Lattice and phenomenology of the Quark-Gluon plasma

CLAUDIA RATTI

HOUSTON

Motivating science goals

- Is there a critical point in the QCD phase diagram?
- What are the degrees of freedom in the vicinity of the phase transition?
- Where is the transition line at high density?
- What are the phases of QCD at high density?
- What is the nature of matter in the core of neutron stars?

CLAUDIA RATTI

2/25

What can we obtain from lattice QCD?

Equation of state

- Needed for hydrodynamic description of the QGP
- Needed for simulations of Neutron Stars and their mergers

QCD phase diagram

- Transition line at finite density
- Constraints on the location of the critical point

Fluctuations of conserved charges

- Can be simulated on the lattice and measured in experiments
- Can give information on the evolution of heavy-ion collisions
- Can give information on the critical point

What can we obtain from lattice QCD?

Equation of state

- Needed for hydrodynamic description of the QGP
- Needed for simulations of Neutron Stars and their mergers

QCD phase diagram

- Transition line at finite density
- Constraints on the location of the critical point

Fluctuations of conserved charges

- Can be simulated on the lattice and measured in experiments
- Can give information on the evolution of heavy-ion collisions

Talk by R. Bellwied on Wednesday

• Can give information on the critical point

QCD Equation of State from the lattice

STATUS

Taylor expansion of EoS

• Taylor expansion of the pressure:

$$\frac{\chi_{2n}}{T^4} = \frac{p(T,0)}{T^4} + \sum_{n=1}^{\infty} \frac{1}{(2n)!} \frac{\left| \frac{\mathrm{d}^{2n}(p/T^4)}{\mathrm{d}(\frac{\mu_B}{T})^{2n}} \right|_{\mu_B=0}}{\mathrm{d}(\frac{\mu_B}{T})^{2n}} \left|_{\mu_B=0} \left(\frac{\mu_B}{T}\right)^{2n} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n}$$

D

Simulations at imaginary $\mu_{\rm B}$:

Continuum, O(10⁴) configurations, errors include systematics

WB: S. Borsanyi, C. R. et al, NPA (2017)

New results for expansion coefficients

New results for expansion coefficients

Range of validity of equation of state

□ From Taylor expansion we have the equation of state for $\mu_B/T \le 3$:

 $\sqrt{s} = 200, \ 62.4, \ 39, \ 27, \ 19.6, \ 14.5, \ 11.5 \ \text{GeV}$

- Problems with Taylor:
 - Large errors on higher order terms
 - Wiggles on Taylor coefficients reflected on observables

TAYLOR SERIES EXPANSION IS THE WORST.

Novel expansion method WB: S. Borsanyi, C. R. et al, PRL (2021), PRD (2022)

Observation: the temperature-dependence of baryonic density

$$n_B(T)/{\hat \mu_B}~=~\chi^B_1(T,{\hat \mu_B})/{\hat \mu_B}$$

at finite imaginary chemical potential is just a shift in temperature from the $\mu_B=0$ results for χ^B_2 :

New range of validity of equation of state

□ New expansion scheme provides the equation of state for $\mu_B/T \le 3.5$

 For comparison between the Taylor and new expansion scheme performance, see e.g.
 M. Kahangirwe et al., 2408.04588

→ Finding: the new scheme performs better with models that exhibit chiral critical scaling

Equation of state in 4D

- QCD has three conserved charges: Baryon Number B, Strangeness S and Electric Charge Q (or Isospin I)
- Heavy-ion collisions
 - \geq Global S=0
 - Global Q=0.4B \succ
 - Local (large) fluctuations in the fluid cells with finite S and $Q \neq 0.4B$ possible \succ
- Neutron Stars
 - \succ Global Q=0 for stability
 - Strangeness is most likely not in equilibrium
 - Finite isospin density \geq

B. Brandt et al., JHEP (2023)

- Cosmological trajectories
 - Large lepton flavor asymmetries possible \rightarrow large asymmetries between quark flavors (lead to finite B, Q, S values) \geq
 - How would the critical point move in the 4D phase diagram? \succ
 - Gao & Oldengott, PRL (2022) First-order cosmological phase transition could lead to stable strange quark matter droplets + gravitational waves similar to \succ those observed recently by NANOGrav A. Bodmer, PRD (1971); E. Witten, PRD (1984); F. Di Clemente, C. R. et al, 2404.12094

