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Introduction: QCD Phase Diagram with Rotation

Perturbatively Confined Phase under Imaginary Rotation

Characters of the PC Phase

Toward Real systems (If time remains...)
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QCD phase diagram under rotation

QCD mystery:

o Confinement

e Spontaneous breaking of Chiral symmetry

Phase transitions of QCD matter — phase diagram

Temperature 7

Sign problem for
finite u direction
— !

New parameter axis

aryon Chemical Potential s

[Fukushima, Hatsuda (2011)]
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https://arxiv.org/abs/1005.4814

QCD phase diagram under rotation

New axes of diagram: angular velocity w

Rotation appears in real world:

e neutron stars
w~ 10 /s

e heavy ion collision reaciion piane
w ~ 102 /s [STAR(2010) [Niida (2020)]

w is a good parameter:

e directly interact with gluons

— confinement can be seen

[higgstan.com]
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https://arxiv.org/abs/1007.2613
https://tchou.tomonaga.tsukuba.ac.jp/events/20/201130/05.pdf
https://higgstan.com/standerd-model/

Previous results for rotation

The critical temperature T, by models and lattice:
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[Jiang, Liao (2016)]
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[Braguta, Kotov, Kuznedelev, Roenko

(2021)]

Models: T.(w) decreases
Lattice: T.(€) decreases
— Te(w) increases
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https://arxiv.org/abs/1606.03808
https://arxiv.org/abs/2101.09173
https://arxiv.org/abs/2102.05084
https://arxiv.org/abs/2102.05084

Perturbative calculation with ; 1/2

Perturbative calc. under imaginary rotation w = i€);.

# Real w has causality problems

Taking a background method

)
Au:ABM_FA,ua AB,u:ng¢'H7

# H: the vector of Cartan sub-algebra of su(N)
with gauge fixing as

DgAu:O, W/ DBM o= (9H+igABM.
In this gauge condition,
tr B, F* ©otr A“(—D%)AH ,

and FP determinant is given by Det[—(D%)].
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Perturbative calculation with ; 2/2

We take cylindrical coordinate rotating along the z axis.
Effect of rotation appears in the metric.

z4 Rotating systems are equivalent
to static systems w/ the metric:

| @0-/))/@ 1 0 0 0
§;/ K I A (R 0
=10 0 1 0

zt 0 rQp 0 1+1r%Q}

[ @ 0 bg) R # —Dp, for vectors changes into
\ — /L‘ GpuA, = D A, — F,’\WAA-
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Perturbative Confinement

The Polyakov loop potential under imaginary rotation is

1 > =
v, = o YoM /0 ki dk, /_ Oodk:z [J2_ 1 (kir) 4+ Py (kor)]

o €L
b i _8./k2 2
Lo SU(2) potential at r =0 xRe log |:1 — €l¢ « llﬁﬂl@ B kL+kzj| o
— =0 —— Qy=2r/3
T . G=n

With Q; > 7/2, V, flips.
— minimum moves into ¢ = 7:

(s ) — V(03 {u)

L= 1 tr P e’ JgdrApa
C

o/2m
Polyakov loop at r =0

1.0 1 N
o deconf. _ 5 tr exp [% (¢ _(b)]
0.6 — sue

04 SUG) s
=cos|—=)=0.
(3)

(L)

0.2
conf.

=2 s 7 Perturbative Confinement! 7/18
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Phase diagram of (T, {);)

What occurs at low 17?7
— The ghost contributions are enhanced. (KOGZ mechanism)

Vihost ~ > D / dk} / dk. J7(0) x Relog [1 - ew.a_mle—ﬁk}
a

T 4 Deconfined At r =0, only [ = 0 is taken.
J COn*ined — ghost do NOT couple with w.
¢ =
1 & 1 3 o ) induces confinement.
TC "'0 ,

ha

o
LA :
"Adiabatic 3
; Continuity:

0 =/2 =« 3m/2 o

95

e At low T, conf. is induced.

e High QI phase is always
confined! (suggestion)

Perturbatively confined phase can be connected to the

dronic phase.
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Inhomogeneity of PC phase

Perturbative calculation is r dependent.

FOI’ SU(3), AB4 = #(QS:[T?' + ¢2T8), SO ‘/g = va(le,QSQ).
Vy(¢1, ¢2) pattern is periodic and minimum patterns show
Z3 center symmetry — confinement.

