The QCD confining string and the world-sheet axion

18th – 24th of August 2024

Andreas Athenodorou The Cyprus Institute D 0000-0003-4600-4245

In collaboration with Pedro Bicudo, Sergei Dubovksy, Conghuan Luo, Alireiza Sharifian and Michael Teper

- In QCD quarks are confined in bound states called flux-tubes
- Long flux tubes behave pretty much like thin strings
 - Energy increases with separation: $V \approx \sigma r$, $\sqrt{\sigma} \approx 440$ MeV
 - At some point the string breaks String breaking –
 - We need dynamical fermions to observe string breaking
 - We work in pure gauge theory
- There are D 2 massless Goldstone modes from broken translation invariance in the D-2 directions
- There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube
- Questions to be addressed
 - What is this effective string theory?
 - How good an approximation such an effective string theory is?
 - Are there additional massive excitations along the flux-tube?

- In QCD quarks are confined in bound states called flux-tubes
- Long flux tubes behave pretty much like thin strings
 - Energy increases with separation: $V \approx \sigma r$, $\sqrt{\sigma} \approx 440$ MeV
 - At some point the string breaks String breaking –
 - We need dynamical fermions to observe string breaking
 - We work in pure gauge theory
- There are D 2 massless Goldstone modes from broken translation invariance in the D-2 directions
- There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube
- Questions to be addressed
 - What is this effective string theory?
 - How good an approximation such an effective string theory is?
 - Are there additional massive excitations along the flux-tube?

- In QCD quarks are confined in bound states called flux-tubes
- Long flux tubes behave pretty much like thin strings
 - Energy increases with separation: $V \approx \sigma r$, $\sqrt{\sigma} \approx 440$ MeV
 - At some point the string breaks String breaking –
 - We need dynamical fermions to observe string breaking
 - We work in pure gauge theory
- There are D 2 massless Goldstone modes from broken translation invariance in the D-2 directions
- There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube
- Questions to be addressed
 - What is this effective string theory?
 - How good an approximation such an effective string theory is?
 - Are there additional massive excitations along the flux-tube?

- In QCD quarks are confined in bound states called flux-tubes
- Long flux tubes behave pretty much like thin strings
 - Energy increases with separation: $V \approx \sigma r$, $\sqrt{\sigma} \approx 440$ MeV
 - At some point the string breaks String breaking –
 - We need dynamical fermions to observe string breaking
 - We work in pure gauge theory
- There are D 2 massless Goldstone modes from broken translation invariance in the D-2 directions
- There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube
- Questions to be addressed
 - What is this effective string theory?
 - How good an approximation such an effective string theory is?
 - Are there additional massive excitations along the flux-tube?

How to investigate

- Strategy:
 - Is there a theoretical description in agreement with Lattice data for the flux-tube?
 - Is there a group of lattice data in striking disagreement with the theory?
 - What does this disagreement teach about the theory? Can the theory be extended?
- Two flux-tube set ups:

Closed Flux-Tube (Torelon)

Periodic boundaries

Compactification

[Teper, Barak, AA]

- No boundary terms
- Computationally expensive (length=lattice extent)
- Richer spectrum due to flux-compactification $(N_L N_R = q)$

[Caselle, Bicudo, Brandt, Kuti, AA]

- One needs to deal with the boundary terms
- Computationally not so expensive

Climbing the Large–*N* steep

- Pure gauge SU(3) phenomena are also present on flux-tube investigations
 - Glueball Flux-tube mixing
- A low-energy effective string theoretical description:
 - Cannot capture pure gauge phenomena...
 - How about moving to the large-*N* limit?
- Hence, we investigate the spectrum of closed flux-tubes in the Large-N limit
- What do we know so far:

Closed Flux-tube	Gauge Group	Open Flux-tube	Gauge Group
arXiv:1007.4720	SU(3), SU(5)	arXiv:hep-lat/9608019	<i>SU</i> (3)
arXiv:1702.03717	SU(2 - 12)	arXiv:2105.12159	<i>SU</i> (3)
arXiv:2112.1121	SU(3), SU(4), SU(6)	arXiv:2303.15152	<i>SU</i> (3)
arXiv:2205.03642	SU(3), SU(4), SU(6)	arXiv:xxxx.xxxxx	SU(N > 3)

Climbing the Large–*N* steep

- Pure gauge SU(3) phenomena are also present on flux-tube investigations
 - Glueball Flux-tube mixing
- A low-energy effective string theoretical description:
 - Cannot capture pure gauge phenomena...
 - How about moving to the large-*N* limit?
- Hence, we investigate the spectrum of closed flux-tubes in the Large-N limit
- What do we know so far:

Closed Flux-tube	Gauge Group	Open Flux-tube	Gauge Group
arXiv:1007.4720	SU(3), SU(5)	arXiv:hep-lat/9608019	<i>SU</i> (3)
arXiv:1702.03717	SU(2 - 12)	arXiv:2105.12159	<i>SU</i> (3)
arXiv:2112.1121	SU(3), SU(4), SU(6)	arXiv:2303.15152	<i>SU</i> (3)
arXiv:2205.03642	SU(3), SU(4), SU(6)	arXiv:xxxx.xxxxx	SU(N > 3)

The effective string theory of long strings

- Universal properties of the QCD string studied extensively [Dubovsky, Gorbenko, Aharony]
- Re-parametrisation invariance and *D*-dimensional target space Poincaré symmetry

$$S = -\int d^2\sigma \sqrt{-\det h_{\alpha\beta}} \left[\ell_s^{-2} + \mathcal{R} + a_2 K^2 + b_2 K^{\mu}_{\alpha\beta} K^{\alpha\beta}_{\mu} + O(\ell_s^2) \right]$$

- First non-trivial subleading correction starts at ℓ_s^2 level
- Hence, the perturbative perspectives of the theory are universally determined by Nambu-Goto action

$$S_{\rm NG} = -\ell_s^{-2} \int d^2 \sigma \sqrt{-\det h_{\alpha\beta}}$$
, $h_{\alpha\beta} = \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu}$

The Goddard-Goldstone-Rebbi-Thorn spectrum for closed string

• We quantize the Closed bosonic string (Nambu-Goto)

$$S_{\rm NG} = -\ell_s^{-2} \int d^2 \sigma \sqrt{-\det h_{\alpha\beta}}$$

• The spectrum of a closed bosonic string compactified around a torus is given by:

$$E_{\rm GGRT}(N_L, N_R) = \sqrt{\frac{4\pi^2 (N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

- The spectrum is described by
 - 1. The winding momentum $p_{||} = 2\pi q/R$ with $q = 0, \pm 1, \pm 2, \ldots$
 - 2. The total contribution of $N_L = \sum_{k>0} n_L(k)k$ and $N_R = \sum_{k'>0} n_R(k')k'$
 - 3. Level matching Constrain: $N_L N_R = q$

