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Heavy quarks in the QGP

▶ Heavy quarks are important probes of medium

▶ Long history of cc studies: experiment, pheno, lattice

▶ Sequential bb suppression observed, numerous studies
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Beauty

▶ Bound states expected to survive up to TΥ
d ∼ 3− 5Tc

▶ χb,Υ(2S) melt at T ′
d ≲ 1.2Tc?

▶ Sequential suppression observed at CMS, ATLAS, STAR

▶ Detailed information on mass shifts and widths required for
dynamical modelling
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Spectral functions

▶ contain information about the fate of hadrons in the medium
▶ stable states ρ(ω) ∼ δ(ω −m)
▶ resonances or thermal width ρ(ω) ∼ lorentzian
▶ continuum above threshold
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Spectral functions

▶ contain information about the fate of hadrons in the medium
▶ stable states ρ(ω) ∼ δ(ω −m)
▶ resonances or thermal width ρ(ω) ∼ lorentzian
▶ continuum above threshold

▶ ρΓ(ω, p⃗) related to euclidean correlator GΓ(τ, p⃗) according to

GΓ(τ, p⃗) =

∫
ρΓ(ω, p⃗)K (τ, ω)dω ,

▶ an ill-posed problem
▶ Direct correlator analysis (model driven)
▶ Smeared spectral functions
▶ Bayesian methods
▶ Other methods are available: ML, Cuniberti, Schlessinger, . . .
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Spectral functions
▶ contain information about the fate of hadrons in the medium

▶ stable states ρ(ω) ∼ δ(ω −m)
▶ resonances or thermal width ρ(ω) ∼ lorentzian
▶ continuum above threshold

▶ ρΓ(ω, p⃗) related to euclidean correlator GΓ(τ, p⃗) according to

GΓ(τ, p⃗) =

∫
ρΓ(ω, p⃗)K (τ, ω)dω ,

▶ an ill-posed problem
▶ Direct correlator analysis (model driven)
▶ Smeared spectral functions
▶ Bayesian methods
▶ Other methods are available: ML, Cuniberti, Schlessinger, . . .

Here: Focus on mass and width
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Dynamical anisotropic lattices

▶ A large number of points in time direction required to extract
spectral information

▶ For T = 2Tc , O(10) points =⇒ at ∼ 0.025 fm

▶ Far too expensive with isotropic lattices as = at !
▶ Fixed-scale approach

▶ vary T by varying Nτ (not a)
▶ need only 1 T = 0 calculation for renormalisation
▶ independent handle on temperature

▶ Introduces 2 additional parameters

▶ Non-trivial tuning problem
[PRD 74 014505 (2006); HadSpec Collab, PRD 79 034502 (2009)]

7 / 31



Background
Correlator analysis

Smeared spectral functions
Bayesian methods

Summary and outlook

Simulation parameters
FASTSUM Gen2L ensemble: Nf = 2 + 1 anisotropic clover
[HadSpec, PRD 79 034502 (2009); FASTSUM, PRD 105 034504 (2022)]

as (fm) 0.112
aτ (fm) 0.032

ξ 3.45
a−1
τ (GeV) 6.08
mπ (MeV) 239

Ns 32
Ls (fm) 3.6

Nτ T (MeV) T/Tc Ncfg

128 47 0.28 1000
64 95 0.57 1000
56 109 0.65 1000
48 127 0.76 1000
40 152 0.91 1000
36 169 1.01 1000
32 190 1.14 1000
28 217 1.30 1000
24 253 1.52 1000
20 304 1.82 1000
16 380 2.28 1000
12 507 3.03 1000
8 760 4.55 1000 8 / 31
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NRQCD
Scale separation MQ ≫ T ,MQv
Integrate out hard scales −→ Effective theory
Expand in orders of heavy quark velocity v; we use O(v4) action