SU(3) Polyakov loop potential at Oy = 7
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Previous result about inhomogeneity

Lattice QCD calculation also shows the inhomogeneity.

T/Ty =095, v} =004 T/Typ =095, v} =012 T/Ty =095, v} =024 T/, =095, v} =048

Q= 7.18 MeV Q= 1015 MeV/

N AN AN

—10 0 10 —=10 0 10 -10 0 10 -10 0 10
 (fm)  (fm) x (fm) x (fm)

[Braguta, Chernodub, Roenko (2024)]

y (fm)

—10 Qf =2.93 MeV Q= 5.07 MeV

o T < T, pure gluonic SU(3)
w/ periodic & open BC

e center/edge is confined/deconfined
finite r gives deconfinement
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https://arxiv.org/abs/2312.13994

Phase diagram of (Qy, 7)

Polyakov loop values for pure YM.
# Blue region w/ L = 0 is confined.

SU(2) SU(3)
T 1.0 T 1.0
0.8 0.8
0.6 0.6
Sl &2
0.4 0.4
0.2 0.2
% 0.5 o 00 % 0.5 o 00
7 7

At large ), center is confined and edge(large 7) is
deconfined as the lattice.
In SU(3), another deconfined phase appears. 11/18




Chiral symmetry breaking in PC phase 1/3

Introduce Ny = 2 fermion contribution in the action as
Equark:&($+m)w7 G}L:DM_FM

The dynamical mass m gives the chiral condensate.
# Polyakov loop L = cos (¢/2) for SU(2).

Polyakov loop potentlal map atr=0
O =n/2

12 0.45
0.9
030

0.6
03 0.15
00 = 7 0.00
=0 ~0.15
-0.6
09 ~0.30

% 5 o e

1

At QI =, perturbative confined & chiral broken
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Chiral symmetry breaking in PC phase 2/3

The Polyakov loop (blue) and the dynamical mass (green)
for Ny =2 QCD at r = 0.
SU(2) SU(3)

5 [ — 5

- 0 ! 0
/2 T 3n/2 2nm 0 /2 T 3n/2  2nm

o (o
As the system becomes confined,

the dynamical mass m increases — chiral broken.

# Large m weaken the explicit breaking of center symmetry.

# Result is 47 periodic & QI ~ 41 — QI.
13/18



Chiral symmetry breaking in PC phase 3/3

Inhomogeneous behavior of Polyakov loop and dynamical
mass for Ny = N, = 2 QCD.

Polyakov loop Dynamical Mass

0.8 4
0.6
S 2

0.4
0.2 1
0.0

% 0.5 10 °

7

e The chiral broken phase and the perturbatively

w

[N}

confined phase are related.
e PT behavior has changed.
e Spatial PT also appears. 14/18




Phase diagram of (7, Q;,7) 1/3

Summarize the phase diagram along 7', Q) and 7.

Perturbative
Confinement Deconfined

At large Q, the perturbatively confined phase exists.
T.(C) behavior is NOT clear.
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Phase diagram of (T, Q,7) 2/3

Summarize the phase diagram along 7', Q) and 7.

Perturbative
Confinemernt Deconfined

T.(Q1,7) should be considered.
Lattice shows that inhomogeneous phase appears. 16/18




Phase diagram of (T, 7) 3/3

Summarize the phase diagram along 7', Q) and 7.

Perturbative
Confinement Deconfined

At high T, another deconfined phase appears.
How these phases connect? 17/18




Summary and Future prospects

Our research discovered

e Perturbative confinement with imaginary rotaiton
Confined phase at high T
— connected to the hadronic phase?

e Spatial phase transition
Mixture of confined/deconfined matter

e Chiral symmetry breaking

Dynamical mass increases as Polyakov loop disappears

Further researches are needed to

e solve the in T,(w)

e reveal what the imaginary rotation is

e achieve the prediction of real phenomena 18/18




Thank you!
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Periodicity of imaginary rotation

When we are in the rest frame and seeing rotating matter.

At finite T, 7 ~ 7+ (3.
+ After 7, polar coordinate moves 6 to 6 + ;7.

— (r,0,z,7) ~ (r,0 + 8, 2,7 + B)
# imaginary rotating ~ spatial periodicity

# In fact, Z(Qr) is given by the flat space-time w/ above new
periodicity: if the eigenfunctions are periodic as

U x E, il (2mnB T —mQn)r+mo-+k. 2] Im(kLr),
the same spectra with the rotating frame are given by the flat

covariant derivative square —D% = —D% _—r=19,(r9,) —

—292 o2
=0y — 0;.




