Spectral properties of bottomonium at high temperature: a systematic investigation

Gert Aarts, Chris Allton, Naeem Anwar, Ryan Bignell, Tim Burns, Rachel Horohan D'Arcy, Ben Jäger, Seyong Kim, Maria Paola Lombardo, Ben Page, Sinéad Ryan, Jon-Ivar Skullerud, Antonio Smecca, Tom Spriggs

> National University of Ireland Maynooth FASTSUM collaboration

Quark Confinement and the Hadron Spectrum, Cairns, 19–24 August 2024

Outline

Background

Correlator analysis Time-derivative moments Exponential fits, GEVP

Smeared spectral functions

Bayesian methods

Summary and outlook

Summary of results

Background

Correlator analysis Smeared spectral functions Bayesian methods Summary and outlook

Heavy quarks in the QGP

- Heavy quarks are important probes of medium
- Long history of cc studies: experiment, pheno, lattice
- Sequential bb suppression observed, numerous studies

Beauty

- Bound states expected to survive up to $T_d^{\Upsilon} \sim 3 5T_c$
- $\chi_b, \Upsilon(2S)$ melt at $T'_d \lesssim 1.2T_c$?
- Sequential suppression observed at CMS, ATLAS, STAR
- Detailed information on mass shifts and widths required for dynamical modelling

Spectral functions

contain information about the fate of hadrons in the medium

- stable states $\rho(\omega) \sim \delta(\omega m)$
- resonances or thermal width $\rho(\omega) \sim$ lorentzian
- continuum above threshold

Spectral functions

contain information about the fate of hadrons in the medium

- stable states $ho(\omega) \sim \delta(\omega m)$
- resonances or thermal width $\rho(\omega) \sim$ lorentzian
- continuum above threshold

Spectral functions

contain information about the fate of hadrons in the medium

stable states
$$ho(\omega) \sim \delta(\omega - m)$$

- \blacktriangleright resonances or thermal width $ho(\omega) \sim$ lorentzian
- continuum above threshold

• $\rho_{\Gamma}(\omega, \vec{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \vec{p})$ according to

$$G_{\Gamma}(\tau, \vec{p}) = \int \rho_{\Gamma}(\omega, \vec{p}) K(\tau, \omega) d\omega$$

- an ill-posed problem
 - Direct correlator analysis (model driven)
 - Smeared spectral functions
 - Bayesian methods
 - Other methods are available: ML, Cuniberti, Schlessinger, ...

Spectral functions

contain information about the fate of hadrons in the medium

- stable states $ho(\omega) \sim \delta(\omega m)$
- resonances or thermal width $ho(\omega) \sim$ lorentzian
- continuum above threshold

• $\rho_{\Gamma}(\omega, \vec{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \vec{p})$ according to

$$G_{\Gamma}(\tau, \vec{p}) = \int
ho_{\Gamma}(\omega, \vec{p}) K(\tau, \omega) d\omega \,,$$

an ill-posed problem

- Direct correlator analysis (model driven)
- Smeared spectral functions
- Bayesian methods
- Other methods are available: ML, Cuniberti, Schlessinger, ...

Here: Focus on mass and width

Dynamical anisotropic lattices

- A large number of points in time direction required to extract spectral information
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$
- Fixed-scale approach
 - vary T by varying N_{τ} (not a)
 - need only 1 T = 0 calculation for renormalisation
 - independent handle on temperature

Introduces 2 additional parameters

Non-trivial tuning problem
 [PRD 74 014505 (2006); HadSpec Collab, PRD 79 034502 (2009)]

Simulation parameters

FASTSUM Gen2L ensemble: $N_f = 2 + 1$ anisotropic clover [HadSpec, PRD **79** 034502 (2009); FASTSUM, PRD **105** 034504 (2022)]

 a_s (fm) 0.112 a_{τ} (fm) 0.032 3.45 a_{π}^{-1} (GeV) 6.08 m_{π} (MeV) 239 32 Ns L_s (fm) 3.6