The closed string expansion in $1/R\ell_s^{-1}$

• Topic received contributions since the early 80s

[M. Lüscher '81, J. Polchinski & A. Strominger '90, M. Lüscher & P. Weisz '04, O. Aharony et al '07 – 11, S. Dubovsky et al '12 – 19]

$$E_n(R) = l_s^{-1}(Rl_s^{-1}) + \frac{4\pi l_s^{-1}}{(Rl_s^{-1})} \left(n - \frac{D-2}{24}\right) - \frac{8\pi^2 l_s^{-1}}{(Rl_s^{-1})^3} \left(n - \frac{D-2}{24}\right)^2 + \frac{32\pi^3 l_s^{-1}}{(Rl_s^{-1})^5} \left(n - \frac{D-2}{24}\right)^3 + \left(\frac{1}{(Rl_s^{-1})^7}\right)^2$$

Linear Confinement

Lüscher 1980, Polchinski&Strominger 1991

Lüscher&Weisz 2004, Drummond 2004

Aharony&Karzbrun 2009

• Relation to the GGRT spectrum:

$$E_n(R) = l_s^{-1}(Rl_s^{-1}) + \frac{l_s^{-1}c_1^{\text{GGRT}}}{(Rl_s^{-1})} + \frac{l_s^{-1}c_2^{\text{GGRT}}}{(Rl_s^{-1})^3} + \frac{l_s^{-1}c_3^{\text{GGRT}}}{(Rl_s^{-1})^5} + \left(\frac{1}{(Rl_s^{-1})^7}\right)$$
$$= E_{\text{GGRT}}(N_L = 0, N_R = 0, R) + \left(\frac{1}{(Rl_s^{-1})^7}\right)$$

The Nambu-Goto spectrum for open strings

Quantize the Open bosonic string (Nambu-Goto)

 $S_{\rm NG} = -\ell_s^{-2} \int d^2 \sigma \sqrt{-\det h_{\alpha\beta}}$

• The spectrum of an open bosonic string is given by:

$$E_{\rm NG}(N) = \sqrt{\frac{R^2}{\ell_s^4} + \frac{2\pi}{\ell_s^2} \left(N - \frac{D-2}{24}\right)}$$
 [Arvis '83]

- The spectrum is described by
 - 1. The total contribution of $N = \sum_{m=1} m(n_{m^+} + n_{m^-})$

The open string expansion in $1/R\ell_s^{-1}$

• Topic received contributions since the early 80s

[M. Lüscher '81, J. Polchinski & A. Strominger '90, M. Lüscher & P. Weisz '04, O. Aharony et al '07 – 11, S. Dubovsky et al '12 – 19]

$$\begin{split} E_n(R) &= \ell_s^{-1}(R\ell_s^{-1}) & \text{Linear Confinement} \\ &+ \frac{\pi \ell_s^{-1}}{(R\ell_s^{-1})} \left(n - \frac{D-2}{24}\right) & \text{Lüscher 1980, Polchinski&Strominger 1991} \\ &- \frac{\pi^2 \ell_s^{-1}}{2(R\ell_s^{-1})^3} \left(n - \frac{D-2}{24}\right)^2 & \text{Lüscher &Weisz 2004, Drummond 2004} \\ &+ \frac{\bar{b}_2 \pi^3 \ell_s^{-1}}{(R\ell_s^{-1})^4} \left(B_n^l - \frac{D-2}{60}\right) & \text{Aharony et al 2010, 2012} \\ &+ \frac{\pi^3 \ell_s^{-1}}{16(R\ell_s^{-1})^5} \left(n - \frac{D-2}{24}\right)^3 + \frac{\pi^3 \ell_s^{-1}(D-26)}{48(R\ell_s^{-1})^5} C_n^l + \left(\frac{1}{(R\ell_s^{-1})^6}\right) & \text{Aharony et al 2009, 2010} \end{split}$$

• Relation to the NG spectrum:

$$E_n(R) = E_{\rm NG}(n,R) + \frac{\bar{b}_2 \pi^3 \ell_s^{-1}}{(R\ell_s^{-1})^4} \left(B_n^l - \frac{D-2}{60} \right) + \frac{\pi^3 \ell_s^{-1} (D-26)}{48 (R\ell_s^{-1})^5} C_n^l + \left(\frac{1}{(R\ell_s^{-1})^6} \right)$$

The expansion in $1/R\ell_s^{-1}$ - the $D = \mathbf{2} + \mathbf{1}$ closed flux tube case

- In D = 2 + 1 only string like states have been observed so far
- D = 3 + 1 case is more complex and interesting to look for such states

Closed flux tube spectrum from world-sheet scattering

• Thermodynamic Bethe Ansatz (TBA)[Zamolodchikov, 1990]

 \longrightarrow finite volume spectrum of a (1 + 1) - D integrable theory from 2 \rightarrow 2 scattering

• Leading spectrum is given by integrable theory of D - 2 scalars with phase shift:

$$e^{2i\delta(s)} = e^{is\ell_s^2/4}$$

- Using TBA leads to the GGRT spectrum
- Phonon scattering amplitudes can be calculated with perturbation theory
- Diagonalization of the *S* matrix:

Closed flux tube spectrum from world-sheet scattering

• TBA formulates with the generalized quantization condition around the circle:

$$\mathsf{ABA} \qquad p_{li}R + \sum_{j} 2\delta_{a_{i}a_{j}} (p_{li}, p_{rj}) - i \sum_{b} \int_{0}^{\infty} \frac{dq}{2\pi} \frac{d2\delta_{a_{i}b} (ip_{li}, q)}{dq} \ln\left(1 - e^{-R\epsilon_{r}^{b}(q)}\right) = 2\pi N_{li},$$
$$p_{ri}R + \sum_{j} 2\delta_{a_{j}a_{i}} (p_{ri}, p_{lj}) + i \sum_{b} \int_{0}^{\infty} \frac{dq}{2\pi} \frac{d2\delta_{ba_{i}} (-ip_{ri}, q)}{dq} \ln\left(1 - e^{-R\epsilon_{l}^{b}(q)}\right) = 2\pi N_{ri},$$

• The pseudo-energies $\epsilon^a_{l(r)}$ satisfy:

$$\epsilon_{l}^{a}(q) = q + \frac{i}{R} \sum_{i} 2\delta_{ab_{i}} \left(q, -ip_{ri}\right) + \frac{1}{2\pi R} \sum_{b} \int_{0}^{\infty} dq' \frac{d2\delta_{ab} \left(q, q'\right)}{dq'} \ln\left(1 - e^{-R\epsilon_{r}^{b}(q')}\right)$$
$$\epsilon_{r}^{a}(q) = q - \frac{i}{R} \sum_{i} 2\delta_{b_{i}a} \left(q, ip_{li}\right) + \frac{1}{2\pi R} \sum_{b} \int_{0}^{\infty} dq' \frac{d2\delta_{ba} \left(q, q'\right)}{dq'} \ln\left(1 - e^{-R\epsilon_{l}^{b}(q')}\right)$$

• The energy of a state is written as

$$\Delta E = \sum_{i} p_{li} + \sum_{i} p_{ri} + \frac{1}{2\pi} \sum_{a} \int_{0}^{\infty} dq \ln\left(1 - e^{-R\epsilon_{l}^{a}(q)}\right) + \frac{1}{2\pi} \sum_{a} \int_{0}^{\infty} dq \ln\left(1 - e^{-R\epsilon_{r}^{a}(q)}\right)$$

