Spectral properties of bottomonium at high temperature: a systematic investigation

Gert Aarts, Chris Allton, Naeem Anwar, Ryan Bignell, Tim Burns, Rachel Horohan D'Arcy, Ben Jäger, Seyong Kim, Maria Paola Lombardo, Ben Page, Sinéad Ryan, Jon-Ivar Skullerud, Antonio Smecca, Tom Spriggs

> National University of Ireland Maynooth FASTSUM collaboration

Quark Confinement and the Hadron Spectrum, Cairns, 19–24 August 2024

Outline

[Background](#page-3-0)

[Correlator analysis](#page-12-0) [Time-derivative moments](#page-12-0) [Exponential fits, GEVP](#page-17-0)

[Smeared spectral functions](#page-21-0)

[Bayesian methods](#page-29-0)

[Summary and outlook](#page-34-0)

[Background](#page-3-0) [Correlator analysis](#page-12-0) [Smeared spectral functions](#page-21-0) [Bayesian methods](#page-29-0)

Summary of results

300

250 300 350

 $400 -$

[Background](#page-3-0)

[Correlator analysis](#page-12-0) [Smeared spectral functions](#page-21-0) [Bayesian methods](#page-29-0) [Summary and outlook](#page-34-0)

Heavy quarks in the QGP

- ▶ Heavy quarks are important probes of medium
- \blacktriangleright Long history of $c\bar{c}$ studies: experiment, pheno, lattice
- \triangleright Sequential $b\overline{b}$ suppression observed, numerous studies

Beauty

- ▶ Bound states expected to survive up to $T_d^{\Upsilon} \sim 3-5 T_c$
- $\blacktriangleright \ \ \chi_b, \Upsilon(2S)$ melt at $T'_d \lesssim 1.2 T_c$?
- ▶ Sequential suppression observed at CMS, ATLAS, STAR
- ▶ Detailed information on mass shifts and widths required for dynamical modelling

Spectral functions

 \triangleright contain information about the fate of hadrons in the medium

- ▶ stable states $ρ(ω) \sim δ(ω m)$
- ▶ resonances or thermal width $\rho(\omega) \sim$ lorentzian
- ▶ continuum above threshold

Spectral functions

 \triangleright contain information about the fate of hadrons in the medium

- ▶ stable states $ρ(ω) \sim δ(ω m)$
- ▶ resonances or thermal width $\rho(\omega) \sim$ lorentzian
- ▶ continuum above threshold

Spectral functions

 \triangleright contain information about the fate of hadrons in the medium

$$
\blacktriangleright \text{ stable states } \rho(\omega) \sim \delta(\omega - m)
$$

- resonances or thermal width $\rho(\omega) \sim$ lorentzian
- ▶ continuum above threshold

 \rightharpoonup $\rho_{\Gamma}(\omega, \vec{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \vec{p})$ according to

$$
G_{\Gamma}(\tau,\vec{\rho})=\int \rho_{\Gamma}(\omega,\vec{\rho})K(\tau,\omega)d\omega,
$$

▶ an ill-posed problem

- ▶ Direct correlator analysis (model driven)
- ▶ Smeared spectral functions
- ▶ Bayesian methods
- ▶ Other methods are available: ML, Cuniberti, Schlessinger, ...

Spectral functions

 \triangleright contain information about the fate of hadrons in the medium

- \blacktriangleright stable states $ρ(ω) \sim δ(ω m)$
- ▶ resonances or thermal width $ρ(ω)$ \sim lorentzian
- ▶ continuum above threshold

 \rightharpoonup $\rho_{\Gamma}(\omega, \vec{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \vec{p})$ according to

$$
G_{\Gamma}(\tau,\vec{p})=\int \rho_{\Gamma}(\omega,\vec{p})K(\tau,\omega)d\omega\,,
$$

▶ an ill-posed problem

- ▶ Direct correlator analysis (model driven)
- ▶ Smeared spectral functions
- ▶ Bayesian methods
- ▶ Other methods are available: ML, Cuniberti, Schlessinger, ...