$N_{ au}$	T (MeV)	T/T_c	N _{cfg}
128	47	0.28	1000
64	95	0.57	1000
56	109	0.65	1000
48	127	0.76	1000
40	152	0.91	1000
36	169	1.01	1000
32	190	1.14	1000
28	217	1.30	1000
24	253	1.52	1000
20	304	1.82	1000
16	380	2.28	1000
12	507	3.03	1000
8	760	4.55	1000

NRQCD

Scale separation $M_Q \gg T, M_Q v$

Integrate out hard scales \longrightarrow Effective theory

Expand in orders of heavy quark velocity \mathbf{v} ; we use $\mathcal{O}(\mathbf{v}^4)$ action

Advantages

- Simple (*T*-independent) kernel, $G(\tau) = \int \rho(\omega) e^{-\omega \tau} \frac{d\omega}{2\pi}$
- No zero-modes
- \blacktriangleright Longer euclidean time range, $\tau_{\rm max}\approx 1/\,{\it T}$
- High-precision correlators feasible

Disadvantages

- Not renormalisable, requires $Ma_s\gtrsim 1$
- Does not incorporate transport properties
- Energy shift: only energy differences are physical

Time-derivative moments Exponential fits, GEVP

Time-derivative moments

Basic idea

For a peaked spectral function $\rho(\omega)$ describing a (quasi)particle with mass M and width ω ,

$$M = \langle \omega
angle = \int \omega
ho(\omega) d\omega \,, \quad \Gamma = \mathrm{Var} \omega = \left\langle \omega^2
ight
angle - \left\langle \omega
ight
angle^2$$

In NRQCD this is equivalent to taking time derivatives of the correlator,

$$egin{aligned} G(au) &= \int
ho(\omega) e^{-\omega au} rac{d\omega}{2\pi} \ G'(au) &= -\int \omega
ho(\omega) e^{-\omega au} rac{d\omega}{2\pi} \ G''(au) &= \int \omega^2
ho(\omega) e^{-\omega au} rac{d\omega}{2\pi} \end{aligned}$$

10 / 31

Time-derivative moments Exponential fits, GEVP

Gaussian moments

 $\frac{G'(r)}{G(r)}$

Assume $\rho(\omega)$ can be approximated by a sum of Gaussians,

$$\rho(\omega; T) = \sum_{i=0}^{\infty} A_i e^{-\frac{(\omega - m_i)^2}{2\Gamma_i^2}},$$

$$\implies G(\tau) = \sum_{i=0}^{\infty} A_i e^{-m_i \tau + \Gamma_i^2 \tau^2/2}$$

$$= A_0 e^{-m_0 \tau + \Gamma_0^2 \tau^2/2} \left(1 + \sum_{i=1}^{\infty} \frac{A_i}{A_0} e^{-\Delta m_i \tau + \Delta \Gamma_i^2 \tau^2/2} \right)$$

$$\frac{\tau}{\tau} = \frac{d \log(G(\tau))}{d\tau} = (-m_0 + \Gamma_0^2 \tau) + \sum_{i=1}^{\infty} \frac{A_i}{A_0} e^{-\Delta m_i \tau + \Delta \Gamma_i^2 \tau^2/2}$$

$$\frac{d^2 \log(G(\tau))}{d\tau} = \Gamma_0^2 + \sum_{i=1}^{\infty} B_i e^{-\Delta m_i \tau + \Delta \Gamma_i^2 \tau^2/2}$$

Time-derivative moments Exponential fits, GEVP

Moments results

Time-derivative moments Exponential fits, GEVP

Moments results: systematics

- Effect of higher excited states
- Only single excited state used in analysis
- Derivative $\frac{G''}{G} \left(\frac{G'}{G}\right)^2$ vs log-derivative $\frac{d^2 \log G}{d\tau}^2$
- Included in systematic error