Lattice QCD EoS in 4D from Taylor expansion

One can generalize the Taylor expansion to 3 conserved charges ٠

0.02

0.015

0.01

0.005

-0.005

-0.01

0.06

0.05

0.04

0.03

0.02

0.01

-0.01

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.03

0.025

0.02

0.015

0.01

0.005

χ₃₁Βα

 $\chi_{13}{}^{BQ}$

 χ^{BQ}_{22}

χ₂₁₁ BQS

 $\chi^{BQS}_{ijk}(T) = \frac{\partial^{i+j+k}(P/T^4)}{\partial \hat{\mu}^i_B \hat{\mu}^j_S \hat{\mu}^k_Q}$ $\frac{P(T,\hat{\mu}_B,\hat{\mu}_S,\hat{\mu}_Q)}{T^4} = \sum_{i,i,k} \frac{1}{i!j!k!} \chi^{BSQ}_{ijk}(T) \hat{\mu}^i_B \hat{\mu}^j_Q \hat{\mu}^k_S \qquad \left(\text{with } \hat{\mu}_i = \frac{\mu_i}{T}\right)$ where Iattice HRG • HRG • SB limit -0.02 J. Noronha-Hostler, C. R. et al., PRC (2019); A. Monnai et al., PRC (2019), 0.08 -0.02 χ₃₁αs 0.06 χ_{31}^{BS} A. Monnai et al., 2406.11610 -0.04 0.04 -0.06 0.35 0.7 0.02 -0.08 0.6 0.3 0.25 0.8 0.5 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 χ²α 0.2 0.4 χ₂Β $\chi_2^{\rm S}$ 0.6 0.3 0.15 0.3 0.4 0.25 0.1 0.2 lattice -0.05 HRG 0.2 0.2 0.05 0. eterization χ_{13}^{BS} $\chi_{13}^{\ \ \Omega S}$ -0.1 SB limit 0.15 -0.15 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0 0 0 0.1 -0.2 0.04 0.4 0.05 -0.25 0.35 -0.3 0.03 -0.05 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.3 0 -0.1 0.25 $\chi_{11}{}^{BQ}$ 0.02 0.12 BS -0.15 QS 0.14 0.2 χ¹¹ х¹¹ -0.2 0.1 0.12 0.01 0.15 -0.25 0.08 0.1 0.1 -0.3 χ^{QS}_{22} χ^{BS}_{22} 0.08 0.06 -0.35 0.05 0.06 -0.0 -0.4 0.04 0.04 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.02 0.02 0.5 0.1 0.8 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0 0.08 0.4 0.6 0.01 0.5 0.3 0.06 χ₄α χ_4^B $\chi_4^{\rm S}$ -0.005 0.4 -0.01 -0.01 0.04 0.2 0.3 -0.02 χ_{112}^{BQS} χ_{121}^{BQS} -0.015 0.2 -0.02 0.1 0.02 -0.04 0.1 -0.025 -0.03 -0.06 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0 0 -0.035 -0.07 -0.04 -0.08 T [GeV] T [GeV] T [GeV] 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 T [GeV] T[GeV] T [GeV]

CLAUDIA RATTI

muses

Talk by A. Monnai on Wednesday

Lattice QCD EoS in 4D from Taylor expansion

• One can generalize the Taylor expansion to 3 conserved charges

Talk by A. Monnai on Wednesday

QCD transition line from the lattice

$$\frac{T_c(\mu_B)}{T_c(\mu_B = 0)} = 1 - \kappa_2 \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T_c(\mu_B)}\right)^4$$

Observables and results

• We consider the following chiral observables:

$$\langle \bar{\psi}\psi
angle = -\left[\langle \bar{\psi}\psi
angle_T - \langle \bar{\psi}\psi
angle_0
ight] rac{m_{
m ud}}{f_{\pi}^4},$$

 $\chi = \left[\chi_T - \chi_0
ight] rac{m_{
m ud}^2}{f_{\pi}^4}, \quad {
m with}$
 $ar{\psi}\psi
angle_{T,0} = rac{T}{V} rac{\partial \log Z}{\partial m_{
m ud}} \quad \chi_{T,0} = rac{T}{V} rac{\partial^2 \log Z}{\partial m_{
m ud}^2}$

• The peak position of the susceptibility serves as a definition for the chiral cross-over temperature

 $T_c(LT = 4, \mu_B = 0) = 158.0 \pm 0.6 \text{ MeV}$ $\kappa_2 = 0.0153 \pm 0.0018 ,$ $\kappa_4 = 0.00032 \pm 0.00067$

- The width of the transition is constant up to $\mu_B \sim 300 \text{ MeV}$
- Height of the peak of the chiral susceptibility at the crossover temperature: proxy for the strength of the crossover → Also constant up to μ_B~300 MeV
 Talk by F. Rennecke on Monday for lattice
 - \rightarrow Critical point strongly disfavored for $\mu_B{<}300~MeV$

estimates of CP location based on Lee-Yang singularities

- Height of the peak of the chiral susceptibility at the crossover temperature: proxy for the strength of the crossover → Also constant up to μ_B~300 MeV
 Talk by F. Rennecke on Monday for lattice
 - \rightarrow Critical point strongly disfavored for $\mu_B{<}300~MeV$

estimates of CP location based on Lee-Yang singularities

Different approaches to the QCD Equation of State

- Lattice QCD is limited
- We need to merge the lattice QCD equation of state with other effective theories
- Careful study of their respective range of validity
- Constrain the parameters to reproduce known limits
- Test different possibilities and validate/exclude them

