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Introduction

We investigate the gauge-scalar model to clarify the mechanism of confinement in
the Yang-Mills theory in the presence of matter fields.

We also investigate non-perturbative characterization of the Brout-Englert-Higgs
(BEH) mechanism providing the gauge field with the mass, in the
gauge-independent way (without gauge fixing).

We reexamine the lattice SU(2) gauge-scalar model with a radially-fixed scalar
field (no Higgs mode) which transforms according to the fundamental
representation of the gauge group SU(2) without any gauge fixing.

Note that it was impossible to realize the conventional BEH mechanism on the
lattice unless the gauge fixing condition is imposed, since gauge non-invariant
operators have vanishing vacuum expectation value on the lattice without gauge
fixing due to the Elitzur theorem.

This difficulty can be avoided by using the gauge-independent description of the
BEH mechanism proposed recently by one of the authors, which needs neither the
spontaneous breaking of gauge symmetry nor.

Therefore, we can study the Higgs phase in the gauge-invariant way on the lattice
without gauge fixing based on the lattice construction of gauge-independent
description of the BEH mechanism.
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Phase diagram of gauge-scalar model

In case of fundamental scalar field

Confinement and Higgs regions are sub-regions of
analytically continued single phase.
K. Ostewalder and E. Seiler, Annls. Phys. 110, 440 (1978)
E. Fradkin and S.H. Shenker, PRD 19, 3682 (1979)

We found a new transition line (red) which separates
confinement and Higgs regions completely.
[Phys.Rev.D 109, 054505 (2024)]

In case of adjoint scalar fields.

Confinement and Higgs regions are completely
separated into the two different phases by a
continuous transition line.
R.C. Brower et. al. PRD 25, 3319 (1982)

We found a new transition line (red) that divides
completely the confinement phase into two parts.
[Phys.Rev.D 110, 034508 (2024)]
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Plan of talk

In this talk, we further investigate the gauge-scalar model with the scalar field in the
fundamental representation, so that we give further numerical evidences for the
gauge-independent separation between Confinement phase and Higgs phase in the
above model to establish its physical origin.

Contents:
Lattice action

Gauge-covariant decomposition (CDGSFN decomposition)

Numerical simulations

Lattice result I (Analysis of the action density)
Lattice result II (Analysis based on the gauge-covariant decomposition)

the scalar-color correlation
the magnetic-monopole density
the gauge-color correlation (adjoint-scalar-action density )

Summary
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Lattice action

The SU(2) gauge-scalar model with a radially-fixed scalar field in the fundamental
representation of the gauge group:

SGS :=Sg [U ] + SH [U ,Θ] ,

Sg [U ] :=∑
x

∑
µ<ν

β

2
tr
(
1− Ux ,µUx+µ,νU

†
x+ν,µU

†
x ,ν

)
+ c .c . ,

SH [U ,Θ] :=∑
x ,µ

γ

2
tr
{(

Dµ[U ]Θx

)† (
Dµ[U ]Θx

)}
=∑

x ,µ

γ

2
tr
{
1− Θ†

xUx , uΘx+µ̂

}
+ c.c. ,

where Ux ,µ ∈ SU(2) represents a (group-valued) gauge variable on a link < x , µ >,
Θx ∈ SU(2) represents a (matrix-valued) scalar field in the fundamental representation
of the gauge group on a site x which obeys the unit length (or radial-fixed) condition
as Θ†

xΘx = 1 = ΘxΘ†
x , and Dµ[U ]Θx represents the covariant derivative in defined as

Dµ[U ]Θx := Ux ,µΘx+µ̂ − Θx .
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The action is invariant under the local SU(2)local gauge transformation and the global
SU(2)global transformation for the link variable Ux ,µ and the site variable Θx :

Ux ,µ −→ U ′
x ,µ = ΩxUx ,µΩ†

x+µ̂ , Ωx ∈ SU(2)local ,

Θx −→ Θ′
x = ΩxΘxΓ , Γ ∈ SU(2)global .

The expectation value of the operator O in this model is defined by

⟨O[U ,Θ]⟩ = 1

Z

∫
DUDΘe−SGSO[U ,Θ] , Z =

∫
DUDΘe−SGS ,

where integration measure DU = ∏x ,µ dUx ,µ and DΘ = ∏x dΘx are the invariant

Haar measure for the SU(2) group.Therefore, this model has SU(2)local × SU(2)global
symmetry.
In the naive continuum limit this action reproduces the continuum gauge-scalar model
with a scalar field in the fundamental representation with a gauge coupling g and the
fixed length v , where β = 4/g2 and γ = v2.
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Gauge-covariant decomposition (CDGSFN decomposition)

We introduce the site variable nx := nAx σA ∈ su(2)− u(1) which is called the
color-direction (vector) field, in addition to the original link variable Ux ,µ ∈ SU(2).
The link variable Ux ,µ and the site variable nx transforms under the gauge
transformation Ωx ∈ SU(2) as

Ux ,µ → ΩxUx ,µΩ†
x+µ = U ′

x ,µ, nx → ΩxnxΩ†
x = n′x .