Here: Focus on mass and width

Dynamical anisotropic lattices

- ▶ A large number of points in time direction required to extract spectral information
- ▶ For $T = 2T_c$, $\mathcal{O}(10)$ points $\implies a_t \sim 0.025$ fm
- \triangleright Far too expensive with isotropic lattices $a_s = a_t!$
- ▶ Fixed-scale approach
	- \blacktriangleright vary T by varying N_{τ} (not a)
	- \triangleright need only 1 $T = 0$ calculation for renormalisation
	- ▶ independent handle on temperature

▶ Introduces 2 additional parameters

 \blacktriangleright Non-trivial tuning problem [PRD 74 014505 (2006); HadSpec Collab, PRD 79 034502 (2009)]

Simulation parameters

FASTSUM Gen2L ensemble: $N_f = 2 + 1$ anisotropic clover [HadSpec, PRD 79 034502 (2009); FASTSUM, PRD 105 034504 (2022)]

 a_s (fm) 0.112 a_{τ} (fm) | 0.032 ξ 3.45 $\left. \begin{matrix} a_\tau^{-1} \ (\text{GeV}) \ \end{matrix} \right|$ 6.08 m_{π} (MeV) | 239 $N_{\rm s}$ 32 L_s (fm) | 3.6

NRQCD

Scale separation $M_Q \gg T$, M_Qv Integrate out hard scales \longrightarrow Effective theory Expand in orders of heavy quark velocity **v**; we use $\mathcal{O}(\mathbf{v}^4)$ action

Advantages

- ► Simple (*T*-independent) kernel, $G(\tau) = \int \rho(\omega) e^{-\omega \tau} \frac{d\omega}{2\pi}$
- ▶ No zero-modes
- ► Longer euclidean time range, $\tau_{\text{max}} \approx 1/T$
- ▶ High-precision correlators feasible

Disadvantages

- ▶ Not renormalisable, requires $Ma_s \geq 1$
- ▶ Does not incorporate transport properties
- Energy shift: only energy differences are physical

[Time-derivative moments](#page-12-0) [Exponential fits, GEVP](#page-17-0)

Time-derivative moments

Basic idea

For a peaked spectral function $\rho(\omega)$ describing a (quasi)particle with mass M and width ω .

$$
M = \langle \omega \rangle = \int \omega \rho(\omega) d\omega \,, \quad \Gamma = \text{Var}\omega = \langle \omega^2 \rangle - \langle \omega \rangle^2
$$

In NRQCD this is equivalent to taking time derivatives of the correlator,

$$
G(\tau) = \int \rho(\omega)e^{-\omega\tau} \frac{d\omega}{2\pi}
$$

\n
$$
G'(\tau) = -\int \omega \rho(\omega)e^{-\omega\tau} \frac{d\omega}{2\pi}
$$

\n
$$
G''(\tau) = \int \omega^2 \rho(\omega)e^{-\omega\tau} \frac{d\omega}{2\pi}
$$

[Time-derivative moments](#page-12-0) [Exponential fits, GEVP](#page-17-0)

Gaussian moments

Assume $\rho(\omega)$ can be approximated by a sum of Gaussians,

$$
\rho(\omega; \mathcal{T}) = \sum_{i=0}^{\infty} A_i e^{-\frac{(\omega - m_i)^2}{2\Gamma_i^2}},
$$

\n
$$
\implies G(\tau) = \sum_{i=0}^{\infty} A_i e^{-m_i \tau + \Gamma_i^2 \tau^2/2}
$$

\n
$$
= A_0 e^{-m_0 \tau + \Gamma_0^2 \tau^2/2} \left(1 + \sum_{i=1}^{\infty} \frac{A_i}{A_0} e^{-\Delta m_i \tau + \Delta \Gamma_i^2 \tau^2/2}\right)
$$

\n
$$
\frac{G'(\tau)}{G(\tau)} = \frac{d \log(G(\tau))}{d\tau} = (-m_0 + \Gamma_0^2 \tau) + \sum_{i=1}^{\infty} \frac{A_i}{A_0} e^{-\Delta m_i \tau + \Delta \Gamma_i^2 \tau^2/2}
$$

\n
$$
\frac{d^2 \log(G(\tau))}{d\tau} = \Gamma_0^2 + \sum_{i=1}^{\infty} B_i e^{-\Delta m_i \tau + \Delta \Gamma_i^2 \tau^2/2}
$$

[Time-derivative moments](#page-12-0) [Exponential fits, GEVP](#page-17-0)

Moments results

[Time-derivative moments](#page-12-0) [Exponential fits, GEVP](#page-17-0)

Moments results: systematics

- ▶ Effect of higher excited states
- ▶ Only single excited state used in analysis
- ▶ Derivative $\frac{G''}{G} \left(\frac{G'}{G}\right)$ $\frac{G'}{G}$) 2 vs log-derivative $\frac{d^2 \log G}{d\tau}$ dτ 2
- ▶ Included in systematic error