+ Approximations

Closed flux tube spectrum from world-sheet scattering

• $T\overline{T}$ simplifies TBA because the undressed theory is free in the leading order

$$E(R,\ell_s) = \frac{1}{\mathcal{R}_0} \left(R + \frac{\ell_s^2}{2} E(R,\ell_s)\right) E\left(\mathcal{R}_0,0\right) + \frac{\ell_s^2}{2\mathcal{R}_0} P(R) P\left(\mathcal{R}_0\right)$$

- We neglect all the winding corrections in the undressed spectrum
- Momentum Quantization Condition becomes the Asymptotic Bethe Ansatz (ABA)
- We can investigate the spectrum of phonons massive excitations using ABA + $T\overline{T}$ deformations. [Chen, Conkey, Dubovsky, Hernández-Chifflet 2018]

• Recipe

- Start with a world-sheet theory of free phonons (phonons can interact at subleading order in low energy limit) and massive particles.
- Compute the finite volume spectrum of this theory using ABA.
- Deform the theory by $T\overline{T}$ operator to the string scale, which will automatically incorporate the axion-interaction at leading order.

The Axionic String Ansatz (ASA)

- Lattice calculations demonstrate that there is one massive resonance
- We add a massive resonance [Dubovsky et al 2013]

$$S_a = \int d^2 \sigma \sqrt{-h} \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 + \frac{6}{2} m^2 \phi^2 + \frac{6}$$

- ϕ is a pseudoscalar the world-sheet axion $t^{\mu
 u}$
- From Monte-Carlo data of 4D SU(3) Yang-Mill

- Integrable coupling: $Q_{\text{integrable}} = \sqrt{7/(16\pi)} \approx 0.373$
- Can we describe all states in D = 3 + 1 with the worldsheet fields only?

The Axionic String Ansatz (ASA)

- Lattice calculations demonstrate that there is one massive resonance
- We add a massive resonance [Dubovsky et al 2013]

$$S_a = \int d^2 \sigma \sqrt{-h} \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 + \frac{Q_\phi}{4} h^{\alpha\beta} \epsilon_{\mu\nu\lambda\rho} \partial_\alpha t^{\mu\nu} \partial_\beta t^{\lambda\rho} \phi \right)$$

• ϕ is a pseudoscalar – the world-sheet axion $t^{\mu\nu} = \frac{\epsilon^{\mu\nu}}{\sqrt{-h}}\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}$

• From Monte-Carlo data of 4D SU(3) Yang-Mills: $Q_{\phi} \approx 0.38 \pm 0.04$, $m \approx 1.85^{+0.02}_{-0.03} \ell_s^{-1}$

• Integrable coupling:
$$Q_{\text{integrable}} = \sqrt{7/(16\pi)} \approx 0.373$$

• Can we describe all states in D = 3 + 1 with the worldsheet fields only?

Extracting the spectrum of close flux tubes

• The spectrum is extracted using torelon correlation functions

$$\begin{aligned} \langle \phi^{\dagger}(t=an_t)\phi(0) \rangle &= \langle \phi^{\dagger}e^{-Han_t}\phi \rangle = \sum_i |c_i|^2 e^{-aE_in_t} \\ \stackrel{t \to \infty}{=} |c_0|^2 e^{-aE_0n_t} \end{aligned}$$

• Using the effective mass $\lim_{t \to \infty} \left[-\ln\left(\frac{C(t)}{C(t-a)}\right) \right] = aE_0 \xrightarrow{\text{Example of effective masses}} aE_{eff}(n)$ • For excitation spectrum we use the GEVP [Presentation by Francesco Giacomo Knechtli]

Extracting the spectrum of open flux tubes

• The spectrum is extracted using Wilson loops W(r, t)

$$\langle W(r,t) \rangle = \sum_{i=0}^{\infty} A_n e^{-E_n(r)t}$$
$$\frac{W(r,t)}{W(r,t+1)} = e^{E_0} \frac{1 + A_1 e^{-(E_1 - E_0)t} + \dots}{1 + A_1 e^{-(E_1 - E_0)(t+1)} + \dots}$$

Time

• We use the effective energy:

$$E_0(r,t) = \lim_{t \to \infty} \ln \frac{W(r,t)}{W(r,t+1)}$$

• For excitation spectrum we use once again the GEVP

The Quantum Numbers of closed flux tubes

Quantum numbers for the closed string

We build operators described by the quantum numbers of J, P_{\perp} , P_{\parallel}

• We use a large basis of operators with transverse deformations:

The Quantum Numbers of open flux tubes

Quantum numbers for the open flux tube

- Spin Λ : Projection of angular momentum J onto the charge axis $J \cdot \hat{R}$
- Parity and Charge Conjugation : COP, with eigenvalues $g(u) \equiv 1(-1)$
- For $\Lambda=0$ we have one more quantum number $\,\mathcal{P}_x=\pm\,$

We project onto the irreducible representations

- $\Sigma_g^+, \Sigma_g^-, \Sigma_u^+$ and Σ_u^- , where $\Sigma \to \Lambda = 0$
- Π_g and Π_u , where $\Pi \rightarrow \Lambda = 1$
- Δ_g and Δ_u , where $\Delta \rightarrow \Lambda = 2$

