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Overview

• Introduction: QCD Phase Diagram with Rotation

• Perturbatively Confined Phase under Imaginary Rotation

• Characters of the PC Phase

• Toward Real systems (If time remains...)
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QCD phase diagram under rotation

QCD mystery:

• Confinement

• Spontaneous breaking of Chiral symmetry

Phase transitions of QCD matter ! phase diagram
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[Fukushima, Hatsuda (2011)]

Sign problem for

finite µ direction

#
New parameter axis
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https://arxiv.org/abs/1005.4814


QCD phase diagram under rotation

New axes of diagram: angular velocity !

Rotation appears in real world:

• neutron stars

! ⇠ 103 /s

• heavy ion collision

! ⇠ 1022 /s [STAR(2010)]

! is a good parameter:

• directly interact with gluons

! confinement can be seen

[Niida (2020)]

	"	 	#	

[higgstan.com]
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https://arxiv.org/abs/1007.2613
https://tchou.tomonaga.tsukuba.ac.jp/events/20/201130/05.pdf
https://higgstan.com/standerd-model/


Previous results for rotation

The critical temperature Tc by models and lattice:

[Jiang, Liao (2016)]
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[Fujimoto, Fukushima, Hidaka (2021)]

[Braguta, Kotov, Kuznedelev, Roenko

(2021)]

Models: Tc(!) decreases

Lattice: Tc(⌦I) decreases

! Tc(!) increases
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https://arxiv.org/abs/1606.03808
https://arxiv.org/abs/2101.09173
https://arxiv.org/abs/2102.05084
https://arxiv.org/abs/2102.05084


Perturbative calculation with ⌦I 1/2

Perturbative calc. under imaginary rotation ! = i⌦I .

# Real ! has causality problems

Taking a background method

Aµ = AB µ + Aµ , AB µ =
�µ,4

g�
� · H ,

# H: the vector of Cartan sub-algebra of su(N)

with gauge fixing as

D
µ

B
Aµ = 0, w/ DB µ := @µ + igAB µ.

In this gauge condition,

tr Fµ⌫F
µ⌫ LO

= 2 tr Aµ
�
�D

2
B

�
Aµ ,

and FP determinant is given by Det[�(D2
B
)] .
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Perturbative calculation with ⌦I 2/2

We take cylindrical coordinate rotating along the z axis.

E↵ect of rotation appears in the metric.

!

! !

!

! !

Rotating systems are equivalent

to static systems w/ the metric:

gµ⌫ =

0

BBB@

1 0 0 0

0 r
2 0 r

2⌦I

0 0 1 0

0 r
2⌦I 0 1 + r

2⌦2
I

1

CCCA
.

# �DB µ for vectors changes into

GB µA⌫ = DB µA⌫ � ��
µ⌫A�.
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Perturbative Confinement

The Polyakov loop potential under imaginary rotation is

Vg =
1

4⇡2�

X

↵

X

l2Z

Z 1

0
k? dk?

Z 1

�1
dkz

⇥
J2
l�1(k?r) + J2

l+1(k?r)
⇤

conf.

deconf.

⇥Re log
h
1 � ei�·↵�il�⌦Ie��

p
k2
?+k2

z

i
.

With ⌦̃I & ⇡/2, Vg flips.
! minimum moves into � = ⇡:

L =
1

Nc

tr P eig
R �
0 d⌧AB 4

=
1

2
tr exp

"
i

2

 
�

��

!#

= cos
⇣⇡

2

⌘
= 0.

Perturbative Confinement! 7/18



Phase diagram of (T, ⌦̃I)

What occurs at low T?

! The ghost contributions are enhanced. (KOGZ mechanism)

Vghost ⇠
X

↵

X

l

Z
dk2

?

Z
dkz J2

l
(0) ⇥ Re log

h
1 � ei�·↵�il⌦̃Ie��k

i

Deconfined

?
Confined

Adiabatic
Continuity

At r = 0, only l = 0 is taken.

! ghost do NOT couple with !.

• ⌦̃I induces confinement.

• At low T , conf. is induced.

• High ⌦̃I phase is always

confined! (suggestion)

Perturbatively confined phase can be connected to the

hadronic phase.
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Inhomogeneity of PC phase

Perturbative calculation is r dependent.

For SU(3), AB 4 = 1
g�

(�1T
3 + �2T

8), so Vg = Vg(�1,�2).

Vg(�1,�2) pattern is periodic and minimum patterns show

Z3 center symmetry ! confinement.

