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Introduction

@ We investigate the gauge-scalar model to clarify the mechanism of confinement in
the Yang-Mills theory in the presence of matter fields.

@ We also investigate non-perturbative characterization of the Brout-Englert-Higgs
(BEH) mechanism providing the gauge field with the mass, in the
gauge-independent way (without gauge fixing).

@ We reexamine the lattice SU(2) gauge-scalar model with a radially-fixed scalar
field (no Higgs mode) which transforms according to the fundamental
representation of the gauge group SU(2) without any gauge fixing.

@ Note that it was impossible to realize the conventional BEH mechanism on the
lattice unless the gauge fixing condition is imposed, since gauge non-invariant
operators have vanishing vacuum expectation value on the lattice without gauge
fixing due to the Elitzur theorem.

@ This difficulty can be avoided by using the gauge-independent description of the
BEH mechanism proposed recently by one of the authors, which needs neither the
spontaneous breaking of gauge symmetry nor.

@ Therefore, we can study the Higgs phase in the gauge-invariant way on the lattice
without gauge fixing based on the lattice construction of gauge-independent
description of the BEH mechanism.
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Phase diagram of gauge-scalar model

In case of fundamental scalar field

@ Confinement and Higgs regions are sub-regions of
analytically continued single phase.
K. Ostewalder and E. Seiler, Annls. Phys. 110, 440 (1978)
E. Fradkin and S.H. Shenker, PRD 19, 3682 (1979)

@ We found a new transition line (red) which separates
confinement and Higgs regions completely. .
[Phys.Rev.D 109, 054505 (2024)] 05—

In case of adjoint scalar fields. B

e Confinement and Higgs regions are completely .
: . () | () Higgs
separated into the two different phases by a
continuous transition line.
R.C. Brower et. al. PRD 25, 3319 (1982)

@ We found a new transition line (red) that divides

completely the confinement phase into two parts. .
[Phys.Rev.D 110, 034508 (2024)] 0 5 S

() confinement
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Plan of talk

In this talk, we further investigate the gauge-scalar model with the scalar field in the
fundamental representation, so that we give further numerical evidences for the
gauge-independent separation between Confinement phase and Higgs phase in the
above model to establish its physical origin.

Contents:
@ Lattice action
e Gauge-covariant decomposition (CDGSFN decomposition)
@ Numerical simulations
o Lattice result | (Analysis of the action density)
o Lattice result Il (Analysis based on the gauge-covariant decomposition)
e the scalar-color correlation
o the magnetic-monopole density
o the gauge-color correlation (adjoint-scalar-action density )
@ Summary
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Lattice action

The SU(2) gauge-scalar model with a radially-fixed scalar field in the fundamental
representation of the gauge group:

Ses :=5g[U] + Su[U, O],

S(U] —ZZ—U( — UnpUssun Ul y ULy ) + e

x p<v

Sy[U, ©] ::Z%tr{(Dy[U](@X)Jr (DH[U]®X)}

X
Z% r{1-0}Uc, @i} +cc.,
X,H

where Uy, € SU(2) represents a (group-valued) gauge variable on a link < x, u >,
Ox € SU(2) represents a (matrix-valued) scalar field in the fundamental representation
of the gauge group on a site x which obeys the unit length (or radial-fixed) condition
as @i@x =1= ®X®i, and DV[U](@X represents the covariant derivative in defined as

D]J[U]®X = X,]l®X+ﬁ - G)X .
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The action is invariant under the local SU(2)|ocal gauge transformation and the global
SU(2)global transformation for the link variable Uy, and the site variable ©:

Ux,y — U)/<]/l = QXUXVI/IQ;I-H—;Q' QX € SU(2)|oca|v

Oy — @; =0,0,I, Te SU(2)g|oba| .

The expectation value of the operator O in this model is defined by
1
(O[U,©]) = E/DUD@eSGSO[U,@], z= /DUD@eSGS,

where integration measure DU =[], , dUx,u and DO = [, dOy are the invariant
Haar measure for the SU(2) group.Therefore, this model has SU(2)ocal X SU(2)global
symmetry.