Talk by V. Dexheimer on Tuesday

Lattice QCD: WB: PLB (2014)

Interacting HRG: V. Vovchenko et al., PRL (2017) Liquid-gas, Nuclei: see e.g. Du et al. PRC (2019) Chiral EFT: see e.g. Holt, Kaiser, PRD (2017) Holography: see e.g. R. Critelli et al., PRD (2017) pQCD: Andersen et al., PRD (2002); Annala et al., Nat. Ph. (2020) quarks: Dexheimer et al., PRC (2009); Baym et al., Astr. J. (2019) quarkyonic: McLerran, Pisarski NPA (2007) CSC: Alford et al., PLB (1998); Rapp et al., PRL (1998).

CLAUDIA RATTI

16/25

Examples of phenomenological approaches

Holographic model

- "Black hole engineering": tweak holographic model to reproduce lattice QCD results
- Action:

$$S = \frac{1}{2\kappa_5^2} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[R - \frac{(\partial_\mu \phi)^2}{2} - V(\phi) - \frac{f(\phi)F_{\mu\nu}^2}{4} \right]$$

S. S. Gubser and A. Nellore, PRD (2008) O. DeWolfe, S. S. Gubser and C. Rosen, PRD (2011) R. Critelli,C. R., et al., PRD (2017) J. Grefa,C. R. et al. PRD (2021)

- Two potentials: $V(\phi)$ and $f(\phi)$, tweaked to fit lattice QCD results
- Reproduces lattice EoS where available, but extends it to $\mu_{B} \sim 900$ MeV.

Bayesian location of QCD critical point from holographic model M. Hippert, C. R. et al, arXiv:2309.00579.

- Flat prior for parameters
- 20% of prior samples give no critical point

20PHA Prior $V(\phi) = -12\cosh(\gamma \phi) + b_2 \phi^2 + b_4 \phi^4 + b_6 \phi^6$ PHA 0.4 -PHA 15150Posterior T_c (MeV) χ^B_2/T^2 $f(\phi) = \frac{\operatorname{sech}(c_1\phi + c_2\phi^2 + c_3\phi^3)}{1 + d_1} + \frac{d_1}{1 + d_2}$ $^{s}L_{s}$ $-\operatorname{sech}(d_2\phi)$ 1055057560625 0.0200 400 400 2001000 2000 0 T (MeV)T (MeV) μ_{Bc} (MeV) Parametric Ansatz (PA) 20Prior 0.4PA $V(\phi) = -12 \cosh\left[\left(rac{\gamma_1 \,\Delta \phi_V^2 + \gamma_2 \,\phi^2}{\Delta \phi_V^2 + \phi^2} ight) \phi ight]$ PA 15 -Posterior 150• | (MeV) 100 χ^B_2/T^2 $^{s}/T^{3}$ $f(\phi) = 1 - (1 - A_1) \left[\frac{1}{2} + \frac{1}{2} \tanh\left(\frac{\phi - \phi_1}{\delta\phi_1}\right) \right] - A_1 \left[\frac{1}{2} + \frac{1}{2} \tanh\left(\frac{\phi - \phi_2}{\delta\phi_2}\right) \right]$ Γ_c 5 500.0200 400 200400 1000 2000 T (MeV)T (MeV) μ_{Bc} (MeV)

Polynomial-Hyperbolic Ansatz (PHA)

Bayesian location of QCD critical point from holographic model M. Hippert, C. R. et al, arXiv:2309.00579.

New expansion scheme + 3D-Ising critical point

- Build a family of Equations of State that:
 - Match the lattice QCD one where available
 - Contain a critical point in the 3D-Ising model universality class
 - Have a set of tunable parameters that can be fixed in Bayesian analyses of heavy-ion data

User Input μ_{BC} , w, ρ , α_{12}

M. Kahangirwe, C. R. et al., PRD (2024)

P. Parotto, C. R. et al., PRC (2020)

J. Karthein, C. R. et al., EPJ Plus (2021)

Lessons from heavy-ion collisions See also speed of sound results from CMS collaboration