Time-derivative moments Exponential fits, GEVP

Moments results: disentangling thermal effects

Time-derivative moments Exponential fits, GEVP

Generalised eigenvalue problem

Correlator matrix

$$\mathcal{G}_{ij}(au) = \langle \Omega | \mathcal{O}_i \mathcal{O}_j^{\dagger} | \Omega
angle = \sum_{lpha} rac{Z_i^{lpha} Z_j^{lpha \dagger}}{2 \mathcal{E}_{lpha}} e^{-\mathcal{E}_{lpha} au}$$

Generalised eigenvalue problem

$$G_{ij}(\tau_0 + \delta\tau)u_j^{\alpha} = e^{-E_{\alpha}\delta\tau}G_{ij}(\tau_0)u_j^{\alpha}$$
$$v_i^{\alpha}G_{ij}(\tau_0 + \delta\tau) = e^{-E_{\alpha}\delta\tau}v_i^{\alpha}G_{ij}(\tau_0)$$

Eigenstate-projected correlator

$$G_{\alpha}(\tau) = v_i^{\alpha} G_{ij}(\tau) u_j^{\alpha}$$

Time-derivative moments Exponential fits, GEVP

GEVP results: eigenvector contribution

Time-derivative moments Exponential fits, GEVP

GEVP results: masses

Time-derivative moments Exponential fits, GEVP

GEVP results: widths

- Apply moments method to projected correlators
- Asymptotic term in fits stable even with noisy data

Linear methods: smeared spectral functions Introduce smearing function

$$\overline{\Delta}(\omega,\omega_n) = \sum_{\tau=0}^{\tau_{\max}} g_{\tau}(\omega_n) e^{-\omega\tau} \xrightarrow{N_{\tau} \to \infty} \delta(\omega - \omega_n)$$

Smeared spectral function is reconstructed as

$$egin{aligned} \hat{
ho}(\omega_n) &= \sum_{ au=0}^{ au_{ ext{max}}} g_ au(\omega_n) e^{\omega au} &= \int_{\omega_{ ext{min}}}^{\infty} d\omega
ho(\omega) g_ au(\omega_n) e^{-\omega au} \ &= \int_{\omega_{ ext{min}}}^{\infty} d\omega \overline{\Delta}(\omega,\omega_n)
ho(\omega) \end{aligned}$$

Determine coefficients g_{τ} by minimising functional

$$A[g_{\tau}] = \int_{\omega_{\min}}^{\infty} d\omega F[\omega, \omega_n; \overline{\Delta}]$$

A tale of three methods

Coefficients g_{τ} will become exponentially large and oscillating. Regularise by minimising functional $W[g_{\tau}] = A[g_{\tau}] + \lambda B[g_{\tau}]$

Tikhonov

$$A[g_{\tau}] = \int_{\omega_{\min}}^{\infty} d\omega (\omega - \omega_n)^2 [\overline{\Delta}(\omega, \omega_n)]^2, \quad B[g_{\tau}] = \sum_{\tau_1, \tau_2} g_{\tau_1} g_{\tau_2} I(\tau_1, \tau_2)$$

Backus-Gilbert

$$A[g_{\tau}] = \int_{\omega_{\min}}^{\infty} d\omega (\omega - \omega_n)^2 [\overline{\Delta}(\omega, \omega_n)]^2, \quad B[g_{\tau}] = \sum_{\tau_1, \tau_2} g_{\tau_1} g_{\tau_2} \operatorname{Cov}(\tau_1, \tau_2)$$

Hansen–Lupo–Tantalo

$$A[g_{\tau}] = \int_{\omega_{\min}}^{\infty} d\omega |\overline{\Delta} - \Delta_{\sigma}|^2, \quad B[g_{\tau}] = \sum_{\tau_1, \tau_2} g_{\tau_1} g_{\tau_2} \operatorname{Cov}(\tau_1, \tau_2)$$
$$\Delta_{\sigma}(\omega, \omega_n) = \alpha \exp[-(\omega - \omega_n)^2/2\sigma^2]$$