Closed flux tube results: The absolute ground state $N_L = N_R = 0$

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 0$	0	+	+	$ 0\rangle$
	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left 0 ight angle$
$N_{-} - N_{-} - 1$	0	-	-	$(a_1^+a_{-1}^ a_1^-a_{-1}^+) 0\rangle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)\left 0 ight angle$
	2	-	+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-} ight)\left 0 ight angle$
	0	+	+	$\left(a_{2}^{+}a_{-2}^{-}+a_{2}^{-}a_{-2}^{+} ight)\left 0 ight angle$
	0	-	-	$\left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+} ight)\left 0 ight angle$
	0	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{-1}^{-}a_{-1}^{+}a_{1}^{-}a_{-1}^{+} ight)\left 0 ight angle$
	0	-	-	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+} ight)\left 0 ight angle$
	0	+	+	$a_1^+a_1^-a_{-1}^+a_{-1}^- 0\rangle$
	1	±	+	$\left[(a_{1}^{+}a_{1}^{+}a_{-2}^{-} + a_{2}^{-}a_{-1}^{+}a_{-1}^{+}) \pm (a_{1}^{-}a_{1}^{-}a_{-2}^{+} + a_{2}^{-}a_{-1}^{+}a_{-1}^{+}) \right] 0\rangle$
	1	±	-	$\left[(a_{1}^{+}a_{1}^{+}a_{-2}^{-} - a_{2}^{-}a_{-1}^{+}a_{-1}^{+}) \pm (a_{1}^{-}a_{1}^{-}a_{-2}^{+} - a_{2}^{-}a_{-1}^{+}a_{-1}^{+}) \right] 0\rangle$
	1	±	+	$\left \left(a_{1}^{+}a_{1}^{-}a_{-2}^{+} + a_{2}^{+}a_{-1}^{-}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-} + a_{2}^{-}a_{-1}^{+}a_{-1}^{-} \right) \right \left 0 \right\rangle$
$N_L = 2, N_R = 2$	1	±	-	$\left\lfloor \left(a_{1}^{+}a_{1}^{-}a_{-2}^{+}-a_{2}^{+}a_{-1}^{-}a_{-1}^{+}\right)\pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-}-a_{2}^{-}a_{-1}^{+}a_{-1}^{-}\right)\right\rfloor \left 0\right\rangle$
	2	+	+	$\left(a_{2}^{+}a_{-2}^{+}+a_{2}^{-}a_{-2}^{-}\right)\left 0\right\rangle$
	2	_	+	$(a_2^+a_{-2}^+ - a_2^-a_{-2}^-) 0\rangle$
	2	+	+	$\left \left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{-}a_{-1}^{-} \right) + \left(a_{1}^{+}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right] 0\rangle$
	2	+	-	$\left \left \left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1} + a_{1}a_{1}a_{-1}a_{-1}^{+} \right) - \left(a_{1}^{+}a_{1}a_{-1}a_{-1} + a_{1}a_{1}a_{-1}a_{-1}^{+} \right) \right \left 0 \right\rangle$
	2	-	+	$ (a_1'a_1'a_{-1}a_{-1} - a_1a_1a_{-1}a_{-1}) + (a_1'a_1a_{-1}a_{-1} - a_1a_1'a_{-1}a_{-1}) 0\rangle$
	2	_	-	$\left[\left(a_{1}^{\prime} a_{1}^{\prime} a_{-1}^{\prime} a_{-1} - a_{1} a_{1} a_{-1} a_{-1}^{\prime} \right) - \left(a_{1}^{\prime} a_{1} a_{-1} a_{-1} - a_{1} a_{1}^{\prime} a_{-1}^{\prime} a_{-1}^{\prime} \right) \right] \left 0 \right\rangle$
	う う		+	$\begin{bmatrix} (a_1^+ a_1^+ a_{-2}^+ + a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^- + a_2^- a_{-1} a_{-1}) \end{bmatrix} 0\rangle$
	3			$\begin{bmatrix} (a_1 a_1 a_{-2} - a_2 a_{-1} a_{-1}) \pm (a_1 a_1 a_{-2} - a_2 a_{-1} a_{-1}) \end{bmatrix} 0\rangle$
	4	+		$(a_1^{+}a_1^{+}a_{-1}^{+}a_{-1}^{+}+a_1^{-}a_1^{-}a_{-1}^{-}a_{-1}^{-}) 0\rangle$
	4		+	$(a_1 a_1 a_{-1} a_{-1} - a_1 a_1 a_{-1} a_{-1}) 0\rangle$