Real rotation 1/2

Can we do analytical continuation toward real w ?

1 > =
v, = o > /O ki dk, /_ Oodkz [J2_1 (ki) + JPy (kor)]

o IEZ
x Relog [1 — etida—ilbu =By ki"’kg} .

— Integration of log {1 — elPwe=hY ’“i*’“?] diverge.

To avoid the problem,
BC is needed.
e.g.)

A (r=R)=0

by discretized momentum
Jo(k'R) =0



Real rotation 2/2

Larger real w sharpen the potential.

10 — — more deconfined
o8 T, decreases by w.
5
£06
%04 T
S0, < Deconfined

0.0 Ssa -

0.0 0.2 0.4 0.6 0.8 1.0 S e
¢/2m ~ ~

Confined S

Chen, Fukushima,
[ >

Shimada (2022)] w
# This agrees with models, but disagrees with lattice.



https://arxiv.org/abs/2207.12665
https://arxiv.org/abs/2207.12665

Perturbative calculation 1/3

Our new attempt is perturbative calculation.

# As Weiss (1981), Weiss (1982), Gross, Pisarski, Yaffe (1981)

To achieve the results, separate the gauge configuration into
diagonal background and dynamical:

1)
A, =Ap + A, ABusz;¢~H,

where H is a vector of Cartan sub-algebra of su(N).
Gauge fixing is
DEA, =0
w/ Dg, =0,+igAp,


https://journals.aps.org/prd/pdf/10.1103/PhysRevD.24.475
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.25.2667
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.53.43

Perturbative calculation 2/3

In this gauge condition,

tr B, F* O _otr 4r (D%)AH ,

and FP determinant is given by Det[—(D%)].

So the partition function is

Z = Det(—D%) Det™/? (=D},

/ \\

-~

TV
ghost part gluon part
# The ghost part cancels non-physical modes of the gluon part

This gives the energy F' = —%an = [doV(r,¢).

— The minimal energy states of rotating systems.



Perturbative calculation 3/3

The system is confined if the Polyakov loop
1 B
L=—1trP exp(ig/ dTAB4>
N 0

[

is zero. For SU(2), L = cos (¢/2); for SU(3),
L = 1(2 coS (¢1/2)ei\/§¢2/6 + e—i\/§¢>2/3> .

SU(2) free energy density
¢ =0,2m4m,--- .
£, gives deconfinement;
= p=m, 3w, .
gives confinement;

15

0.0 0.5 1.0
@/2m

# re-plotting of [Weiss (1981)]


https://journals.aps.org/prd/pdf/10.1103/PhysRevD.24.475

Approach to low T

What would occur to the perturbative matter at low 777

KOGZ mechanism™: ghost contribution is enhanced.

Since V:gluon = _V:ghostv
the potential flips.

Minima are 7, 3m, - - -,

— confined!

*1[Gribov (1978)], [Kugo, Ojima (1979)], [Zwanziger (1994)], [Kugo
(1995)]


https://dx.doi.org/10.1016/0550-3213(78)90175-X
https://dx.doi.org/10.1143/PTPS.66.1
https://dx.doi.org/10.1016/0550-3213(94)90396-4
https://arxiv.org/abs/hep-th/9511033
https://arxiv.org/abs/hep-th/9511033

Definition of G,

Covariant derivative in the curved space G, is
For scalars G0 = D, 0,

— by
For vectors G, A, = D, A, — PWA,\ ,

and F,, = [D,,D,] =[G,,G,], so

Z = Det(-G% ,)Det ?(-G% ) -

# Z is obtained by calculating eigenfunctions and
eigenspectra of —G%

# —G% is different for the scholars and the vectors.



—G% spectrum of ghosts

—G% for the scalars (ghosts) is

—Gh,=—G%Dp, = —g" [Dp.Dp, —T,Dp,]
= — (DB.,- — 9189) — ;67"(7"67) — 70—289 — 8z 5

Eigenfunctions and eigenspecta are (in rotating frame)

U« Eq exp{i2mnB~'r + ml + k.2)} Jn(kir),
A= (2mB 4+ 87— m)  + k2 + k2.