- Extract EoS from data through Bayesian Extract hadronic interactions from data analyses с(¥*) S. Pratt et al., PRL (2015) ALICE pp $\sqrt{s} = 13$ TeV ALICE, PLB (2023) High Mult. (0-0.17% INEL > 0) Femtoscopic fit (a) (b) Background 0.3 attice Non resonant Resonant $M_{\pm (1620)} = 1618.49 \pm 0.28(stat) \pm 0.21(syst) \text{ MeV}/c^2$ $\widetilde{\Gamma}_{=\pi} = 1.01 \pm 0.14 (\text{stat}) \pm 0.39 (\text{syst}) \text{ MeV}$ v = 115.99 ± 8.56(stat) ± 4.08(svst) MeV 1.2 ~_ഗ 0.2 Constrained by data Hadron gas 0.1 Unconstrained 200 300 150 150 250 200 250 300 350 100 150 200 250 50 300 350 T (MeV) k* (MeV/c)
- Comparison of data from HICs to theoretical models through **Bayesian analysis**
- The posterior distribution of EoS is consistent with the lattice QCD one
- Access interaction e.g. between Λ and kaons with femtoscopy at the LHC

Talk by T. Hatsuda on Monday and by T. Hyodo on Tuesday

Lessons from Neutron Stars

• CE network will achieve an uncertainty of 10 m very quickly

٠

 Narrowing down the equation of state still requires understanding the underlying nuclear physics

22/25

 $0.2^{+0.07}_{-0.07}$

 8^{+1}_{-1}

 $6^{+\bar{2}}_{-2}$

 $3^{+\bar{1}}_{-1}$

 12^{+3}_{-3}

 $9^{+4}_{-4} \ 5^{+2}_{-2}$

CE40

 $CE40+2 A^{\sharp}$

CE40+CE20+A[♯]

The Problem is Too Big For One Group

Progress needs a close, coordinated, and sustained collaboration across different research groups

Conclusions

State of the art results on QCD Equation of State and phase diagram from first principles

Continued effort to increase density coverage

>Need to be complemented by phenomenological approaches

Data from terrestrial and celestial experiments can help to validate/rule out models or fix their parameters

Backup slides

QCD matter under extreme conditions

To address these questions, we need fundamental theory and experiment

Theory: Quantum Chromodynamics

QCD is the fundamental theory of strong interactions
It describes interactions among guarks and gluons

$$L_{QCD} = \sum_{i=1}^{n_f} \overline{\psi}_i \gamma_{\mu} \left(i\partial^{\mu} - gA_a^{\mu} \frac{\lambda_a}{2} \right) \psi_i - m_i \overline{\psi}_i \psi_i - \frac{1}{4} \sum_a F_a^{\mu\nu} F_a^{\mu\nu}$$

$$F_a^{\mu\nu} = \partial^{\mu} A_a^{\nu} - \partial^{\nu} A_a^{\mu} \left(i f_{abc} A_b^{\mu} A_c^{\mu} \right)$$

Experiment: heavy-ion collisions

▶ Quark-Gluon Plasma (QGP) discovery at RHIC and LHC:

- ▶ SURPRISE!!! QGP is a PERFECT FLUID
- Changes our idea of QGP
- (no weak coupling)
- Microscopic origin still unknown

Anatomy of a heavy-ion collision

Pressure coefficients

Simulations at imaginary $\mu_{\rm B}$:

Continuum, O(10⁴) configurations, errors include systematics (WB: NPA (2017)) Strangeness neutrality

Formulation

S. Borsanyi, C. R. et al., PRL (2021)

- We have observed the $\hat{\mu}_B$ -dependence seems to amount to a simple T- rescaling
- A simplistic scenario with a single T- independent parameter κ does not provide a systematic treatment which can serve as an alternative expansion scheme
- We allow for more than $\mathcal{O}(\hat{\mu}^2)$ expansion of T' and let the coefficients be T-dependent:

$$\frac{\chi_1^B(T,\,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T',0) \ , \quad T' = T\left(1 + \kappa_2(T)\,\hat{\mu}_B^2 + \kappa_4(T)\,\hat{\mu}_B^4 + \mathcal{O}(\,\hat{\mu}_B^6)\right)$$

• **Important:** we are simply re-organizing the Taylor expansion via an expansion in the shift

$$\Delta T = T - T' = \left(\kappa_2(T)\,\hat{\mu}_B^2 + \kappa_4(T)\,\hat{\mu}_B^4 + \mathcal{O}(\,\hat{\mu}_B^6)\right)$$

• Comparing the (Taylor) expansion in $\hat{\mu}_B$ and our expansion in ΔT order by order, we can relate $\chi_n^B(T)$ and $\kappa_n(T)$

A novel expansion scheme at finite μ_B

Simulations at Im($\hat{\mu}_B$): *T*-dependence of normalised baryon density ($\chi_1^B = n_B/T^3$) at finite $\hat{\mu}_B$ appears to be shifted from the value at $\hat{\mu}_B = 0$.