SU(3) Polyakov loop potential at ⌦̃I = ⇡

L = 0 |L| = 1/3

Larger r ! Deconfined
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Previous result about inhomogeneity

Lattice QCD calculation also shows the inhomogeneity.
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[Braguta, Chernodub, Roenko (2024)]

• T < Tc, pure gluonic SU(3)

w/ periodic & open BC

• center/edge is confined/deconfined

finite r gives deconfinement
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https://arxiv.org/abs/2312.13994


Phase diagram of (⌦̃I, r̃)

Polyakov loop values for pure YM.

# Blue region w/ L = 0 is confined.

SU(2) SU(3)

At large ⌦̃I, center is confined and edge(large r̃) is

deconfined as the lattice.

In SU(3), another deconfined phase appears. 11/18



Chiral symmetry breaking in PC phase 1/3

Introduce Nf = 2 fermion contribution in the action as

Lquark =  ̄
�
/G + m

�
 , Gµ = Dµ � �µ .

The dynamical mass m gives the chiral condensate.

# Polyakov loop L = cos (�/2) for SU(2).

Polyakov loop potential map at r = 0

At ⌦̃I = ⇡, perturbative confined & chiral broken 12/18



Chiral symmetry breaking in PC phase 2/3

The Polyakov loop (blue) and the dynamical mass (green)

for Nf = 2 QCD at r = 0.

SU(2) SU(3)

As the system becomes confined,

the dynamical mass m increases ! chiral broken.

# Large m weaken the explicit breaking of center symmetry.

# Result is 4⇡ periodic & ⌦̃I ⇠ 4⇡ � ⌦̃I.
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Chiral symmetry breaking in PC phase 3/3

Inhomogeneous behavior of Polyakov loop and dynamical

mass for Nf = Nc = 2 QCD.

Polyakov loop Dynamical Mass

• The chiral broken phase and the perturbatively

confined phase are related.

• PT behavior has changed.

• Spatial PT also appears. 14/18



Phase diagram of (T, ⌦̃I, r̃) 1/3

Summarize the phase diagram along T , ⌦̃I and r̃.

!̃#$!

%
Perturbative
Confinement

Connected?

？

!/2

Deconfined

Confined

At large ⌦̃I, the perturbatively confined phase exists.

Tc(⌦̃I) behavior is NOT clear.
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Phase diagram of (T, ⌦̃I, r̃) 2/3

Summarize the phase diagram along T , ⌦̃I and r̃.

!̃#$!

%
Perturbative
Confinement

Connected?

？

!/2

Deconfined

Confined

Tc(⌦̃I, r̃) should be considered.

Lattice shows that inhomogeneous phase appears. 16/18



Phase diagram of (T, ⌦̃I, r̃) 3/3

Summarize the phase diagram along T , ⌦̃I and r̃.

!̃#$!

%
Perturbative
Confinement

Connected?

？

!/2

Deconfined

Confined
Deconfined

disconnected?

Connected?

At high T , another deconfined phase appears.

How these phases connect? 17/18



Summary and Future prospects

Our research discovered

• Perturbative confinement with imaginary rotaiton
Confined phase at high T

! connected to the hadronic phase?

• Spatial phase transition

Mixture of confined/deconfined matter

• Chiral symmetry breaking

Dynamical mass increases as Polyakov loop disappears

Further researches are needed to

• solve the discrepancy in Tc(!)

• reveal what the imaginary rotation is

• achieve the prediction of real phenomena 18/18
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Periodicity of imaginary rotation

When we are in the rest frame and seeing rotating matter.

At finite T , ⌧ ⇠ ⌧ + �.

+ After ⌧ , polar coordinate moves ✓ to ✓ + ⌦I⌧ .

! (r, ✓, z, ⌧) ⇠ (r, ✓ + �⌦I, z, ⌧ + �)

# imaginary rotating ⇠ spatial periodicity

# In fact, Z(⌦I) is given by the flat space-time w/ above new

periodicity: if the eigenfunctions are periodic as

 / E↵ ei[(2⇡n�
�1�m⌦I)⌧+m✓+kzz] Jm(k?r) ,

the same spectra with the rotating frame are given by the flat

covariant derivative square �D2
B s = �D2

B ⌧ � r�1@r(r@r) �
r�2@2

✓ � @2
z .



Real rotation 1/2

Can we do analytical continuation toward real ! ?

Vg =
1

4⇡2�

X

↵

X

l2Z

Z 1

0
k? dk?

Z 1

�1
dkz

⇥
J2
l�1(k?r) + J2

l+1(k?r)
⇤

⇥ Re log
h
1 � e±i�↵�il�⌦Ie��

p
k2
?+k2

z

i
.

