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Motivation

Check the robustness of our qualitative understanding of heavy
quarkonium dissociation at finite temperature

▶ J/ψ suppression (Matsui, Satz, 1986): heavy quarkonium states
sequentially melt due to screening

⋆ The Yukawa potential supports less and less bound states when the
screening mass (∼ T ) increases

▶ The potential develops an imaginary part, which is responsible for the
melting rather than the screening (M. Laine, O. Philipsen, P.
Romatschke, M. Tassler, JHEP 0703: 054, 2007)

⋆ The melting temperature Td can be parametrically estimated to be
Td ∼ −mQα

2/3
s / ln1/3 αs (M.A. Escobedo, JS, Phys. Rev. A 78,

032520 (2008))
Provide additional physically motivated forms of the potential which
may help extracting it from lattice data
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The LO potential

If p,mD ≪ T the momentum space potential reads (G(p0, p) is the
Hard Thermal Loop (HTL) longitudinal gluon propagator, mD ∼ gT
the screening mass, g the QCD coupling constant, CF a color factor)

V1lo(p) = g2CF G(0, p)

G(0, p) = − 1
m2

D + p2 + iπTm2
D

p
(
m2

D + p2) 2

▶ When screening is important p ≲ mD ⇒ Im(V1lo) ≫ Re(V1lo) ⇒
No narrow resonance exist

▶ Im(V1lo) ∼ Re(V1lo) ⇒ p ≡ pd ∼ (m2
DT ) 1

3 ∼ g 2
3 T ⇒ mD ≪ pd ≪ T

▶ The typical p must fulfill p ≫ pd for a narrow resonance to exist
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The potential beyond LO

The LO calculation corresponds to the one-gluon exchange in HTL

δLHTL = 1
2m2

DF µα
∫ dΩ

4π
kαkβ

−(k.∂)2 F µβ + m2
f ψ̄γ

µ
∫ dΩ

4π
kµ

k.∂ ψ

k = (1, k̂), m2
D = g2T 2(Nc + Nf /2)/3, m2

f = g2T 2/16
(Braaten, Pisarsky, 92)

▶ HTL ∼ Integrating out the scale T ∼ One-loop selfenergies at LO in
the p/T expansion

Power corrections to HTL ∼ One-loop selfenergies at NLO in the
p/T expansion (Manuel, JS, Stetina, 16; Carignano, Manuel, JS, 17;
Carrington, Carignano, JS, 20; Ekstedt, 23; Gorda, Paatelainen,
Säppi, Seppänen, 23)
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The potential beyond LO
We work in the Coulomb gauge. The relevant diagrams are

(e)(d)(c)(b)(a)

▶ Gluon lines in (b)-(e) = HTL longitudinal time-ordered gluon
propagators

▶ Self-energy blob (a):
⋆ Longitudinal gluon self-energy calculated in HTL
⋆ Power correction calculated in QCD

The hierarchy mD ≪ p ≪ T produces enormous simplifications k ∼
loop momentum

▶ (a), the longitudinal gluon self-energy calculated in HTL is dominated
by k ∼ p ⇒ HTL propagators and vertexes reduce to QCD ones up to
m2

D/p2 corrections
▶ (b)-(e) are dominated by k ∼ mD ⇒ can be expanded in k/p, mD/p
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The potential beyond LO

The fully expanded result reads

V2,exp(p) = −g4CF NcT
16πmDp2

(
1 − 3π2

16 + 4πmD
p + m2

D
p2

(
5π2

24 − 4
3

))
−i g4CF T 2

16p4

(
Nc

(
56
3π −

(
1 − 3π2

16

)
mD
p

)
− 4
π

(
Nc − Nf

2

)
p
T

)

▶ Let p ∼ ga T , then the formula above holds up to corrections g2

(g3a,g2−a) for the real (imaginary) part (1/3 < a < 2/3)
We define the damped approximation by keeping factors 1/(p2 + m2

D)
in the gluon propagators unexpanded

▶ Expected to be more realistic for mD ≲ p
▶ Reproduces the expanded formula above
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The potential beyond LO

Upon Fourier transforming, the coordinate space potential in the
damped approximation reads (r̂ = rmD)