So the ghost contribution is

Trln (—G2Bs) x /lﬁ d/ﬁ/dkz J2 1In [1 +6i¢a—imﬁl_5k] '



—G% spectrum of gluons

For gluons, —G% is

—GE,+r2 2r=3 0y 0 0

(—G3,) ¥ = —2r7t9y —rGL.rl4r2 0 0

p 0 0 -G%, 0
—2Q1r1 9y 2001 9, 0 -G%,

Corresponding eigenspectra are the same.
Eigenfunctions are 4-vectors, and two are proportional to
that of ghosts, remaining two are

U o Eqexp{i(2mnB87'7 + mb + k.2) } a1 (kir) .

So the gluon contribution is as the ghost one but with
Jmﬂ(/ﬁr).



Weyl symmetry

Eigenvalues of D, = 0, + i '¢ - H are that of H:
roots c or weights p of the su(/N) Lie algebra.
& The potential contains the coupling ¢ -« or ¢ - .

For su(2), H = 03/2 = S.; the weights are spin singlet
eigenvalue +1/2 and the roots are triplet eigenvalue +1, 0.

su(3) root diagram

: The sum of > ¢ - o is taken.
. From the Weyl symmetry of {a}s,

c _
some ¢ gives the same sum.
H; —
' e.g.
, g)

Red & blue ¢ gives the same sum.




Emergent symmetry

g 1.0 ~ ~ ~
r= r= r=
0.8
0.6
& 2

0.4
0.2

00 0.5 1.0 o

7

At Q = 7/2, the system is always confined & an emergent

Zy symmetry ¢ < 2w — ¢ (reflection by the red line)

appears.
This comes from the vanishing of odd-n terms in the
analytic form of the one-loop potential,

= o4 o0 cos(ng - a) cos (nfh)

acd n=1 {n2 + 272 [1 = cos(nQI)] }2 .

It could be either a one-loop artifact or a genuine symmetry.



Quark action for imaginary rotating systems

Let us consider Ny = 2 QCD.

Introduce fermion contribution by the action
Lowark = (¢ +m)y, Gu=D,—T,,
where I'), = —%5% w,,;; is the effect of the curved space-time:
07 =S4 4], Wuii = gpo e (Oue” + 17, €,

and m is quark dynamical mass.

In our case, m is equal to the chiral condensate value.



¢ + m spectrum of quarks

After a little calculation, we obtain

A 1\ 0 . . .
’YMGBM = /yl (ar + %) + ’7276 + 730.2 + 74(87' + 'I'gAB4 - Qlaé') o

Then eigenfunctions and eigenspectra of Det [@‘ + m} are

[ (2n+1)w 1
fn,l,s,kj_,kz,u(x) X Us ’M> el[ E T+(l+2)9+kzz]

n+ 1)+ ¢- 1 2
)\n,l,s,kl,kz,p,: |:( )ﬁ ¢ & - <l+§)QI:| +ki+k§—|—m2,

Jiv1/2-s(k1r),




Perturbative quark potential

Zquark is obtained by Det (g 4+ m).
For N. = Ny =2,

Vi=-535 / ki d/u/ ke [JE(kir) + JE  (kyir)]
& B = :I:1/2leZ

x Relog [1 4 it m—i(l+1/2)p0 =By KL +RZ+m2 |

Since the quark is a spin 1/2 spinor, V; is 47 periodic for ¢
or QI = BQI



Chiral symmetry phase diagram (copy)

Inhomogeneous behavior of Polyakov loop and dynamical
mass for Ny = N, = 2 QCD.

Polyakov loop Dynamical Mass

0.8 4
0.6
S 2

0.4
0.2 1
0.0

% 0.5 10 °

7

e The chiral broken phase and the perturbatively

w

[N}

confined phase are related.
e PT behavior has changed.
e Spatial PT also appears.




PT order of Ny = N. =2 QCD

About the phase transition of SU(2); QCD

#=0,6; = 0.875m
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The order of PT to the PC

phase changes at r ~ 0.5.

At large r, ¢ = m = 0 point
becomes the minimum again
by first order PT.



Polyakov loop potential against m

Free energy /GeV'*

Perturbative calculation gives the decreasing behavior of the
potential.

With NJL quark-quark interaction model, the potential
increases at large m.

o

-0.1

------ zero T (NJL)

—== finite T, Q/T=x

—— finite 7,Q,/T=0

Mass /GeV/

Above the critical m, the sign
of 9?V/Om? changes.

— The minimum m becomes
infinite.

With adding the NJL potential,

finite minimum m is obtained.
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