! Integration of log
h
1 � el�!e��

p
k2
?+k2

z

i
diverge.

To avoid the problem,

BC is needed.

e.g.)

Aµ(r = R) = 0

by discretized momentum

Jv(k
i

v
R) = 0



Real rotation 2/2

Larger real ! sharpen the potential.

deconf.

[Chen, Fukushima,

Shimada (2022)]

! more deconfined

Tc decreases by !.

!
Deconfined

"
Confined

# This agrees with models, but disagrees with lattice.

https://arxiv.org/abs/2207.12665
https://arxiv.org/abs/2207.12665


Perturbative calculation 1/3

Our new attempt is perturbative calculation.

# As Weiss (1981), Weiss (1982), Gross, Pisarski, Ya↵e (1981)

To achieve the results, separate the gauge configuration into

diagonal background and dynamical:

Aµ = AB µ + Aµ , AB µ =
�µ,4

g�
� · H ,

where H is a vector of Cartan sub-algebra of su(N).

Gauge fixing is

D
µ

B
Aµ = 0

w/ DB µ := @µ + igAB µ

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.24.475
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.25.2667
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.53.43


Perturbative calculation 2/3

In this gauge condition,

tr Fµ⌫F
µ⌫ LO

= �2 tr Aµ
�
D

2
B

�
Aµ ,

and FP determinant is given by Det[�(D2
B
)] .

So the partition function is

Z = Det
�
�D

2
B

�
| {z }

ghost part

Det�1/2
�
�D

2
B

�
| {z }

gluon part

# The ghost part cancels non-physical modes of the gluon part

This gives the energy F = � 1
�
lnZ =

R
dv V (r,�).

! The minimal energy states of rotating systems.



Perturbative calculation 3/3

The system is confined if the Polyakov loop

L =
1

Nc

tr P exp

✓
ig

Z
�

0
d⌧ AB 4

◆

is zero. For SU(2), L = cos (�/2); for SU(3),

L =
1

3

⇣
2 cos (�1/2)ei

p
3�2/6 + e�i

p
3�2/3

⌘
.

SU(2) free energy density

# re-plotting of [Weiss (1981)]

� = 0, 2⇡, 4⇡, · · · .

gives deconfinement;

� = ⇡, 3⇡, · · · .

gives confinement;

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.24.475


Approach to low T

What would occur to the perturbative matter at low T?

KOGZ mechanism*1: ghost contribution is enhanced.

Since Vgluon = �Vghost,

the potential flips.

Minima are ⇡, 3⇡, · · · ,
! confined!

*1[Gribov (1978)], [Kugo, Ojima (1979)], [Zwanziger (1994)], [Kugo

(1995)]

https://dx.doi.org/10.1016/0550-3213(78)90175-X
https://dx.doi.org/10.1143/PTPS.66.1
https://dx.doi.org/10.1016/0550-3213(94)90396-4
https://arxiv.org/abs/hep-th/9511033
https://arxiv.org/abs/hep-th/9511033


Definition of Gµ

Covariant derivative in the curved space Gµ is

For scalars Gµ✓ = Dµ✓ ,

For vectors GµA⌫ = DµA⌫ � ��

µ⌫
A� ,

and Fµ⌫ = [Dµ, D⌫ ] = [Gµ, G⌫ ] , so

Z = Det
�
�G

2
B s

�
Det�1/2

�
�G

2
B v

�
.

# Z is obtained by calculating eigenfunctions and

eigenspectra of �G
2
B

# �G
2
B
is di↵erent for the scholars and the vectors.



�G
2
B spectrum of ghosts

�G
2
B
for the scalars (ghosts) is

�G
2
B s

:= � G
µ

B
DB µ = �g

µ⌫
⇥
DB µDB ⌫ � ��

µ⌫
DB �

⇤

= � (DB ⌧ � ⌦I@✓)
2 � 1

r
@r(r@r) � 1

r2
@

2
✓

� @
2
z
.

Eigenfunctions and eigenspecta are (in rotating frame)

 / E↵ exp
�
i(2⇡n��1⌧ + m✓ + kzz)

 
Jm(k?r) ,

� =
�
2⇡n��1 + ��1

� · ↵ � m⌦I
�2

+ k2
? + k2

z .

So the ghost contribution is

Tr ln
�
�G

2
B s

�
/
Z

k? dk?

Z
dkz J

2
m

ln
h
1 + e

i�↵�im⌦̃I��k

i
.