For the 0/0 limit, we have:
$$\frac{\chi_1^B(T,\hat{\mu}_B) \to 0}{\hat{\mu}_B \to 0} \to \frac{\partial \chi_1^B}{\partial \hat{\mu}_B} = \chi_2^B$$

S. Borsanyi, C. R. et al., PRL (2021)

Main identity:
$$\frac{\chi_1^B(T,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T',0)$$

with
$$\mathbf{T}'(\mathbf{T}, \hat{\mu}_B) = \mathbf{T}\left(\mathbf{1} + \kappa_2 \cdot \hat{\mu}_B^2 + \kappa_4 \cdot \hat{\mu}_B^4 + \dots\right)$$

captures the finite $\hat{\mu}_B$ dependence of the expansion
T'-Expansion Scheme at finite μ_B

New **TExS EoS** based on coefficients $\kappa_{2/4}^{BB}(T)$ evaluated directly from lattice QCD simulations at $\mu_B = 0$

$$T'(T,\mu_B) = T\left(1 + \kappa_2^{BB}(T)\hat{\mu}_B^2 + \kappa_4^{BB}(T)\hat{\mu}_B^4 \dots\right)$$

with coefficients $\kappa_i^{BB}(T)$ connected to Taylor coefficients $\chi_i^B(T)$:

•
$$\kappa_{2}^{BB}(T,0) = \frac{1}{6T} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{\prime B}(T)}$$
 with $\chi'(T) = \frac{\partial \chi(T)}{\partial T}$
• $\kappa_{4}^{BB}(T,0) = \frac{1}{360T \times \chi_{2}^{\prime B}(T)^{3}} \left(3\chi_{2}^{\prime B}(T) \times \chi_{6}^{B}(T) - 5\chi_{2}^{\prime \prime B}(T) \times \chi_{4}^{B}(T)^{2}\right)$

 $\Rightarrow \text{Clear separation of scales between } \kappa_2(T) \text{ and } \kappa_4(T)$ $\Rightarrow \kappa_4(T) \text{ is almost } 0 \rightarrow \text{faster convergence}$

S. Borsanyi, C. R. et al., PRL (2021)

Comparison between Taylor and new expansion scheme M. Kahangirwe et al., 2408.04588

— Exact 1.0 — Exact **1.0**_ℓ - Exact - Exact 0.4 **Taylor Expansion** T' Expansion Taylor Expansion T' Expansion 0.8 0.8 CEM LO CEM LO CEM 0.3 0.3 LO $\frac{n_B}{T^3} \quad 0.6$ LO n_B n_B n_B 0.6 **NLO** $\mu_B/T = 3.0$ **NLO** $\mu_B/T = 1.5$ **NLO** $\mu_B/T = 3.0$ $\mu_B/T = 1.5$ $\frac{1}{T^3}$ 0.2 T³ 0.2 NLO T³ 0.4 NNLO NNLO ---- NNLO --- NNLO 0.1 0.1 0.2 0.2 NNNLO NNNLO ---- NNNLO NNNLO 0.0 0.0 **0.0** 0.0 100 150 200 250 100 150 250 50 50 200 0 100 150 0 0 50 200 250 100 50 150 250 0 200 T [MeV] T [MeV] T [MeV] T [MeV] 0.8 - Exact 0.8 - Exact 1.2 - Exact 1.2 - Exact **Taylor Expansion** T' Expansion 1.0 T' Expansion 1.0 **Taylor Expansion** 0.6 0.6 CEM LO CEM LO 0.8 0.8 $\frac{n_B}{T^3}$ LO CEM LO CEM n_B **NLO** $\mu_B/T = 2.5$ **NLO** $\mu_B/T = 2.5$ n_B n_B 0.4 $\frac{-}{T^3}$ 0.4 **NLO** $\mu_B/T = 3.5$ $\frac{1}{T^3}$ 0.6 **NLO** $\mu_B/T = 3.5$ $\frac{1}{T^3}$ 0.6 NNLO NNLO 0.4 0.4 0.2 0.2 -- NNLO -- NNLO ---- NNNLO 0.2 ---- NNNLO 0.2 ---- NNNLO --- NNNLO 0.0 0.0 0.0 0.0 250 0 50 100 150 200 50 100 150 200 250 0 50 100 150 0 200 250 50 100 150 200 250 0 T [MeV] T [MeV] T [MeV] T [MeV]

Phase Diagram from Lattice QCD

The transition at μ_B =0 is a smooth crossover

Aoki et al., Nature (2006) Borsanyi et al., JHEP (2010) Bazavov et al., PRD (2012)

QCD transition temperature and curvature

Limit on the location of the critical point

For a genuine phase transition, the height of the peak of the chiral susceptibility diverges and the width shrinks to zero

Width of chiral susceptibility peak

Borsanyi, C. R. et al. PRL (2020)

Chiral vs deconfinement observables

Volume dependence:

S. Borsanyi et al., 2405.12320

Fluctuations of conserved charges

Definition:

$$\chi^{BSQ}_{lmn} = \frac{\partial^{\,l+m+n} p/T^4}{\partial (\mu_B/T)^l \partial (\mu_S/T)^m \partial (\mu_Q/T)^n}$$