In the decomposition, a link variable Ux ,µ is decomposed into two parts:

Ux ,µ := Xx ,µVx ,µ.

Vx ,µ → ΩxVx ,µΩ†
x+µ = V ′

x ,µ. Xx ,µ → ΩxXx ,µΩ†
x = X ′

x ,µ,

Such decomposition is obtained by solving the defining equations:

Dµ[V ]nx := Vx ,µnx+µ − nxVx ,µ = 0, tr(nxXx ,µ) = 0.

This defining equation has been solved exactly and the resulting link variable Vx ,µ and
site variable Xx ,µ are of the form

Vx ,µ := Ṽx ,µ/
√

tr[Ṽ †
x ,µṼx ,µ]/2, Ṽx ,µ := Ux ,µ + nxUx ,µnx+µ,

Xx ,µ := Ux ,µV
−1
x ,µ .

Note that this decomposition is obtained uniquely for a given set of link variable Ux ,µ

once the site variable nx is given.
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Reduction condition

The configurations of the color-direction field {nx} are obtained by minimizing the
functional:

Fred[{nx}|{Ux ,µ}] := ∑
x ,µ

tr
{(

Dx ,µ[U ]nx
)† (

Dx ,µ[U ]nx
)}

,

Dx ,µ[U ]nx := Ux ,µnx+µ̂ − nxUx ,µ

which we call the reduction condition.
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Lattice result and gauge-independent analyses

Simulation

164 lattice with the periodic boundary condition.
Updating link variables {Ux ,µ} and scalar fields {Θx} alternately by using the
HMC algorithm with integral interval ∆τ = 1 without the gauge fixing.
After 2500 sweep thermalization, we store 1500 configurations every 5 sweeps.
The figure below shows the parameters in the β–γ plane where simulations run.

The search for the phase boundary
by measuring the expectation value ⟨O⟩ of a
chosen operator O by changing γ (or β) along the
β =const. (or γ =const.) lines.

identify the boundary,
Use of the bent, step, and gap observed in the
graph of the ⟨O⟩ plots .
Use of peaks in the graph of the susceptibility
plots.
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Figure: Simulation points
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Numerical Result I [Preliminary]

First, we reexamine the phase boundaries for a wider parameter space.

plaquette-action density

P =
1

6Nsite
∑
x

∑
µ<ν

1

2
tr(Ux ,µν), Ux ,µν = Ux ,µUx+µ̂,νU

†
x+ν̂,µU

†
x ,ν,

Susceptibility of the plaquette-action density

χ(P) = (6Nsite)
{〈

P2
〉
− ⟨P⟩2

}
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Figure: Left) ⟨P⟩ versus γ on various β = const. lines. Right: χ(P) versus γ on various β =const.
lines
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Phase boundary from gauge-action density
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scalar-action density
,

M =
1

4Nsite
∑
x

∑
µ

1

2
Retr

(
Θ†

xDµ[Ux ,µ]Θx+µ̂

)
,

Susceptibility of the scalar-action density

χ(M) = (4Nsite)
{〈

M2
〉
− ⟨M⟩2

}
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Figure: Left: ⟨M⟩ versus γ on various β = const. lines. Right:χ(M) versus γ on various β =const.
lines.
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Phase boundary from the scalar-action density
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Phase boundary from action density (combination plot)
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Numerical Result II [Preliminary]

scalar-color correlation

R =
1

Nsite
∑
x

Θ†
xnxΘx , RA = tr

(
RσA

)
We investigate the correlations between the scalar field and the color-direction field
through the gauge covariant decomposition.
We need to solve the reduction condition to obtain the color-direction field nx , which
however has two kinds of ambiguity.

One comes form so-called the Gribov copies that are the local minimal solutions of
the reduction condition.

Another comes from the choice of a global sign factor, which originates from the
fact that whenever a configuration {nx} is a solution, the flipped one {−nx} is
also a solution, since the reduction functional is quadratic in the color fields.