In the naive continuum limit this action reproduces the continuum gauge-scalar model
with a scalar field in the fundamental representation with a gauge coupling g and the
fixed length v, where B = 4/g2 and v = v2.
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Gauge-covariant decomposition (CDGSFN decomposition)

We introduce the site variable ny := nfo4 € su(2) — u(1) which is called the
color-direction (vector) field, in addition to the original link variable Uy, € SU(2).
The link variable Uy, and the site variable ny transforms under the gauge
transformation Q) € SU(2) as

Ui = QU Q4 = U

In the decomposition, a link variable Uy, is decomposed into two parts:
U := X V-
Vi = OV = VL Xy = X, QF = XI
Such decomposition is obtained by solving the defining equations:
Dy[VIn, := Vi unxyy — Vo = 0, tr(ne Xy ) = 0.

This defining equation has been solved exactly and the resulting link variable V ; and
site variable X, ;, are of the form

n, — Qn,Qf =n’.

Vi = Vi / LV Vi /20 Vo o= Usep + Uiy,
Xt := Uy Vs -

Note that this decomposition is obtained uniquely for a given set of link variable Uy
once the site variable ny is given.
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Reduction condition

The configurations of the color-direction field {ny} are obtained by minimizing the

functional:

Freal i { U] o= L tr { (Dl UIns) " (D[ Ulms) }
X}

Dy.u[U]ny := UseuPxp — NxUx

which we call the reduction condition.
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Lattice result and gauge-independent analyses

@ Simulation
o 16% lattice with the periodic boundary condition.
o Updating link variables { Uy, } and scalar fields {@} alternately by using the
HMC algorithm with integral interval AT = 1 without the gauge fixing.
o After 2500 sweep thermalization, we store 1500 configurations every 5 sweeps.
o The figure below shows the parameters in the B~y plane where simulations run.
@ The search for the phase boundary

Simulation

by measuring the expectation value (O) of a I SAdaadzaiimamae
chosen operator O by changing < (or B) along the 35 [ggoo00000000 o o 9
B =const. (or iy =const.) lines. 2_2 Eé?gogoéjgo co ]

e identify the boundary, o %%?%EE%’E s e 3
Use of the bent, step, and gap observed in the PYS3s §§ gg e o
graph of the (O) plots . 05 £oco é % % %
Use of peaks in the graph of the susceptibility 05 1152255354
plots. B

Figure: Simulation points
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Numerical Result |

First, we reexamine the phase boundaries for a wider parameter space.

plaquette-action density

1

P =
6N,

2 Z Etr(UX'W)' Ux,yv = Ux.y Ux—l—ﬁ,v U:-H?,y U;,vv

ite x u<v

Susceptibility of the plaquette-action density

X(P) = (6Nsie) { (P?) — (P)?}
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Plaquette-action Density Susceptibility of Plaguette-action Density
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Phase boundary from gauge-action density
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scalar-action density

1 1 i )
M i EL e (010,01100)

Susceptibility of the scalar-action density

X(M) = (4Nee) { (M2) — (M)?}
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Scalar-action Density Susceotibility of scalar-action Density
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Figure: Left: (M) versus < on various = const. lines. Right:x(M) versus < on various  =const.
lines.
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Scalar-action Density Susceotibility of scalar-action Density
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Phase boundary from the scalar-action density
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Phase boundary from action density (combination plot)
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Numerical Result Il

scalar-color correlation

R =

L E@inx(ax, Ra = tr <R0’A>

Nsite %

We investigate the correlations between the scalar field and the color-direction field
through the gauge covariant decomposition.

We need to solve the reduction condition to obtain the color-direction field n,, which
however has two kinds of ambiguity.

@ One comes form so-called the Gribov copies that are the local minimal solutions of
the reduction condition.

@ Another comes from the choice of a global sign factor, which originates from the
fact that whenever a configuration {ny} is a solution, the flipped one {—ny} is
also a solution, since the reduction functional is quadratic in the color fields.