$$E_{\rm GGRT}(N_L, N_R) = \sqrt{\frac{4\pi^2 (N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 0$	0	+	+	$ 0\rangle$
	0	+	+	$(a_1^+a_{-1}^-+a_1^-a_{-1}^+) 0\rangle$
M = M = 1	0	—	_	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+} ight)\left 0 ight angle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)\left 0 ight angle$
	2	-	+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-} ight)\left 0 ight angle$
	0	+	+	$\left(a_{2}^{+}a_{-2}^{-}+a_{2}^{-}a_{-2}^{+} ight)\left 0 ight angle$
	0	—	—	$\left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+} ight)\left 0 ight angle$
	0	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+} ight)\left 0 ight angle$
	0	-	-	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+} ight)\left 0 ight angle$
	0	+	+	$a_1^+ a_1^- a_{-1}^+ a_{-1}^- 0\rangle$
	1	±	+	$\left\lfloor \left(a_{1}^{+}a_{1}^{+}a_{-2}^{-}+a_{2}^{-}a_{-1}^{+}a_{-1}^{+}\right)\pm \left(a_{1}^{-}a_{1}^{-}a_{-2}^{+}+a_{2}^{-}a_{-1}^{+}a_{-1}^{+}\right)\right\rfloor \left 0\right\rangle$
	1	±	-	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-2}^{-} - a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{-}a_{-2}^{+} - a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \right] 0\rangle$
	1	±	+	$\left[\left(a_{1}^{+}a_{1}^{-}a_{-2}^{+} + a_{2}^{+}a_{-1}^{-}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-} + a_{2}^{-}a_{-1}^{+}a_{-1}^{-} \right) \right] 0\rangle$
$N_L = 2, N_R = 2$	1	±	-	$\left[\left(a_{1}^{+}a_{1}^{-}a_{-2}^{+} - a_{2}^{+}a_{-1}^{-}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-} - a_{2}^{-}a_{-1}^{+}a_{-1}^{-} \right) \right] 0\rangle$
	2	+	+	$\left(a_{2}^{+}a_{-2}^{+}+a_{2}^{-}a_{-2}^{-} ight)\left 0 ight angle$
	2	-	+	$\left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-} ight)\left 0 ight angle$
	2	+	+	$\left \left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-} + a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+} \right) + \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-} + a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right \left 0 \right\rangle$
	2	+	-	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right)-\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right]\left 0\right\rangle$
	2	-	+	$\left \left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-} - a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+} \right) + \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-} - a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right \left 0 \right\rangle$
	2	-	-	$\left\lfloor \left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right)-\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right\rfloor \left 0\right\rangle$
	3	±	+	$\left[(a_{1}^{+}a_{1}^{+}a_{-2}^{+} + a_{2}^{+}a_{-1}^{+}a_{-1}^{+}) \pm (a_{1}^{-}a_{1}^{-}a_{-2}^{-} + a_{2}^{-}a_{-1}^{-}a_{-1}^{-}) \right] 0\rangle$
	3	±	-	$\left\lfloor (a_1^+a_1^+a_{-2}^+ - a_2^+a_{-1}^+a_{-1}^+) \pm (a_1^-a_1^-a_{-2}^ a_2^-a_{-1}^-a_{-1}^-) \right\rfloor 0\rangle$
	4	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}a_{-1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
	4	-	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}-a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2 (N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 0$	0	+	+	$ 0\rangle$
	0	+	+	$(a_1^+a_{-1}^-+a_1^-a_{-1}^+) 0 angle$
M = M = 1	0	_	_	$(a_1^+a_{-1}^a_1^-a_{-1}^+) 0 angle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-} ight)\left 0 ight angle$
	2	-	+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-} ight)\left 0 ight angle$
	0	+	+	$\left(a_{2}^{+}a_{-2}^{-}+a_{2}^{-}a_{-2}^{+} ight)\left 0 ight angle$
	0	-	-	$\left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+} ight)\left 0 ight angle$
	0	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}a_{-1}^{+}a_{-1}^{+} ight)\left 0 ight angle$
	0	-	-	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+} ight)\left 0 ight angle$
	0	+	+	$a_1^+ a_1^- a_{-1}^+ a_{-1}^- 0\rangle$
	1	±	+	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-2}^{-} + a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{-}a_{-2}^{+} + a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \right] 0\rangle$
	1	±	-	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-2}^{-} - a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{-}a_{-2}^{+} - a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \right] \left 0 \right\rangle$
N O N O	1		+	$\begin{bmatrix} (a_{1}^{+}a_{1}^{-}a_{-2}^{+} + a_{2}^{+}a_{-1}^{-}a_{-1}^{+}) \pm (a_{1}^{-}a_{1}^{+}a_{-2}^{-} + a_{2}^{-}a_{-1}^{+}a_{-1}^{-}) \end{bmatrix} 0\rangle$
$N_L = 2, N_R = 2$	1	±	-	$\left[(a_1' a_1 a_{-2}' - a_2' a_{-1} a_{-1}') \pm (a_1 a_1' a_{-2} - a_2 a_{-1}' a_{-1}) \right] 0\rangle$
	2	+	+	$\begin{pmatrix} a_2^+ a_{-2}^+ + a_2^- a_{-2}^- \end{pmatrix} \ket{0}$
	2	_	+	$(a_2' a_{-2}' - a_2 a_{-2}) 0\rangle$
	2	+	+	$\left[\left(a_{1}^{\prime} a_{1}^{\prime} a_{-1}^{\prime} a_{-1} + a_{1}^{\prime} a_{1}^{\prime} a_{-1}^{\prime} \right) + \left(a_{1}^{\prime} a_{1}^{\prime} a_{-1}^{\prime} a_{-1} + a_{1}^{\prime} a_{1}^{\prime} a_{-1}^{\prime} a_{-1}^{\prime} \right) \right] 0\rangle$
	2	+	_	$\left[\left(a_{1}^{+} a_{1}^{+} a_{-1}^{+} a_{-1} + a_{1}^{+} a_{1}^{-} a_{-1}^{+} \right) - \left(a_{1}^{+} a_{1}^{+} a_{-1}^{-} a_{-1}^{+} + a_{1}^{+} a_{1}^{+} a_{-1}^{+} a_{-1}^{+} \right) \right] \left 0 \right\rangle$
	2	_	+	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right)+\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}\right)\right]\left 0\right\rangle$
	2	_	_	$\begin{bmatrix} (a_1 a_1 a_{-1} a_{-1} a_{-1} a_1 a_{-1} a_{-1} a_{-1}) - (a_1 a_1 a_{-1} a_{-1} a_{-1} a_{-1} a_{-1} a_{-1} a_{-1}) \end{bmatrix} 0\rangle$
	3		+	$[(a_1^{-}a_1^{-}a_{-2}^{-}+a_2^{-}a_{-1}^{-}a_{-1}^{-})\pm(a_1^{-}a_1^{-}a_{-2}^{-}+a_2^{-}a_{-1}^{-}a_{-1}^{-})] 0\rangle$
	0 1	T	_	$ [(a_1 a_1 a_{-2} - a_2 a_{-1} a_{-1}) \pm (a_1 a_1 a_{-2} - a_2 a_{-1} a_{-1})] 0\rangle $
	4	+		$(a_1 a_1 a_{-1} a_{-1} + a_1 a_1 a_{-1} a_{-1}) 0\rangle$ $(a_1^+ a_1^+ a_1^+ a_1^+ - a_1^- a_1^- a_1^- a_{-1}) 0\rangle$
	-1			$(u_1 u_1 u_{-1} u_{-1} - u_1 u_1 u_{-1} u_{-1}) 0\rangle$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2 (N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 0$	0	+	+	$ 0\rangle$
	0	+	+	$(a_1^+a_{-1}^-+a_1^-a_{-1}^+) 0\rangle$
M = M = 1	0	-	-	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left 0 ight angle$
$N_L - N_R - 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-} ight)\left 0 ight angle$
	2	-	+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-} ight)\left 0 ight angle$
	0	+	+	$\left(a_{2}^{+}a_{-2}^{-}+a_{2}^{-}a_{-2}^{+}\right)\left 0 ight angle$
	0	-	-	$\left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+} ight)\left 0 ight angle$
	0	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+} ight)\left 0 ight angle$
	0	-	-	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+} ight)\left 0 ight angle$
	0	+	+	$a_1^+ a_1^- a_{-1}^+ a_{-1}^- 0 angle$
	1	±	+	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-2}^{-} + a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{-}a_{-2}^{+} + a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \right] 0\rangle$
	1	±	-	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-2}^{-} - a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{-}a_{-2}^{+} - a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \right] 0\rangle$
	1	±	+	$\left[\left(a_{1}^{+}a_{1}^{-}a_{-2}^{+} + a_{2}^{+}a_{-1}^{-}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-} + a_{2}^{-}a_{-1}^{+}a_{-1}^{-} \right) \right] 0\rangle$
$N_L = 2, N_R = 2$	1	±	-	$\left\lfloor \left(a_{1}^{+}a_{1}^{-}a_{-2}^{+}-a_{2}^{+}a_{-1}^{-}a_{-1}^{+}\right)\pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-}-a_{2}^{-}a_{-1}^{+}a_{-1}^{-}\right)\right\rfloor \left 0\right\rangle$
	2	+	+	$\left(a_{2}^{+}a_{-2}^{+}+a_{2}^{-}a_{-2}^{-}\right)\left 0\right\rangle$
	2	-	+	$(a_2^+ a_{-2}^+ - a_2^- a_{-2}^-) 0\rangle$
	2	+	+	$\left \left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+} \right) + \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right] \left 0 \right\rangle$
	2	+	-	$\left \left(a_{1}'a_{1}'a_{-1}a_{-1} + a_{1}a_{1}a_{-1}a_{-1} \right) - \left(a_{1}'a_{1}a_{-1}a_{-1} + a_{1}a_{1}'a_{-1}a_{-1} \right) \right \left 0 \right\rangle$
	2	-	+	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}-a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)+\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}-a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right]\left 0\right\rangle$
	2	_	-	$\begin{bmatrix} (a_1^{-}a_1^{-}a_{-1}a_{-1} - a_1^{-}a_1^{-}a_{-1}a_{-1}) - (a_1^{-}a_1^{-}a_{-1}a_{-1} - a_1^{-}a_1^{-}a_{-1}a_{-1}) \end{bmatrix} 0\rangle$
	3		+	$[(a_{1}^{+}a_{1}^{+}a_{-2}^{+}+a_{2}^{+}a_{-1}^{+}a_{-1}^{+}) \pm (a_{1}^{+}a_{1}^{+}a_{-2}^{+}+a_{2}^{+}a_{-1}a_{-1})] 0\rangle$
	0 4	T	_	$\begin{bmatrix} (a_1 \ a_1 \ a_{-2} - a_2 \ a_{-1} a_{-1}) \pm (a_1 \ a_1 \ a_{-2} - a_2 \ a_{-1} a_{-1}) \end{bmatrix} 0\rangle$
	4	+		$\begin{pmatrix} a_1 a_1 a_{-1} a_{-1} + a_1 a_1 a_{-1} a_{-1} \\ a_1^+ a_1^+ a_1^+ a_1^+ a_1^+ a_1^- a_1^- a_1^- \\ a_1^+ a_1^+ a_1^+ a_1^+ a_1^+ a_1^- a_1^- a_1^- a_1^- \\ a_1^+ a_1^+ a_1^+ a_1^+ a_1^+ a_1^- a_1^- a_1^- \\ a_1^+ a_1^+ a_1^+ a_1^+ a_1^- a_1^- a_1^- \\ a_1^+ a_1^+ a_1^+ a_1^+ a_1^- a_1^- a_1^- \\ a_1^+ a_1^+ a_1^+ a_1^- a_1^- a_1^- \\ a_1^+ a_1^+ a_1^+ a_1^- a_1^- a_1^- \\ a_1^+ a_1^+ a_1^- a_1^- a_1^- \\ a_1^+ a_1^+ a_1^- a_1^- a_1^- \\ a_1^+ a_1^- a_1^- a_1^- \\ a_1^+ a_1^- a_1^- \\ a_1^+ a_1^- a_1^- \\ a_1^+ a_1^$
	4			$(u_1 u_1 u_{-1} u_{-1} - u_1 u_1 u_{-1} u_{-1}) 0\rangle$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2 (N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