To avoid these issues, we propose to use |R |1 and |R |2 , where |R |n represents the

n-norm defined by |R |n = n
√
|R1|n + |R2|n + |R3|n
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scalar-color correlation ⟨|R |1⟩
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Figure: Average of the scalar-color composite field ⟨|Q |⟩: Left: ⟨|R |1⟩ versus γ on various β =const.
lines. Right: ⟨|R |1⟩ versus β on various γ =const. lines.
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scalar-color correlation: |R |2

⟨|R |2⟩ , χ(|R |2) = (4Nsite)
{〈

|R |22
〉
− ⟨ |R |2⟩

2
}
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Figure: Left:⟨|R |2⟩ versus γ on various β =const. lines. Right:χ(|R |2) versus γ on various
β =const. lines.
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Figure: Left:⟨|R |2⟩ versus β on various γ =const. lines. Right:χ(|R |2) versus β on various
γ =const. lines.
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Phase boundary (critical line) from scalar-color correlation: |R |2
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Contribution from the magnetic monopole

Next we investigate the contributions from magnetic monopoles to determine their role
in confinement and mass generation (mass gap) from the viewpoint of the
electric-magnetic duality.
Through the gauge-covariant decomposition (CDGSFN decomposition), we can define
the magnetic monopole in the gauge-independent way:

Vx ,µ,ν := Vx ,µVx+µ̂,νV
†
x+ν̂,µV

†
x ,ν = exp(−iF (x)µ,νnx ) ,

F (x)µ,ν := argF tr
{
(1+ nx )Vx ,µ,ν

}
,

kx ,µ :=
1

2
ϵµναβ

(
F (x + ν̂)α,β − F (x)α,β

}
=: 2πmx ,µ , mx ,µ = 0,±1,±2, · · ·

where Vx ,µ represents the restricted field obtained from CDGSFN decomposition, nx

represents the color-direction field, and kx ,µ represents the magnetic monopole which
satisfies the current conservation law, i.e., ∂µk

x ,µ = ∑µ(kx+µ̂,µ − kx ,µ) = 0.
Therefore, we can define the magnetic-monopole-charge density as

ρk :=
1

4Nsite
∑
x ,µ

|mx ,µ| .
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Magnetic-monopole density: ρk
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Figure: Left: ⟨ρk ⟩ versus γ on various β =const. lines. Right: ⟨ρk ⟩ versus β on various γ =const.
lines.
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Gauge-scalar correlation

Let us remind the gauge-scalar model with the scalar field in the adjoint representation:

SAd
GS := Sg [U ] + SAd

H [U ,ϕ]

SAd
H [U ,ϕ] :=

γ

2 ∑
x ,µ

tr
{(

Dx ,µ[U ]ϕx

)† (
Dx ,µ[U ]ϕx

)}
,

Dx ,µ[U ]ϕx := Ux ,µϕx+µ̂ − ϕxUx ,µ ,

where Sg [U ] represents the gauge action, ϕx := ϕA
x σA ∈ su(2)− u(1) represents the

scalar field in the adjoint representation.
Note that the functional for the reduction has the same form as the action for the
scalar field in the adjoint representation:

SAd
H [U ,ϕ] =

γ

2
Fred[{ϕx}|{Ux ,µ}] ,

and the color-field configuration {nx} for the CDGSFN decomposition is obtained as
the solution of motion of the equation for the scalar filed.
Therefore, we investigate a ”color-action density”, where a scalar field is replaced by a
color field in the adjoint-scalar-action density.
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Gauge-color correlation (color-action density)

SAd
n = ∑

x ,µ

tr
{(

Dx ,µ[U ]nx
)† (

Dx ,µ[U ]nx
)}
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Figure: Left:
〈
SAd
n

〉
versus γ on various β =const. lines. Right:

〈
SAd
n

〉
versus β on various

γ =const. lines.
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Summary

We investigate the gauge-scalar model with the scalar field in the fundamental
representation to obtain further numerical evidence for the gauge-independent
separation between Confinement phase and Higgs phase.
For this purpose, we reexamine the phase structure without gauge fixing based on
the lattice construction of gauge-independent description of the BEH
mechanism.for a wider parameter space.

In addition to the operators used in the previous paper, we focus on the
susceptibility to determine the phase boundary. ¡
We confirm the phase diagram in view of the thermodynamic phase transition.
We confirm the gauge-independent separation between Confinement phase and
Higgs phase.

Moreover, we investigate the contributions from magnetic monopoles to determine
their role in confinement and the mass generation (mass gap) from the viewpoint
of the electric-magnetic duality.

We further investigate the gauge-color correlation (”color-action density”).

Note that these results are obtained by investigating the correlation functions
between the gauge-invariant composite operators and the the color-direction field
obtained through the gauge-covariant decomposition.
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