Re[V2] = g4NcCF T
64π2r̂

{
8 (I2(r̂) − I1(r̂)) + e−r̂

16

(
3π2 − 16 + r̂

6
(
16 − π2) )}

iIm[V2] = −i g3CF T
16π2m̂D

{
3π2 − 16

32 r̂ I2(r̂) + 7
3 Nce−r̂

− 2gm̂D
πr̂

(
Nc − Nf

2

)
(I1(r̂) − I2(r̂))

}

Ij(r̂) =
∫ ∞

0
dp̂ sin (p̂r̂)

(p̂2 + 1)j , mD = gTm̂D
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The potential beyond LO (g = 1.8)
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The potential beyond LO

The coordinate space potential for r ≪ 1/mD gets contributions from
p ∼ 1/r and p ≲ mD

▶ The contribution from p ∼ 1/r can be obtained by Fourier
transforming V2,exp

▶ The contribution from p ≲ mD is a polynomial in r2, since the exp(i p⃗r⃗)
in the Fourier transform can be expanded

▶ The damped approximation reshuffles part of the p ≲ mD contribution
out of the polynomial
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Comparison with lattice data

g small ⇒ short distance observables
▶ Data for the potential up to 0.3 fm (Bazavov, Hoying, Kaczmarek,

Larsen, Mukherjee, Petreczky, Rothkopf, Weber, 23)≡ [1]
▶ Mass shift and decay width of Υ(1s) (Larsen, Meinel, Mukherjee,

Petreczky, 20)≡ [2]
We fix g from the best fit to T = 0 data of the first reference
(g = 1.8)
The soft contribution to the coordinate space potential is accounted
for by including

δRe(V ) = q0 g3T , δIm(V ) = i0 g3T + i2 g5r2T 3

and fitting q0, i0 and i2 to the lattice data
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Comparison with [1]
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Re(V ) depends very little on T like the lattice data
▶ The slight difference in the shape may be accounted for by higher order

T-independent corrections
The dramatic improvement in Im(V ) is due to the inclusion of the
soft contribution (q0, i0, i2) = (0.049,−0.021 ± 0.002, 0.205 ± 0.001)
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Comparison with [1]
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The rhs plot shows the T = 0 potential at different orders of
perturbation theory, r0 = 0.468 fm (Bazavov, Brambilla, Garcia i
Tormo, Petreczky, Soto, Vairo, 12)
The slightly different shape between our results and data in the lhs
plot is similar to the one between tree level and data in the rhs plot
⇒ It may be fixed by a higher order calculation
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Comparison with [2]
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Dramatic (considerable) improvement in the binding energy (decay
width)
The inclusion of soft contributions is crucial
(q0, i0, i2) = (0.078 ± 0.004,−0.026 ± 0.009, 0.053 ± 0.002)
The value of i2 is not consistent with the one obtained from [1]
The same size for (q0, i0, i2) is expected. This is fulfilled except for i2
from [1]

Joan Soto (QCHS2024, Cairns, 22/08/24) The real-time finite-temperature static potential: a higher order calculationial: a higher order calculation 13 / 15



Dissociation temperature

We define the dissociation temperature (Td) as the temperature for
which the binding energy equals the decay width

▶ At LO we obtain: Td = 193.2 MeV
▶ Damped approximation, fit to [1]: Td = 151.8 ± 1.2 MeV
▶ Damped approximation, fit to [2]: Td = 225 ± 10 MeV

Fit to [1] produces a very low Td and an unnatural value of i2 ⇒
there might be a problem with the data
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Conclusions

We have calculated higher order corrections to the momentum space
potential, both to the real and to the imaginary parts, when
mD ≪ p ≪ T
We have proposed an approximation (damped) that partially includes
soft contributions
We have pointed out that the soft contributions p ≲ mD to the
coordinate space potential are universal for r ≪ 1/mD, and can be
described by a polynomial in r2 (up to logs)
We get a reasonable description of lattice data at short distances

▶ We have been able to identify an inconsistency between two sets of
lattice data

Our results provide additional inputs for the Bayesian methods to
obtain the potential from Euclidean lattice data.
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