Relationship between chemical potentials:

$$\mu_{u} = \frac{1}{3}\mu_{B} + \frac{2}{3}\mu_{Q};$$

$$\mu_{d} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q};$$

$$\mu_{s} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q} - \mu_{S}$$

They can be calculated on the lattice and compared to experiment

Evolution of a heavy-ion collision

•Chemical freeze-out:

inelastic reactions cease: the chemical composition of the system is fixed (particle yields and fluctuations)

• Kinetic freeze-out: elastic reactions cease: spectra and correlations are frozen (free streaming of hadrons)

Hadrons reach the detector

Evolution of a heavy-ion collision

•Chemical freeze-out:

inelastic reactions cease: the chemical composition of the system is fixed (particle yields and fluctuations)

• Kinetic freeze-out: elastic reactions cease: spectra and correlations are frozen (free streaming of hadrons)

• Hadrons reach the detector

Connection to experiment

- Consider the number of electrically charged particles N_Q
- Its average value over the whole ensemble of events is <N_Q>

 In experiments it is possible to measure its event-by-event distribution

STAR Collab., PRL (2014)

Connection to experiment

Fluctuations of conserved charges are the cumulants of their event-by-event distribution

mean : $M = \chi_1$ variance : $\sigma^2 = \chi_2$

skewness : $S = \chi_3 / \chi_2^{3/2}$ kurtosis : $\kappa = \chi_4 / \chi_2^2$

 $S\sigma = \chi_3/\chi_2$ $\kappa\sigma^2 = \chi_4/\chi_2$

 $M/\sigma^2 = \chi_1/\chi_2 \qquad \qquad S\sigma^3/M = \chi_3/\chi_1$

F. Karsch: Centr. Eur. J. Phys. (2012)

The chemical potentials are not independent: fixed to match the experimental conditions:

$$< n_{\rm S} >= 0$$
 $< n_{\rm Q} >= 0.4 < n_{\rm B} >$

"Baryometer and Thermometer"

Let us look at the Taylor expansion of \mathbb{R}^{B}_{31}

$$R_{31}^B(T,\mu_B) = \frac{\chi_3^B(T,\mu_B)}{\chi_1^B(T,\mu_B)} = \frac{\chi_4^B(T,0) + \chi_{31}^{BQ}(T,0)q_1(T) + \chi_{31}^{BS}(T,0)s_1(T)}{\chi_2^B(T,0) + \chi_{11}^{BQ}(T,0)q_1(T) + \chi_{11}^{BS}(T,0)s_1(T)} + \mathcal{O}(\mu_B^2)$$

- To order μ^2_B it is independent of μ_B : it can be used as a thermometer
- Let us look at the Taylor expansion of \mathbb{R}^{B}_{12}

$$R_{12}^B(T,\mu_B) = \frac{\chi_1^B(T,\mu_B)}{\chi_2^B(T,\mu_B)} = \frac{\chi_2^B(T,0) + \chi_{11}^{BQ}(T,0)q_1(T) + \chi_{11}^{BS}(T,0)s_1(T)}{\chi_2^B(T,0)} \frac{\mu_B}{T} + \mathcal{O}(\mu_B^3)$$

• Once we extract T from \mathbb{R}^{B}_{31} , we can use \mathbb{R}^{B}_{12} to extract μ_{B}

Freeze-out parameters from B fluctuations

Consistency between freeze-out chemical potential from electric charge and baryon number is found.

Freeze-out parameters from B fluctuations

Baryometer:
$$\frac{\chi_1^B(T, \mu_B)}{\chi_2^B(T, \mu_B)} = \sigma_B^2/M_B$$

$\sqrt{s}[GeV]$	μ_B^f [MeV] (from B)	μ_B^f [MeV] (from Q)
200	25.8 ± 2.7	22.8 ± 2.6
62.4	69.7 ± 6.4	66.6 ± 7.9
39	105 ± 11	101 ± 10
27	-	$136{\pm}13.8$

WB: S. Borsanyi et al., PRL (2014) STAR collaboration, PRL (2014)

Upper limit: $T_f \le 151 \pm 4 \text{ MeV}$

Consistency between freeze-out chemical potential from electric charge and baryon number is found.