String State	Results for $SU(3)$ and $\beta = 6.338$
$ \begin{array}{c} 0\rangle \\ & \left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right) 0\rangle \\ & \left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right) 0\rangle \\ & \left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right) 0\rangle \\ & \left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right) 0\rangle \end{array} $	$\Delta E \ell_s \stackrel{4}{=} 2^{++} Using T\overline{T} \text{ deformation and ABA}$ GGRT
$\begin{array}{c} \left(a_{2}^{+}a_{-2}^{-}+a_{2}^{-}a_{-2}^{+}\right) 0\rangle \\ \left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+}\right) 0\rangle \\ \left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{-1}^{-}a_{-1}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle \\ \left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{-1}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle \\ \left(a_{1}^{+}a_{1}^{+}a_{-2}^{-}-a_{2}^{-}a_{-1}^{+}a_{-1}^{+}\right) \pm \left(a_{1}^{-}a_{1}^{-}a_{-2}^{-}+a_{-2}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle \\ \left[\left(a_{1}^{+}a_{1}^{+}a_{-2}^{-}-a_{2}^{-}a_{-1}^{+}a_{-1}^{+}\right) \pm \left(a_{1}^{-}a_{1}^{-}a_{-2}^{-}-a_{2}^{-}a_{-1}^{+}a_{-1}^{+}\right)\right] 0\rangle \\ \left[\left(a_{1}^{+}a_{1}^{-}a_{-2}^{-}-a_{2}^{-}a_{-1}^{+}a_{-1}^{+}\right) \pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-}-a_{2}^{-}a_{-1}^{+}a_{-1}^{-}\right)\right] 0\rangle \\ \left[\left(a_{1}^{+}a_{1}^{-}a_{-2}^{+}-a_{2}^{+}a_{-1}^{-}a_{-1}^{+}\right) \pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-}-a_{2}^{-}a_{-1}^{+}a_{-1}^{-}\right)\right] 0\rangle \\ \left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-}\right) 0\rangle \\ \left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-}\right) 0\rangle \\ a_{-1}^{-}+a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right) + \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}a_{-1}^{+}\right) 0\rangle \end{array}$	$\begin{array}{c} 3 \\ \hline \\ 0 \\ \hline \\ 1 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 1 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \\ 0 \\ \hline \\ 1 \\ \hline 1$
$ \begin{split} &a_{-1}^{-} + a_{1}^{-} a_{-1}^{-} a_{-1}^{+} a_{-1}^{+} - \left(a_{1}^{+} a_{1}^{-} a_{-1}^{-} a_{-1}^{-} + a_{1}^{-} a_{1}^{+} a_{+1}^{+} a_{+1}^{+} \right) \right] 0\rangle \\ &a_{-1}^{-} - a_{1}^{-} a_{1}^{-} a_{-1}^{-} a_{-1}^{+} + \left(a_{1}^{+} a_{1}^{-} a_{-1}^{-} a_{-1}^{-} - a_{1}^{-} a_{1}^{+} a_{+1}^{+} a_{-1}^{+} \right) \right] 0\rangle \\ &a_{-1}^{-} - a_{1}^{-} a_{1}^{-} a_{-1}^{-} a_{-1}^{+} + \left(a_{1}^{+} a_{1}^{-} a_{-1}^{-} a_{-1}^{-} - a_{1}^{-} a_{1}^{+} a_{+1}^{+} a_{-1}^{+} \right) \right] 0\rangle \\ &\left[\left(a_{1}^{+} a_{1}^{+} a_{-2}^{+} + a_{2}^{+} a_{-1}^{+} a_{-1}^{+} \right) \pm \left(a_{1}^{-} a_{1}^{-} a_{-2}^{-} + a_{2}^{-} a_{-1}^{-} a_{-1}^{-} \right) \right] 0\rangle \\ &\left[\left(a_{1}^{+} a_{1}^{+} a_{-2}^{+} - a_{2}^{+} a_{-1}^{+} a_{-1}^{+} \right) \pm \left(a_{1}^{-} a_{1}^{-} a_{-2}^{-} - a_{2}^{-} a_{-1}^{-} a_{-1}^{-} \right) \right] 0\rangle \\ &\left(a_{1}^{+} a_{1}^{+} a_{-1}^{+} + a_{1}^{-} a_{1}^{-} a_{-1}^{-} a_{-1}^{-} \right) 0\rangle \end{split} $	$\frac{1}{2.0 2.5 3.0 3.5 4.0 4.5 5.0} R\ell_s^{-1}$
$\frac{(a_1^+ a_1^+ a_{-1}^+ a_{-1}^+ a_{-1}^- a_1^- a_{-1}^- a_{-1}^-) 0\rangle}{\frac{1}{2} - N_R)^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

-	N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
	$N_L = N_R = 0$	0	+	+	0
		0	+	+	$\left \begin{array}{c} \left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+} \right) 0 \\ + + 1 \\ +$
	$N_{L} = N_{R} = 1$	0	-	-	$(a_1^+a_{-1}^ a_1^-a_{-1}^+) 0\rangle$
		2	+	+	$(a_1^{+}a_{-1}^{+}+a_1^{-}a_{-1}^{-}) _0$
_		2	-	+	$(a_1 a_{-1} - a_1 a_{-1}) 0$
		0	+	+	$\left(a_{2}^{+}a_{-2}^{-}+a_{2}^{-}a_{-2}^{+} ight)\left 0 ight.$
		0	-	-	$\left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+}\right)\left 0 ight.$
		0	+	+	$ \left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-} + a_{1}^{-}a_{-1}^{-}a_{-1}^{+}a_{-1}^{+} \right) 0 $
		0	-	-	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+}\right) 0$
		0	+	+	$a_1^+ a_1^- a_{-1}^+ a_{-1}^- 0\rangle$
		1	±	+	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-2}^{-} + a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{-}a_{-2}^{+} + a_{2}^{-}a_{-1}^{+}a_{-1}^{+} \right) \right] 0$
		1	±	-	$\left[(a_1^+a_1^+a_{-2}^ a_2^-a_{-1}^+a_{-1}^+) \pm (a_1^-a_1^-a_{-2}^+ - a_2^-a_{-1}^+a_{-1}^+) \right] 0$
		1	±	+	$\left[\left(a_{1}^{+}a_{1}^{-}a_{-2}^{+} + a_{2}^{+}a_{-1}^{-}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-} + a_{2}^{-}a_{-1}^{+}a_{-1}^{-} \right) \right] 0$
	$N_L = 2, N_R = 2$	1	±	-	$\left[\left(a_{1}^{+}a_{1}^{-}a_{-2}^{+} - a_{2}^{+}a_{-1}^{-}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-} - a_{2}^{-}a_{-1}^{+}a_{-1}^{-} \right) \right] 0\rangle$
		2	+	+	$\left(a_{2}^{+}a_{-2}^{+}+a_{2}^{-}a_{-2}^{-} ight)\left 0 ight.$
		2	-	+	$\left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-}\right)\left 0\right.$
		2	+	+	$\left \left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-} + a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+} \right) + \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-} + a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right] 0\rangle$
		2	+	-	$\left \left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-} + a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+} \right) - \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-} + a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right] 0\rangle$
		2	-	+	$\left \left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-} - a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+} \right) + \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-} - a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right] 0\rangle$
		2	-	-	$\left \left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-} - a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+} \right) - \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-} - a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right] 0\rangle$
		3	±	+	$\left[(a_1^+a_1^+a_{-2}^+ + a_2^+a_{-1}^+a_{-1}^+) \pm (a_1^-a_1^-a_{-2}^- + a_2^-a_{-1}^-a_{-1}^-) \right] 0$
		3	±	-	$\left\lfloor (a_1^+a_1^+a_{-2}^+ - a_2^+a_{-1}^+a_{-1}^+) \pm (a_1^-a_1^-a_{-2}^ a_2^-a_{-1}^-a_{-1}^-) \right\rfloor 0$
		4	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}a_{-1}^{-}\right) 0$
		4	-	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}-a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}\right)\left 0\right.$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2(N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