[Time-derivative moments](#page-12-0) [Exponential fits, GEVP](#page-17-0)

Moments results: disentangling thermal effects

[Time-derivative moments](#page-12-0) [Exponential fits, GEVP](#page-17-0)

Generalised eigenvalue problem

Correlator matrix

$$
G_{ij}(\tau)=\langle \Omega | \mathcal{O}_i \mathcal{O}_j^{\dagger} | \Omega \rangle = \sum_{\alpha} \frac{Z_i^{\alpha} Z_j^{\alpha \dagger}}{2 E_{\alpha}} e^{-E_{\alpha} \tau}
$$

Generalised eigenvalue problem

$$
G_{ij}(\tau_0 + \delta \tau)u_j^{\alpha} = e^{-E_{\alpha}\delta\tau}G_{ij}(\tau_0)u_j^{\alpha}
$$

$$
v_i^{\alpha}G_{ij}(\tau_0 + \delta \tau) = e^{-E_{\alpha}\delta\tau}v_i^{\alpha}G_{ij}(\tau_0)
$$

Eigenstate-projected correlator

$$
G_{\alpha}(\tau)=v_i^{\alpha}G_{ij}(\tau)u_j^{\alpha}
$$

[Time-derivative moments](#page-12-0) [Exponential fits, GEVP](#page-17-0)

GEVP results: eigenvector contribution

16 / 31

[Time-derivative moments](#page-12-0) [Exponential fits, GEVP](#page-17-0)

GEVP results: masses

[Time-derivative moments](#page-12-0) [Exponential fits, GEVP](#page-17-0)

GEVP results: widths

- ▶ Apply moments method to projected correlators
- ▶ Asymptotic term in fits stable even with noisy data

Linear methods: smeared spectral functions Introduce smearing function

$$
\overline{\Delta}(\omega,\omega_n)=\sum_{\tau=0}^{\tau_{\text{max}}}g_{\tau}(\omega_n)e^{-\omega\tau}\xrightarrow{N_{\tau}\to\infty}\delta(\omega-\omega_n)
$$

Smeared spectral function is reconstructed as

$$
\hat{\rho}(\omega_n) = \sum_{\tau=0}^{\tau_{\text{max}}} g_{\tau}(\omega_n) e^{\omega \tau} = \int_{\omega_{\text{min}}}^{\infty} d\omega \rho(\omega) g_{\tau}(\omega_n) e^{-\omega \tau}
$$

$$
= \int_{\omega_{\text{min}}}^{\infty} d\omega \overline{\Delta}(\omega, \omega_n) \rho(\omega)
$$

Determine coefficients g_{τ} by minimising functional

$$
A[g_{\tau}]=\int_{\omega_{\text{min}}}^{\infty}d\omega F[\omega,\omega_n;\overline{\Delta}]
$$

A tale of three methods

Coefficients g_{τ} will become exponentially large and oscillating. Regularise by minimising functional $W[g_\tau] = A[g_\tau] + \lambda B[g_\tau]$

Tikhonov

$$
A[g_{\tau}] = \int_{\omega_{\min}}^{\infty} d\omega (\omega - \omega_n)^2 [\overline{\Delta}(\omega, \omega_n)]^2, \quad B[g_{\tau}] = \sum_{\tau_1, \tau_2} g_{\tau_1} g_{\tau_2} l(\tau_1, \tau_2)
$$

Backus–Gilbert

$$
A[g_{\tau}] = \int_{\omega_{\min}}^{\infty} d\omega (\omega - \omega_n)^2 [\overline{\Delta}(\omega, \omega_n)]^2, \quad B[g_{\tau}] = \sum_{\tau_1, \tau_2} g_{\tau_1} g_{\tau_2} Cov(\tau_1, \tau_2)
$$

Hansen–Lupo–Tantalo

$$
A[g_{\tau}] = \int_{\omega_{\min}}^{\infty} d\omega |\overline{\Delta} - \Delta_{\sigma}|^2, \quad B[g_{\tau}] = \sum_{\tau_1, \tau_2} g_{\tau_1} g_{\tau_2} Cov(\tau_1, \tau_2)
$$

$$
\Delta_{\sigma}(\omega, \omega_n) = \alpha \exp[-(\omega - \omega_n)^2 / 2\sigma^2]
$$

Linear methods results

- ▶ Consistent results for primary peak positions from three methods
- ▶ HLT is better constrained
- ▶ Results show peak shift and b roadening $21 / 31$