Freeze-out line from first principles

Use T- and μ_B -dependence of $R_{12}{}^Q$ and $R_{12}{}^B$ for a combined fit:

Scientific goals

 Model the <u>fluctuating initial conditions</u> for the baryon-asymmetric matter for baryon, electric charge, and strangeness

C. Shen, B. Schenke, PRC (2018) C. Shen, B. Schenke, NPA (2019)

Develop (3+1)D viscous hydrodynamic code which includes all conserved currents and connect it to model for initial conditions
 G. Denicol et al., PRC (2018)

L. Du et al., NPA (2019)

• Extract *transport properties* of nuclear matter at finite baryon density

M. Li, C. Shen, PRC (2018) C. Gale et al., NPA (2019)

Hydrodynamics evolution

 The sequential collisions between nucleons contribute as energy-momentum and net-baryon density sources to the hydrodynamic fields

C. Shen, B. Schenke, PRC (2018) L. Du et al., NPA (2019)

- For recent developments and an alternative method based on a minimal extension of the Glauber model see
 C. Shen, S. Alzhrani, PRC (2020)
- Relativistic viscous hydrodynamic simulations extended to include the propagation of net baryon current including its dissipative diffusion

C. Shen, B. Schenke, NPA (2018)

Hydrodynamics evolution

 The sequential collisions between nucleons contribute as energy-momentum and net-baryon density sources to the hydrodynamic fields

C. Shen, B. Schenke, PRC (2018); L. Du et al., NPA (2019)

- For recent developments and an alternative method based on a minimal extension of the Glauber model see
 C. Shen, S. Alzhrani, PRC (2020);
- Relativistic viscous hydrodynamic simulations extended to include the propagation of net baryon current including its dissipative diffusion

C. Shen, B. Schenke, NPA (2018)

Dynamical modeling of fluctuations

One of the central goals of the BEST collaboration is to develop quantitative understanding of fluctuations near the CP

• Stochastic approach with noise

M. Nahrgang et al., PRD (2019)

• Deterministic approach in which correlation functions are treated as additional variables with the hydrodynamics ones (Hydro+)

M. Stephanov and Yi Ying, PRD (2018)

- So far only applicable to crossover side of phase boundary
- So far limited to two-point functions

See also Y. Akamatsu et al, PRC (2017 and 2018); M. Martinez and T. Schaefer, PRC (2019); X. An et al., PRC (2020) S. Pratt and C. Plumberg, PRC (2019 and 2020)

Implementation

• Solution of stochastic hydro equations using a momentum filter by which fluctuating modes above a cutoff given by a microscopic scale are removed

M. Singh et al., QM2018 proceedings

- Solution of full stochastic diffusive equation in a finite-size system with Gaussian white noise: critical slowing down is observed
 M. Nahrgang et al., 1804.05728
- Hydro+ implemented in two main simulations

Things to keep in mind

- Effects due to volume variation because of finite centrality bin width
 - Experimentally corrected by centrality-bin-width correction method
 V. Skokov et al., PRC (2013), P. Braun-Munzinger et al., NPA (2017),
- Finite reconstruction efficiency
 - Experimentally corrected based on binomial distribution
- Spallation protons
 - $\circ~$ Experimentally removed with proper cuts in p_{T}
- Canonical vs Gran Canonical ensemble
 - Experimental cuts in the kinematics and acceptance
- Baryon number conservation
 - Experimental data need to be corrected for this effect
- Proton multiplicity distributions vs baryon number fluctuations M. Asakawa and M. Kitazawa, PRC(2012), M. Nahrgang et al., 1402.1238
 - Recipes for treating proton fluctuations
- Final-state interactions in the hadronic phase
 - Consistency between different charges = fundamental test

V. Begun and M. Mackowiak-Pawlowska (2017)

A.Bzdak,V.Koch, PRC (2012)

V. Koch, S. Jeon, PRL (2000)

J.Steinheimer et al., PRL (2013)

P. Braun-Munzinger et al., NPA (2017)

MUSES goals and milestones

CyberInfrastructure of interoperating tools and services within

- Upgrade of existing calculation tools to modern
- Web-based tools and services +
- ٠

muses

- Development within the MUSES Framework: Multi-institutional collaboration for a unified solver for the equation of state, bridging models and applications
- Support and advising by cyberinfrastructure and computer-science experts T. Andrew Manning and Roland Haas
- Improved method to extract asymptotic UV scaling and thermodynamics
- Large boost in performance and numerical stability

• The parameter Γ is an indicator for the correlation among lattice data between neighboring points

Claudia Ratti

$$\begin{split} \phi''(r) + \left[\frac{h'(r)}{h(r)} + 4A'(r) - B'(r)\right] \phi'(r) - \frac{e^{2B(r)}}{h(r)} \left[\frac{\partial V(\phi)}{\partial \phi} + -\frac{e^{-2[A(r) + B(r)]} \Phi'(r)^2}{2} \frac{\partial f(\phi)}{\partial \phi}\right] &= 0, \\ \Phi''(r) + \left[2A'(r) - B'(r) + \frac{d[\ln f(\phi)]}{d\phi} \phi'(r)\right] \Phi'(r) &= 0, \\ A''(r) - A'(r)B'(r) + \frac{\phi'(r)^2}{6} &= 0, \\ h''(r) + [4A'(r) - B'(r)]h'(r) - e^{-2A(r)} f(\phi) \Phi'(r)^2 &= 0, \\ h(r)[24A'(r)^2 - \phi'(r)^2] + 6A'(r)h'(r) + \\ + 2e^{2B(r)}V(\phi) + e^{-2A(r)} f(\phi) \Phi'(r)^2 &= 0, \end{split}$$