�G
2
B spectrum of gluons

For gluons, �G
2
B v

is

�
�G2

B v

� ⌫

µ
=

0

BBB@

�G2
B s

+ r�2 2r�3 @✓ 0 0

�2r�1 @✓ �r G2
B s

r�1 + r�2 0 0

0 0 �G2
B s

0

�2⌦Ir�1 @✓ 2⌦Ir�1 @r 0 �G2
B s

1

CCCA
.

Corresponding eigenspectra are the same.
Eigenfunctions are 4-vectors, and two are proportional to

that of ghosts, remaining two are

 / E↵ exp
�
i(2⇡n��1⌧ + m✓ + kzz)

 
Jm±1(k?r) .

So the gluon contribution is as the ghost one but with

Jm±1(k?r).



Weyl symmetry

Eigenvalues of DB µ = @µ + i�
�1
� · H are that of H :

roots ↵ or weights µ of the su(N) Lie algebra.

& The potential contains the coupling � · ↵ or � · µ.

For su(2), H = �3/2 = Ŝz; the weights are spin singlet

eigenvalue ±1/2 and the roots are triplet eigenvalue ±1, 0.

su(3) root diagram

!

!"

The sum of
P

↵ � · ↵ is taken.

From the Weyl symmetry of {↵}s,
some � gives the same sum.

e.g.)

Red & blue � gives the same sum.



Emergent symmetry

At ⌦̃I = ⇡/2, the system is always confined & an emergent

Z2 symmetry �1 $ 2⇡ � �1 (reflection by the red line)

appears.
This comes from the vanishing of odd-n terms in the

analytic form of the one-loop potential,

Vg(�; ⌦̃I) = �2T 4

⇡2

X

↵2�

1X

n=1

cos(n� · ↵) cos
⇣
n⌦̃I

⌘

n
n2 + 2r̃2

⇥
1 � cos

⇣
n⌦̃I

⌘⇤o2 .

It could be either a one-loop artifact or a genuine symmetry.



Quark action for imaginary rotating systems

Let us consider Nf = 2 QCD.

Introduce fermion contribution by the action

Lquark =  ̄
�
/G + m

�
 , Gµ = Dµ � �µ ,

where �µ = � i

4�
ij
!µij is the e↵ect of the curved space-time:

�
ij =

i

2
[�̂i

, �̂
j] , !µij = g⇢� e

⇢

i

�
@µe

�

j
+ ��

µ⌫
e

⌫

j

�
,

and m is quark dynamical mass.

In our case, m is equal to the chiral condensate value.



/G + m spectrum of quarks

After a little calculation, we obtain

�
µ
GB µ = �̂

1

✓
@r +

1

2r

◆
+ �̂

2@✓

r
+ �̂

3
@z + �̂

4(@⌧ + igAB4 � ⌦I@✓) .

Then eigenfunctions and eigenspectra of Det
⇥
/G + m

⇤
are

⇠n,l,s,k?,kz ,µ(x) / us |µi e
i

h
(2n+1)⇡

� ⌧+(l+ 1
2)✓+kzz

i

Jl+1/2�s(k?r) ,

�n,l,s,k?,kz ,µ =


(2n + 1)⇡ + � · µ

�
�
✓

l +
1

2

◆
⌦I

�2

+ k2
? + k2

z + m2 .



Perturbative quark potential

Zquark is obtained by Det
�
/GB + m

�
.

For Nc = Nf = 2,

Vf = �
1

2⇡2�

X

µ=±1/2

X

l2Z

Z 1

0
k? dk?

Z 1

�1
dkz

⇥
J
2
l (k?r) + J

2
l+1(k?r)

⇤

⇥ Re log


1 + e

i�·µ�i(l+1/2)�⌦Ie
��

q
k2
?+k2

z+m2
�

.

Since the quark is a spin 1/2 spinor, Vf is 4⇡ periodic for ✓

or ⌦̃I = �⌦I.



Chiral symmetry phase diagram (copy)

Inhomogeneous behavior of Polyakov loop and dynamical

mass for Nf = Nc = 2 QCD.

Polyakov loop Dynamical Mass

• The chiral broken phase and the perturbatively

confined phase are related.

• PT behavior has changed.

• Spatial PT also appears.



PT order of Nf = Nc = 2 QCD

About the phase transition of SU(2)f QCD

The order of PT to the PC

phase changes at r ⇠ 0.5.

At large r, � = m = 0 point

becomes the minimum again

by first order PT.



Polyakov loop potential against m

Perturbative calculation gives the decreasing behavior of the

potential.

With NJL quark-quark interaction model, the potential

increases at large m.

(NJL)

Finite mass!

Above the critical m, the sign

of @2
V/@m

2 changes.

! The minimum m becomes

infinite.

With adding the NJL potential,

finite minimum m is obtained.
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