ (with S symmetric, as discussed above) transform in the same way under color,
and thus can mix. The G-invariant fermion bilinear of maximal flavor symmetry is then

εαβψ ia
β ψ

b
αiS

−1
ab ,

where S is the symmetric matrix described above. Because of Fermi statistics this bilinear
can have non-vanishing expectation value. The continuous flavor symmetries remaining
are only those of orthogonal transformations, so the symmetry breaking in that case should
be

(13)SU(2Nf ) → SO(2Nf ).

Because of the doubling in symmetries it is in this case possible to consider also the
breaking pattern of Majorana fermions, which effectively corresponds to replacing 2Nf

by Nf (real, Majorana fermions).
Finally there is the pseudo-real case. Although the representation r in that case is not

equivalent to r̄ , it is possible to arrange for a fermion transforming according to, say,
r̄ to transform according to r by multiplying by the antisymmetric matrix S of Eq. (6).

Real :
Pseudoreal : 

gauge repn condensate global symmetry 
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theory with Nf flavors of massless quarks transforming according to the fundamental
representation of gauge group G = SU(3). An order parameter is the well-known
condensate of !ΨΨ , which includes a summation of both color and flavor indices. Let us
make this explicit, and at the same time write the fermion bilinear in terms of the two-
component spinors:

(10)!ΨΨ = εαβχ ia
β ψαia + h.c.

Here α and β are the two-component spinor indices, while i and a denote flavor and color
indices, respectively. Now, ψαia transforms like a 3-representation under color while χβia

transforms like a 3̄ (see Eq. (7)). It is thus convenient to relabel the latter spinor as a
ψ-spinor with the color transformation property made explicit:

(11)!ΨΨ = εαβψ
i(3̄)
β ψ

(3)
αi + h.c.

Then it is immediately clear that the generalization to an arbitrary complex representation
r of gauge group G is

εαβψ
i(r̄ )
β ψ

(r)
αi + h.c.

Note how the left-handed and right-handed pieces trivially are invariant under the same
symmetries, since the right-handed part is just the Hermitian conjugate of the left-handed
part. The term above is in fact the G-invariant fermion bilinear of maximum vectorlike
flavor symmetry, and if it attains a non-vanishing expectation value it is thus consistent
with the Vafa–Witten theorem. The flavor symmetry remaining of the above expression is
only SU(Nf ), and the symmetry breaking pattern, if realized, thus corresponds to

(12)SU(Nf ) × SU(Nf ) → SU(Nf )

for all complex representations.
For real representations r of the gauge group G the representation r is equivalent to its

complex conjugate r̄ . The initial symmetry is then bigger, enlarged to SU(2Nf ) because
ψ and Sχ (with S symmetric, as discussed above) transform in the same way under color,
and thus can mix. The G-invariant fermion bilinear of maximal flavor symmetry is then

εαβψ ia
β ψ

b
αiS

−1
ab ,

where S is the symmetric matrix described above. Because of Fermi statistics this bilinear
can have non-vanishing expectation value. The continuous flavor symmetries remaining
are only those of orthogonal transformations, so the symmetry breaking in that case should
be

(13)SU(2Nf ) → SO(2Nf ).

Because of the doubling in symmetries it is in this case possible to consider also the
breaking pattern of Majorana fermions, which effectively corresponds to replacing 2Nf

by Nf (real, Majorana fermions).
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We can thus again, by this relabelling, work with fields that only transform according to
the representation r . Because of its antisymmetry, the only way to form a non-vanishing
bilinear out of anticommuting fermion fields is by multiplying with a matrix antisymmetric
in flavor indices. The result is

εαβψ ia
β ψ

jb
α S−1

ab Eij ,

where now S = −ST, and also E = −ET. The group of continuous flavor transformations
leaving this quadratic form invariant is Sp(2Nf ), and the expected symmetry breaking
pattern is thus

(14)SU(2Nf ) → Sp(2Nf ).