Advantages

▶ Simple (T -independent) kernel, G (τ) =
∫
ρ(ω)e−ωτ dω

2π

▶ No zero-modes

▶ Longer euclidean time range, τmax ≈ 1/T

▶ High-precision correlators feasible

Disadvantages

▶ Not renormalisable, requires Mas ≳ 1

▶ Does not incorporate transport properties

▶ Energy shift: only energy differences are physical
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Time-derivative moments
Exponential fits, GEVP

Time-derivative moments

Basic idea
For a peaked spectral function ρ(ω) describing a (quasi)particle
with mass M and width ω,

M = ⟨ω⟩ =
∫

ωρ(ω)dω , Γ = Varω =
〈
ω2
〉
− ⟨ω⟩2

In NRQCD this is equivalent to taking time derivatives of the
correlator,

G (τ) =

∫
ρ(ω)e−ωτ dω

2π

G ′(τ) = −
∫

ωρ(ω)e−ωτ dω

2π

G ′′(τ) =

∫
ω2ρ(ω)e−ωτ dω

2π 10 / 31
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Time-derivative moments
Exponential fits, GEVP

Gaussian moments
Assume ρ(ω) can be approximated by a sum of Gaussians,

ρ(ω;T ) =
∞∑
i=0

Aie
− (ω−mi )

2

2Γ2
i ,

=⇒ G (τ) =
∞∑
i=0

Aie
−miτ+Γ2i τ

2/2

= A0e
−m0τ+Γ20τ

2/2

(
1 +

∞∑
i=1

Ai

A0
e−∆miτ+∆Γ2i τ

2/2

)
G ′(τ)

G (τ)
=

d log(G (τ))

dτ
= (−m0+Γ20τ) +

∞∑
i=1

Ai

A0
e−∆miτ+∆Γ2i τ

2/2

d2 log(G (τ))

dτ
= Γ20 +

∞∑
i=1

Bie
−∆miτ+∆Γ2i τ

2/2
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Time-derivative moments
Exponential fits, GEVP

Moments results
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Time-derivative moments
Exponential fits, GEVP

Moments results: systematics

▶ Effect of higher excited
states

▶ Only single excited state
used in analysis

▶ Derivative G ′′

G −
(
G ′

G

)2
vs

log-derivative d2 logG
dτ

2

▶ Included in systematic error
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Time-derivative moments
Exponential fits, GEVP

Moments results: disentangling thermal effects
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Time-derivative moments
Exponential fits, GEVP

Generalised eigenvalue problem

Correlator matrix

Gij(τ) = ⟨Ω|OiO†
j |Ω⟩ =

∑
α

Zα
i Z

α †
j

2Eα
e−Eατ

Generalised eigenvalue problem

Gij(τ0 + δτ)uαj = e−EαδτGij(τ0)u
α
j

vαi Gij(τ0 + δτ) = e−Eαδτvαi Gij(τ0)

Eigenstate-projected correlator

Gα(τ) = vαi Gij(τ)u
α
j
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Time-derivative moments
Exponential fits, GEVP

GEVP results: eigenvector contribution
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Time-derivative moments
Exponential fits, GEVP

GEVP results: masses
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Time-derivative moments
Exponential fits, GEVP

GEVP results: widths

▶ Apply moments
method to projected
correlators

▶ Asymptotic term in
fits stable even with
noisy data
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Linear methods: smeared spectral functions
Introduce smearing function

∆(ω, ωn) =
τmax∑
τ=0

gτ (ωn)e
−ωτ Nτ→∞−−−−→ δ(ω − ωn)

Smeared spectral function is reconstructed as

ρ̂(ωn) =
τmax∑
τ=0

gτ (ωn)e
ωτ =

∫ ∞

ωmin

dωρ(ω)gτ (ωn)e
−ωτ

=

∫ ∞

ωmin

dω∆(ω, ωn)ρ(ω)

