XVIth Quark Confinement and the Hadron Spectrum

Contribution ID: 139 Type: Oral

Towards low-dimensionalization of four dimensional QCD

Thursday 22 August 2024 16:00 (30 minutes)

In four-dimensional (4D) QCD, quark confinement is characterized by one-dimensional color-electric fluxtube formation, which leads to a linear interquark potential. The flux-tube formation implies a possibility of low-dimensionalization of 4D QCD. We propose a new gauge fixing of "dimensional reduction (DR) gauge" defined so as to minimize

$$R_{\rm DR} \equiv \int d^4 s \operatorname{Tr} \left[A_x^2(s) + A_y^2(s) \right].$$

In the DR gauge, there remains a residual gauge symmetry for the gauge function $\Omega(t,z)$ like 2D QCD on the tz-plane. We define the "tz-projection" as removal of $A_{x,y}(s) \to 0$. After the tz-projection in the DR gauge, 4D QCD is regarded as an ensemble of 2D QCD-like systems on the tz-plane, which are piled in the x and y directions and interact with neighboring planes.

We also formulate the DR gauge and the tz-projection on lattice, and investigate low-dimensionalization in SU(3) lattice QCD at $\beta=6.0$. We find that the amplitude of two components $A_x(s)$ and $A_y(s)$ are strongly suppressed in the DR gauge. In the DR gauge, the interquark potential is not changed by the tz-projection, and the two components $A_t(s)$ and $A_z(s)$ play a dominant role in quark confinement.

We calculate a spatial correlation $\langle {\rm Tr} A_{\perp}(s) A_{\perp}(s+ra_{\perp}) \rangle$ ($\perp=x,y$) and estimate the spatial mass of $A_{\perp}(s)$ ($\perp=x,y$) as $M\simeq 1.7$ GeV in the DR gauge. It is conjectured that this large mass makes $A_{\perp}(s)$ inactive in the infrared region, which realizes the dominance of $A_t(s)$ and $A_z(s)$ in the DR gauge.

We also calculate spatial correlation of two temporal link-variables, and find that the correlation decreases as $\exp(-mr)$ with $m \simeq 0.6$ GeV, which corresponds to the correlation length $\xi \equiv 1/m \simeq 0.3$ fm. Using a rough approximation, 4D QCD is found to be regarded as an ensemble of 2D QCD systems with the coupling of $g_{\rm 2D} = gm$.

Author: TOHME, Kei (Kyoto University)

Co-author: SUGANUMA, Hideo (Kyoto University)

Presenter: TOHME, Kei (Kyoto University)

Session Classification: Vacuum Structure and Confinement

Track Classification: A: Vacuum Structure and Confinement