To avoid these issues, we propose to use |R|; and |R|, , where |R|, represents the
n-norm defined by |R|, = {/|R1]" + |Rz|" + | R3|"
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scalar-color correlation (|R|{)
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Figure: Average of the scalar-color composite field (|Q|): Left: (|R|;) versus  on various  =const.
lines. Right: (|R|;) versus 8 on various 7y =const. lines.
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scalar-color correlation: |R|,

(IRl2) . X(IRly) = (4Nae) {( IRE) = { IRI,)?}

scalar-color correlation | R |, scalar-color Susceptbility
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scalar-color correlation | R |,
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Phase boundary (critical line) from scalar-color correlation: |R],

3.5

2.5

1.5

0.5

critical line from <|R|; > and x(|R]|>)

i

L

ﬁ TiIT

T
B

August 19 - 24, 2024

23/28



Contribution from the magnetic monopole

Next we investigate the contributions from magnetic monopoles to determine their role
in confinement and mass generation (mass gap) from the viewpoint of the
electric-magnetic duality.

Through the gauge-covariant decomposition (CDGSFN decomposition), we can define
the magnetic monopole in the gauge-independent way:

Vi = Vi Vit p Vi o Vit = exp(—iF (X))
F(x)uw :=argetr {(1+n) Vi v}
1 N
k= 56’“’“/5 (F(x+ 0)ap — F(x)a'ﬁ} =:27Tmyy, My, =0,£1,£2,---
where Vi, represents the restricted field obtained from CDGSFN decomposition, ny
represents the color-direction field, and ky,, represents the magnetic monopole which

satisfies the current conservation law, i.e., Okt = Ey(kx+ﬁ_,]/l — kyu) = 0.
Therefore, we can define the magnetic-monopole-charge density as

Z|mx;4|

Ite X, 1

Ph-= 4Ns
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Magnetic-monopole density: oy
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Figure: Left: (pk) versus < on various 8 =const. lines. Right: (px) versus B on various ¢ =const.
lines.
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Gauge-scalar correlation

Let us remind the gauge-scalar model with the scalar field in the adjoint representation:
SéS =S [U] + 557 [U. ¢]
_
SA 3 Lo {(0ulUg)" (DslVl)}
Dx,‘u[ ](Px = Ux,‘u¢x—|—ﬁ - ¢x X,

where S;[U] represents the gauge action, ¢y := ¢pLoa € su(2) — u(1) represents the
scalar field in the adjoint representation.

Note that the functional for the reduction has the same form as the action for the
scalar field in the adjoint representation:

Sl 9] = red[{(l)X}'{UXV}]

and the color-field configuration {n,} for the CDGSFN decomposition is obtained as
the solution of motion of the equation for the scalar filed.

Therefore, we investigate a " color-action density”, where a scalar field is replaced by a
color field in the adjoint-scalar-action density.
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Gauge-color correlation (color-action density)

Sad = Lotr { (DeulUln)" (DulUImi) }
!

Adjoint-scalar density
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Figure: Left: (S'9) versus -y on various B =const. lines
7 =const. lines.
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@ We investigate the gauge-scalar model with the scalar field in the fundamental
representation to obtain further numerical evidence for the gauge-independent
separation between Confinement phase and Higgs phase.

@ For this purpose, we reexamine the phase structure without gauge fixing based on
the lattice construction of gauge-independent description of the BEH
mechanism.for a wider parameter space.

o In addition to the operators used in the previous paper, we focus on the
susceptibility to determine the phase boundary. j

o We confirm the phase diagram in view of the thermodynamic phase transition.

o We confirm the gauge-independent separation between Confinement phase and
Higgs phase.

@ Moreover, we investigate the contributions from magnetic monopoles to determine
their role in confinement and the mass generation (mass gap) from the viewpoint
of the electric-magnetic duality.

@ We further investigate the gauge-color correlation (" color-action density”).

@ Note that these results are obtained by investigating the correlation functions
between the gauge-invariant composite operators and the the color-direction field
obtained through the gauge-covariant decomposition.
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