The Axionic States

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State	Operator that creates a massive excitation with momentum $\frac{2\pi k}{R}$
$N_L = N_R = 0$	0	+	+	0 angle	A = a + b = a + b = b + b = 0
	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right) 0\rangle$	$A_k \approx a_{k+1}a_{-1} - a_{k+1}a_{-1}$ for $k \ge 0$
$N_L = N_R = 1$	$\frac{0}{2}$	-	-	$\frac{(a_1^+ a_{-1}^ a_1^- a_{-1}^+) 0\rangle}{(a_1^+ a_{+}^+ + a_{-1}^- a_{-1}^-) 0\rangle}$	
	2	_	+	$(a_1^{+}a_{-1}^{+}+a_1^{-}a_{-1}^{-}) 0 angle$	N_L, N_R $ J P_\perp P_\parallel$ String State
		+	+	(1-1)(1-1)(1-1)(1-1)(1-1)(1-1)(1-1)(1-1	$N_L = N_R = 1 0 - - \qquad \qquad A_0 0 \rangle$
	0	-	-	$egin{array}{c} (a_2^{-}a_{-2}^{-}-a_2^{-}a_{-2}^{-}) & 0 angle \ (a_2^{+}a_{-2}^{-}-a_2^{-}a_{-2}^{-}) & 0 angle \end{array}$	$N_{I} = 2, N_{P} = 1 \begin{vmatrix} 0 & - \\ 0 & -$
	0	+	+	$ \left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-} + a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+} \right) \left 0 \right\rangle $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	-	-	$(a_1^+a_1^+a_{-1}^-a_{-1}^ a_1^-a_{-1}^-a_{-1}^+a_{-1}^-) 0\rangle$	$\begin{vmatrix} 0 \end{vmatrix} + \begin{vmatrix} + \end{vmatrix}$ $A_0 A_0 \ket{0}$
	1	±	+	$\begin{bmatrix} (a_1^+a_1^+a_{-2}^- + a_2^-a_{+1}^+, a_{+1}^+) \pm (a_1^-a_1^-a_{+2}^+ + a_2^-a_{+1}^+, a_{+1}^+) \end{bmatrix} 0\rangle$	$\begin{bmatrix} 0 & - & - \\ 1 & - & - \end{bmatrix} \xrightarrow{A_0} \begin{bmatrix} a_1^+ a_{-1}^- + a_1^- a_{-1}^- \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
	1	±	_	$ \begin{bmatrix} (a_1^+ a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ - a_2^- a_{-1}^+ a_{-1}^+) \end{bmatrix} 0 \rangle $	$N_L = 2, N_R = 2 \begin{vmatrix} 1 \\ 1 \end{vmatrix} + \begin{vmatrix} \pm \\ - \end{vmatrix} = \begin{vmatrix} A_1 & (a_{-1}^+ + a_{-1}) - A_{-1} & (a_1^+ + a_1) \end{vmatrix} \begin{vmatrix} 0 \\ 0 \end{vmatrix}$
	1	±	+	$\left[\left(a_{1}^{+}a_{1}^{-}a_{-2}^{+} + a_{2}^{+}a_{-1}^{-}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-} + a_{2}^{-}a_{-1}^{+}a_{-1}^{-} \right) \right] 0\rangle$	$\begin{bmatrix} 1 & \pm \\ 2 & + \end{bmatrix} - \begin{bmatrix} 1 & 1 & 1 \\ 2 & + \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & - \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & - $
$N_L = 2, N_R = 2$	1	±	_	$ \left[\left(a_{1}^{+}a_{1}^{-}a_{-2}^{+} - a_{2}^{+}a_{-1}^{-}a_{-1}^{+} \right) \pm \left(a_{1}^{-}a_{1}^{+}a_{-2}^{-} - a_{2}^{-}a_{-1}^{-}a_{-1}^{-} \right) \right] 0\rangle $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$\frac{2}{2}$	_	+	$(a_2 a_{-2} + a_2 a_{-2}) 0\rangle \ (a_2^+ a_{+2}^+ - a_2^- a_{-2}^-) 0 angle$	$ 0 - $ $A_2 0\rangle$
	2	+	+	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right)+\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}\right)\right]\left 0\right\rangle$	$0 - A_0 a_1^+ a_1^- 0 \rangle$
	2	+	-	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{-}a_{-1}^{-}a_{-1}^{+}\right)-\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right]\left 0\right\rangle$	$N_{I} = 3, N_{P} = 1 \begin{vmatrix} 1 & \pm \end{vmatrix}$ $A_{1} \left(a_{1}^{+} \mp a_{1}^{-} \right) 0\rangle$
	2		+	$\begin{bmatrix} (a_1^{+}a_1^{+}a_{-1}a_{-1} - a_1a_1a_{-1}a_{-1}) + (a_1^{+}a_1a_{-1}a_{-1} - a_1a_1^{+}a_{-1}a_{-1}) \end{bmatrix} 0\rangle$	$\begin{array}{c c} 1 & \pm \\ 2 & - \end{array} \begin{pmatrix} 1 & \pm \\ 2 & - \end{array} \begin{pmatrix} 1 & \pm \\ - & - \end{array} \begin{pmatrix} 1 & \pm \\ \end{pmatrix} \begin{pmatrix} 1 & \pm \\ \begin{pmatrix} 1 & \pm \\ - & - \\ \end{pmatrix} \begin{pmatrix} 1 & \pm \\ - & - \end{array} \begin{pmatrix} 1 & \pm \\ - & - \\ \end{pmatrix} \begin{pmatrix} 1 & \pm \\ \end{pmatrix} \begin{pmatrix} 1 & \pm \\ \begin{pmatrix} 1 & \pm \\ \end{pmatrix} \begin{pmatrix} 1 & - \\ - & - \\ \end{pmatrix} \begin{pmatrix} 1 & \pm \\ \end{pmatrix} \begin{pmatrix} 1 & \pm \\ \end{pmatrix} \begin{pmatrix} 1 & - \\ \end{pmatrix} \begin{pmatrix} 1 & \pm \\ \end{pmatrix} \begin{pmatrix} 1 & \pm \\ \end{pmatrix} \begin{pmatrix} 1 & - \\ \end{pmatrix} \begin{pmatrix} 1 & \pm \\ \end{pmatrix} \begin{pmatrix} 1 & - \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & - \\ \end{pmatrix} \begin{pmatrix}$
	$\frac{2}{3}$	±	+	$ \begin{bmatrix} (a_1 a_1 a_{-1} a_{-1} a_1 a_1 a_{-1} a_{-1}) - (a_1 a_1 a_{-1} a_{-1} - a_1 a_1 a_{-1} a_{-1}) \end{bmatrix} 0\rangle $ $ \begin{bmatrix} (a_1^+ a_1^+ a_{-2}^+ + a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^- + a_2^- a_{-1}^- a_{-1}^-) \end{bmatrix} 0\rangle $	$ \begin{vmatrix} 2 & + \\ 2 & - \end{vmatrix} A_0 (a_1^+ a_1^- a_1^- a_1) 0 \rangle \\ A_0 (a_1^+ a_1^+ + a_1^- a_1^-) 0 \rangle $
	3	±	-	$\left[\left(a_{1}^{+} a_{1}^{+} a_{-2}^{+} - a_{2}^{+} a_{-1}^{+} a_{-1}^{+} \right) \pm \left(a_{1}^{-} a_{1}^{-} a_{-2}^{-} - a_{2}^{-} a_{-1}^{-} a_{-1}^{-} \right) \right] \left 0 \right\rangle$	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
	4	+	+	$\begin{pmatrix} a_1^+a_1^+a_{-1}^+a_{-1}^++a_1^-a_1^-a_{-1}^-a_{-1}^- \end{pmatrix} 0\rangle$	$\begin{bmatrix} 0 & + \\ 0 & - \end{bmatrix} = \begin{bmatrix} A_1 A_0 0 \rangle \\ A_1 a^+ a^- 0 \rangle$
	4	-	+	$(a_1^{+}a_1^{+}a_{-1}^{+}a_{-1}^{-}-a_1^{-}a_1^{-}a_{-1}^{-}a_{-1}) 0\rangle$	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
					$N_L = 3, N_R = 2 \begin{vmatrix} 0 & - \end{vmatrix} \qquad A_0 \left(a_2^+ a_{-1}^- + a_2^- a_{-1}^+ \right) \begin{vmatrix} 0 \\ 0 \end{vmatrix}$
N_L, N_R	J	P_{\perp}	P_{\parallel}	String State	0 + +
$N_L = 1, N_R = 0$	1	±		$\left(a_{1}^{+}\pm a_{1}^{-} ight)\left 0 ight angle$	$\begin{vmatrix} 0 \\ - \end{vmatrix} - \begin{vmatrix} - \\ - \end{vmatrix} A_0 A_0 A_0 0\rangle$
	0	+		$\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+} ight)\left 0 ight angle$	$\begin{vmatrix} 0 \\ 0 \end{vmatrix} + \begin{vmatrix} + \\ + \end{vmatrix} = A_0 \left(a_2^+ a_{-2}^ a_2^- a_{-2}^+ \right) \begin{vmatrix} 0 \\ 0 \end{vmatrix}$
	0	-		$\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left 0 ight angle$	$N_L = 3, N_R = 3 \begin{bmatrix} 0 & - & - \\ 0 & - & + \end{bmatrix} \begin{bmatrix} A_{-1} (a_2^+ a_{-1}^- + a_{-1}^- a_{+1}^+) - A_{1} (a_{-2}^+ a_{-1}^- a_{-1}^+) \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
N O N 1	1	±		$\begin{pmatrix} a_1^+ a_1^+ a_{-1}^- \pm a_1^- a_1^- a_{-1}^+ \end{pmatrix} 0\rangle$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 $
$N_L = 2, N_R = 1$	2	± +		$(a_1 a_1 a_{-1} \pm a_1 a_1 a_{-1}) 0\rangle$ $(a_2^+ a_1^+ + a_2^- a_{-1}^-) 0\rangle$	$\begin{vmatrix} 0 \end{vmatrix} - \begin{vmatrix} + \end{vmatrix} \begin{pmatrix} -1 & -2 & -1 \\ -1 & -2 & -2 \\ -1 $
	2	_		$\begin{pmatrix} a_2 a_{-1} & a_2 a_{-1} \\ a_2^+ a_{-1}^+ & a_2^- a_{-1} \\ a_2^- a_{-1}^+ & a_2^- a_{-1} \end{pmatrix} 0\rangle$	$ \begin{vmatrix} 0 & - - \\ (A_2 a_{-1}^+ a_{-1}^- + A_{-2} a_1^+ a_1^-) 0 \rangle $
	3	±		$(a_1^+a_1^+a_{-1}^+\pm a_1^-a_1^-a_{-1}^-) 0\rangle$	