- Thermodynamics extracted from scalings after conversion to physical units.
- Requires near-boundary scalings,

$$\phi \sim \phi_A \, e^{-\nu A(r)}, \quad \Phi \sim \Phi_0^{\rm far} + \Phi_2^{\rm far} \, e^{-2A(r)}, \quad A \sim A_{-1}^{\rm far} \, r + A_0^{\rm far}$$

• Inversion to find ϕ_A and Φ_2^{far} : large coefficient \times tiny number = pure noise.

PHA model

PA model

PHA Potentials

PA Potentials

Connecting High and Low Temperature QCD

Using lessons learned from heavy-ion collisions

- Calculate lattice QCD equation of state, diagonal and off-diagonal fluctuations at small density
- Use them to constrain quantum many-body theory, accounting for quantum effects
- Apply these non-perturbative techniques in models with quark and gluon degrees of freedom, further constraining them with heavy-ion data

Lessons from heavy-ion collisions II

□ Lowest collision energy at RHIC: 3 GeV in fixed target mode (μ_{B} ~750 MeV)

 \square If the critical point sits at μ_B >750 MeV, it cannot be seen in terrestrial experiments

EoS constraints

• Neutron Star observations can constrain the EoS

Somasundaram, Suleiman and Tews, in preparation

High-Temperature EoS Working group

Goals

Clevinger, Kumar, Grefa, Maslov, Dexheimer, Rapp, Ratti

- New level of understanding of the equation of state and spectral properties of strongly interacting matter
- Consider electric charge, strangeness, baryonic density, and temperature suitable for astrophysical applications

T-matrix approach

- See talks by Maslov and Rapp
- Dynamical generation of resonances
- Parton interaction with resonances
- Provides a good description of the intermediate region of the QCD phase diagram

Hadronic EoS with hyperons

- Suitable to describe matter in the hadronic phase
- Contains the liquid-gas phase transition
- Parameters will be varied taking into account new constraints from Heavy-ion experiments

Self-consistent PNJL model

See talk by Maslov

 Describe the hadron-quark transition region in terms of bound state dissociation

Chiral Mean Field model

See talks by Dexheimer and Grefa

- Nonlinear realization of the SU(3) sigma model
- Beyond mean field approach

High-Temperature EoS Working group

Goals

- New level of understan
- Consider electric charge

T-matrix approach

- See talks by Maslov and F
- Dynamical generation of resonances
- Parton interaction with resonances
- Provides a good description of the intermediate region of the QCD phase diagram

- T-matrix: Use lattice QCD results to fix the model parameters (see talk by Maslov)
 - Parameters will be varied taking into account new constraints from Heavy-ion experiments

Clevinger Kumar Grefa Maslov, Dexheimer, Rapp, Ratti

strongly interacting matter ble for astrophysical applications

-consistent PNJL model

See talk by Maslov

Describe the hadron-quark ransition region in terms of bound state dissociation

al Mean Field model

talks by Dexheimer and Grefa

- Nonlinear realization of the SU(3) sigma model
- Beyond mean field approach

Nearly perfect fluidity

It needs an equation of state as input

A few Lessons learned

➢ Heavy ion collisions:

> Phase transition at small μ_B is a smooth crossover

>If a critical point exists, it is in the 3D-Ising model universality class

> Equation of state and phase diagram are known from 1st principles at $\mu_B/T<3.5$

>Quark-Gluon Plasma is a strongly coupled fluid with very small viscosity/entropy

>Neutron star mergers:

- ➤GWs travel essentially at the speed of light
- binary neutron star mergers are progenitors of short gamma ray bursts
- > they are prolific sites for the formation of heavy elements
- >constrained neutron-star radii to be between 9.5 and 13 km

Fermionic sign problem

The QCD path integral is computed by Monte Carlo algorithms which sample field configurations with a weight proportional to the exponential of the action

$$Z(\mu_B, T) = \operatorname{Tr}\left(e^{-\frac{H_{\mathrm{QCD}}-\mu_B N_B}{T}}\right) = \int \mathcal{D}U e^{-S_G[U]} \det M[U, \mu_B]$$

>detM[μ_B] complex \rightarrow Monte Carlo simulations are not feasible

- \geq We can rely on a few approximate methods, viable for small μ B/T:
 - >Taylor expansion of physical quantities around μ B=0
 - Bielefeld-Swansea collaboration 2002; R. Gavai, S. Gupta 2003
 - Simulations at imaginary chemical potentials

Alford, Kapustin, Wilczek, 1999; de Forcrand, Philipsen, 2002; D'Elia, Lombardo 2003