Determine coefficients gτ by minimising functional

A[gτ ] =

∫ ∞

ωmin

dωF [ω, ωn;∆]
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A tale of three methods
Coefficients gτ will become exponentially large and oscillating.
Regularise by minimising functional W [gτ ] = A[gτ ] + λB[gτ ]

Tikhonov

A[gτ ] =

∫ ∞

ωmin

dω(ω−ωn)
2[∆(ω, ωn)]

2 , B[gτ ] =
∑
τ1,τ2

gτ1gτ2 I (τ1, τ2)

Backus–Gilbert

A[gτ ] =

∫ ∞

ωmin

dω(ω−ωn)
2[∆(ω, ωn)]

2 , B[gτ ] =
∑
τ1,τ2

gτ1gτ2 Cov(τ1, τ2)

Hansen–Lupo–Tantalo

A[gτ ] =

∫ ∞

ωmin

dω|∆−∆σ|2 , B[gτ ] =
∑
τ1,τ2

gτ1gτ2 Cov(τ1, τ2)

∆σ(ω, ωn) = α exp[−(ω − ωn)
2/2σ2]

20 / 31



Background
Correlator analysis

Smeared spectral functions
Bayesian methods

Summary and outlook

Linear methods results

▶ Consistent results for
primary peak positions from
three methods

▶ HLT is better constrained

▶ Results show peak shift and
broadening 21 / 31



Background
Correlator analysis

Smeared spectral functions
Bayesian methods

Summary and outlook

HLT fits

▶ Smearing width σ is input in
HLT
−→ upper bound on Γ

▶ Fit spectral function to sum of
gaussians, each with width σ

▶ Number of peaks decreases
with increasing T

▶ σ must be increased
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Bayesian spectral function reconstruction

Bayes theorem

P(ρ|DI ) = P(D|ρI )P(ρ|I )
P(D|I )

Parametrise prior probability by

P(ρ|I ) ∝ eαS[ρ] =⇒ P(ρ|DI ) ∝ e−L[D,ρ]+αS[ρ]

where L is the standard likelihood (χ2)

Spectral function ρ(ω) is expressed in terms of default model m(ω)

ρ(ω) = m(ω) exp[

Nb∑
k=1

bkuk(ω)]
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Bayesian methods

Maximum entropy method (Bryan)

S =

∫
dωρ(ω) log

ρ(ω)

m(ω)
(Shannon–Jaynes entropy)

Singular value decomposition:

K (ω, τ) → K (ωi , τj) = Kij = UΞV T

uk are column vectors of U: Nb = Ns ≤ Ndata

BR method

S =

∫
dω
(
1− ρ(ω)

m(ω)
+ ln

ρ(ω)

m(ω)

)
Nb = Nω, uk(ω) = δkω
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MEM vs BR method
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BR results: Υ

▶ Clear evidence of negative mass shift

▶ Finite Nτ artefacts would give positive mass shift

▶ Broadening similar in magnitude to T = 0 truncated data

26 / 31
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BR results: χb1

▶ Clear evidence of thermal broadening

▶ Finite Nτ artefacts would give positive mass shift — not seen
in thermal data

27 / 31



Background
Correlator analysis

Smeared spectral functions
Bayesian methods

Summary and outlook

Summary — raw results
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Summary — T = 0 subtracted
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Summary

▶ Mass and width of ground state S- and P-wave bottomonium
(Υ and χb1) studied with a range of different methods

▶ Agreement between correlator and bayesian methods on a
negative mass shift of up to 20–40MeV at T ∼ 250MeV.

▶ Qualitative agreeement for mass and width of χb1.

▶ Discrepancy for width of Υ requires further investigation.

▶ Linear methods have intrinsically larger uncertainties
(or better at quantifying them)

▶ Zero-temperature subtraction is an essential tool
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Outlook

▶ Complete study of systematics, including T = 0 subtraction
for all methods

▶ Excited states (talk by Ryan Bignell, thu 1230)

▶ Repeat with smaller aτ : Gen3

31 / 31
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