All of this is standard. What is perhaps puzzling is that these considerations in no way
involve the symmetries of the Dirac operator, the starting point for the analysis in terms
of Random Matrix Theory. The conjectured symmetry breaking patterns were originally
based on the intuitive idea of maximally breaking chiral symmetry without breaking flavor
symmetries, an idea which subsequently found its justification in the Vafa–Witten theorem.
This suggests that the Random Matrix Theory approach, and its associated three chiral
matrix ensembles [23], in some way should contain the same ingredients that enter in
the proof of the Vafa–Witten theorem. This idea is not totally far-fetched because in
fact the main assumption on which the Vafa–Witten theorem rests [2] is positivity of the
measure, which for the fermionic part can be traced back to the fact that Dirac eigenvalue
density is even in λ: ρ(λ) = ρ(−λ). This property is automatically built into the chiral
Random Matrix Theory, with ρ(λ) now being replaced by the eigenvalue density of the
random matrices. As for the precise symmetry breaking patterns, we have seen that the
classification in terms of Random Matrix Theory goes parallel with the classification
based on the assumption of maximal chiral symmetry breaking (without breaking flavor
symmetries) in that it depends on the color representation only. Without any reference to
Random Matrix Theory, in a chiral basis the Dirac operator matrix elements are complex
for complex representations, can be chosen real for pseudo-real representations, and can
be chosen quaternion-real for real representations [23]. In the latter case the Dirac operator
eigenvalues are doubly degenerate. In this sense the classification according to the Dyson
indices β can be done independently of the specific chiral Random Matrix Theories. The
fact that the chiral Random Matrix Theories in the microscopic limit can be mapped to
precisely the zero-momentum mode effective chiral Lagrangian corresponding to just the
right cosets of symmetry breaking [25] is a remarkable fact for which there is clearly no
simple explanation based only on group theoretic arguments.

3. Staggered fermions

For staggered fermions the situation is both simpler and more complicated. More
complicated is the pattern of symmetry breaking. Simpler are the symmetries of the Dirac
operator. Since the staggered Dirac operator does not have any γ -matrices, but only sign
factors, the (real) Kogut–Susskind phases, ηµ(x) = ±1, the potential antiunitary symmetry

M. Peskin, 1980
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The top partner and the top mass

mass (as in precursor top-color models) and to trigger electroweak symmetry breaking via
vacuum (mis)alignement. As an example, we borrow some of the construction in [8] and [27].
So many other, equally compelling, examples exist in the literature, that we refer the reader
to the review [16] and to the references therein.3

Let us assume that the microscopic theory admits the existence of Sp(4)-colour singlet
operators  ̂i and  ̂c

i
, that have spin-1/2, carry SU(3)c colour and, combined, span vectorial

representations of the SM gauge group. The index i = 1, 2 refers to the SU(2)L singlets and
doublets, respectively, and the notation refers to the fact that we write the operators as 2-
component fermions. Let us now consider the low-energy description of the lightest particles
excited from the vacuum by such operators, and write it in terms of new 2-component
spinorial fields  i and  c

i
with the same quantum numbers as  ̂i and  ̂c

i
. Coarse-graining

over model-dependent details,  i and  c

i
have the correct quantum numbers to couple to

the SM quarks, in particular to the SM top quark, represented by the 2-component Weyl
fermions t and tc, provided  i transforms on the fundamental of SU(3)c and  c

i
on its

conjugate.
Below the electroweak symmetry-breaking scale vW , the mass terms take the form
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+ h.c. , (2.36)

where �1, �2, � and y are dimensionless couplings, M⇤ represents the typical scale of the
masses of composite fermions in the Sp(4) gauge theory and ⇤ represents the underlying
scale at which (third-generation) flavour physics arises (see also [8]). d = d c is the
dimension of the operators  ̂ and  ̂c in the underlying theory.

Diagonalisation of the resulting mass matrix, under the assumption that yvW be small
in respect to the other scales, yields two heavy Dirac masses approximately given by
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and finally the mass (squared) of the top is given approximately by
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In order to assess the viability of these models, one needs to provide a microscopic origin
for all of the parameters appearing in Eq. (2.36). To do so, one must specify the (model-
dependent) microscopic details controlling the nature of the composite fermions. Spin-1/2

composite Sp(4)-neutral particles arise in the presence of fermions in higher-dimensional
3 See also the approach based on an extended EFT in [54].
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c,↵

ij
= ( i�c,↵ j)

where

2

d = d c < 5/2Need                      , ie, large anomalous dimension 

These couplings can be important for Higgs potential
IR conformality with more fermion flavours?

Four-fermion operators
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