Linear methods results

- Consistent results for primary peak positions from three methods
- HLT is better constrained
- Results show peak shift and broadening

- Smearing width σ is input in HLT
 - \longrightarrow upper bound on Γ
- Fit spectral function to sum of gaussians, each with width σ
- Number of peaks decreases with increasing T
- $\blacktriangleright \sigma$ must be increased

- Smearing width σ is input in HLT
 - \longrightarrow upper bound on Γ
- Fit spectral function to sum of gaussians, each with width σ
- Number of peaks decreases with increasing T
- $\blacktriangleright \sigma$ must be increased

- Smearing width σ is input in HLT
 - \longrightarrow upper bound on Γ
- Fit spectral function to sum of gaussians, each with width σ
- Number of peaks decreases with increasing T
- $\blacktriangleright \sigma$ must be increased

- Smearing width σ is input in HLT
 - \longrightarrow upper bound on Γ
- Fit spectral function to sum of gaussians, each with width σ
- Number of peaks decreases with increasing T
- $\blacktriangleright \sigma$ must be increased

- Smearing width σ is input in HLT
 - \longrightarrow upper bound on Γ
- Fit spectral function to sum of gaussians, each with width σ
- Number of peaks decreases with increasing T
- $\blacktriangleright \sigma$ must be increased

Bayesian spectral function reconstruction

Bayes theorem

$$P(\rho|DI) = \frac{P(D|\rho I)P(\rho|I)}{P(D|I)}$$

Parametrise prior probability by

$$P(\rho|I) \propto e^{\alpha S[\rho]} \implies P(\rho|DI) \propto e^{-L[D,\rho] + \alpha S[\rho]}$$

where L is the standard likelihood (χ^2) Spectral function $\rho(\omega)$ is expressed in terms of default model $m(\omega)$

$$\rho(\omega) = m(\omega) \exp[\sum_{k=1}^{N_b} b_k u_k(\omega)]$$

Bayesian methods

 $N_h =$

Maximum entropy method (Bryan)

$$S = \int d\omega
ho(\omega) \log rac{
ho(\omega)}{m(\omega)}$$
 (Shannon–Jaynes entropy)

Singular value decomposition:

$$K(\omega, \tau) \to K(\omega_i, \tau_j) = K_{ij} = U \Xi V^T$$

 u_k are column vectors of U: $N_b = N_s \le N_{data}$ BR method

$$S = \int d\omega \Big(1 - rac{
ho(\omega)}{m(\omega)} + \ln rac{
ho(\omega)}{m(\omega)} \Big)$$

 $N_{\omega}, u_k(\omega) = \delta_{k\omega}$

MEM vs BR method

BR results: Υ

- Clear evidence of negative mass shift
- Finite N_{τ} artefacts would give positive mass shift
- Broadening similar in magnitude to T = 0 truncated data

BR results: χ_{b1}

- Clear evidence of thermal broadening
- Finite N_τ artefacts would give positive mass shift not seen in thermal data

Summary — raw results

150 200 250 300 350 T [MeV]

50 100

28 / 31

Summary — T = 0 subtracted

400

350

Summary

- Mass and width of ground state S- and P-wave bottomonium (Υ and χ_{b1}) studied with a range of different methods
- Agreement between correlator and bayesian methods on a negative mass shift of up to 20–40 MeV at T ~ 250 MeV.
- Qualitative agreeement for mass and width of χ_{b1} .
- Discrepancy for width of Υ requires further investigation.
- Linear methods have intrinsically larger uncertainties (or better at quantifying them)
- Zero-temperature subtraction is an essential tool

Outlook

- Complete study of systematics, including T = 0 subtraction for all methods
- Excited states (talk by Ryan Bignell, thu 1230)
- Repeat with smaller a_{τ} : Gen3