- **•** Smearing width σ is input in **HLT**
	- \longrightarrow upper bound on Γ
- ▶ Fit spectral function to sum of gaussians, each with width σ
- ▶ Number of peaks decreases with increasing T
- \triangleright σ must be increased

- **•** Smearing width σ is input in **HLT**
	- \longrightarrow upper bound on Γ
- ▶ Fit spectral function to sum of gaussians, each with width σ
- ▶ Number of peaks decreases with increasing T
- \triangleright σ must be increased

- **•** Smearing width σ is input in **HLT**
	- \longrightarrow upper bound on Γ
- ▶ Fit spectral function to sum of gaussians, each with width σ
- ▶ Number of peaks decreases with increasing T
- \triangleright σ must be increased

- **•** Smearing width σ is input in **HLT**
	- \longrightarrow upper bound on Γ
- ▶ Fit spectral function to sum of gaussians, each with width σ
- ▶ Number of peaks decreases with increasing T
- \triangleright σ must be increased

- **•** Smearing width σ is input in **HLT**
	- \longrightarrow upper bound on Γ
- ▶ Fit spectral function to sum of gaussians, each with width σ
- ▶ Number of peaks decreases with increasing T
- \triangleright σ must be increased

Bayesian spectral function reconstruction Bayes theorem

$$
P(\rho|DI) = \frac{P(D|\rho I)P(\rho|I)}{P(D|I)}
$$

Parametrise prior probability by

$$
P(\rho|I) \propto e^{\alpha S[\rho]} \implies P(\rho|DI) \propto e^{-L[D,\rho] + \alpha S[\rho]}
$$

where L is the standard likelihood (χ^2) Spectral function $\rho(\omega)$ is expressed in terms of default model $m(\omega)$

$$
\rho(\omega) = m(\omega) \exp[\sum_{k=1}^{N_b} b_k u_k(\omega)]
$$

Bayesian methods

 $N_b =$

Maximum entropy method (Bryan)

$$
S = \int d\omega \rho(\omega) \log \frac{\rho(\omega)}{m(\omega)}
$$
 (Shannon–Jaynes entropy)

Singular value decomposition:

$$
K(\omega,\tau)\to K(\omega_i,\tau_j)=K_{ij}=U\Xi V^T
$$

 u_k are column vectors of $U: N_b = N_s \leq N_{\text{data}}$ BR method

$$
S = \int d\omega \Big(1 - \frac{\rho(\omega)}{m(\omega)} + \ln \frac{\rho(\omega)}{m(\omega)} \Big)
$$

$$
N_{\omega}, u_k(\omega) = \delta_{k\omega}
$$

MEM vs BR method

 $N = 12$

 $N = 64$

 $N_{\rm p}$ 56

 $N = 48$

 $N = 40$

 $N = 36$

 $N_r = 32$

 $N = 28$

 $N_\mathrm{c}{=}24$

 $N_c = 20$

 $N_{\rm c}$ =16

 $- N_c = 12$

 0.7 0.8

0.35

BR results: Υ

- ▶ Clear evidence of negative mass shift
- \blacktriangleright Finite N_{τ} artefacts would give positive mass shift
- \triangleright Broadening similar in magnitude to $T = 0$ truncated data

BR results: χ_{b1}

- ▶ Clear evidence of thermal broadening
- \triangleright Finite N_{τ} artefacts would give positive mass shift not seen in thermal data

Summary — raw results

 $\frac{150}{T}$ [MeV] $\overline{200}$ 250 300 350

200

 θ

 50 100

[Background](#page-3-0) [Correlator analysis](#page-12-0) [Bayesian methods](#page-29-0) [Summary and outlook](#page-34-0)

Summary $\overline{}$ \overline

300

250 300 350

 $400 -$

Summary

- ▶ Mass and width of ground state S- and P-wave bottomonium (T and χ_{b1}) studied with a range of different methods
- ▶ Agreement between correlator and bayesian methods on a negative mass shift of up to 20–40 MeV at $T \sim 250$ MeV.
- \blacktriangleright Qualitative agreeement for mass and width of χ_{b1} .
- ▶ Discrepancy for width of Υ requires further investigation.
- \blacktriangleright Linear methods have intrinsically larger uncertainties (or better at quantifying them)
- ▶ Zero-temperature subtraction is an essential tool

Outlook

- \triangleright Complete study of systematics, including $T = 0$ subtraction for all methods
- ▶ Excited states (talk by Ryan Bignell, thu 1230)
- Repeat with smaller a_{τ} : Gen3