Closed flux tube results: the 0^{--} state and the axion

Results for SU(3) and $\beta = 6.338$

Closed flux tube results: the 0^{++} states and the axion

Results for all the ensembles

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 0$	0	+	+	$ 0\rangle$
	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left 0 ight angle$
$N_{r} = N_{p} = 1$	0	-	-	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+} ight)\left 0 ight angle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-} ight)\left 0 ight angle$
	2	-	+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left 0 ight angle$
	0	+	+	$(a_2^+a_{-2}^-+a_2^-a_{-2}^+) 0\rangle$
	0	-	-	$\left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+} ight)\left 0 ight angle$
	0	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+}\right)\left 0 ight angle$
	0	—	—	$(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+}) 0\rangle$
	0	+	+	$a_1^+a_1^-a_{-1}^+a_{-1}^- 0\rangle$
	1	±	+	$\left[(a_1^+ a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ + a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
	1	+ ±	-	$\left[(a_1^+ a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^+ - a_2^- a_{-1}^+ a_{-1}^+) \right] 0\rangle$
	1	±	+	$\left[(a_1^+ a_1^- a_{-2}^+ + a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
$N_L = 2, N_R = 2$	1	±	-	$\left[(a_1^+ a_1^- a_{-2}^+ - a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^ a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
	2	+	+	$\left(a_{2}^{+}a_{-2}^{+}+a_{2}^{-}a_{-2}^{-}\right)\left 0 ight angle$
	2	-	+	$\left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-}\right)\left 0 ight angle$
	2	+	+	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right)+\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right] 0\rangle$
	2	+	-	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right)-\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right]\left 0\right\rangle$
	2	-	+	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right)+\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right]\left 0\right\rangle$
	2	-	-	$\left \left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-} - a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+} \right) - \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-} - a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+} \right) \right] 0\rangle$
	3	±	+	$\left[(a_1^+ a_1^+ a_{-2}^+ + a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^- + a_2^- a_{-1}^- a_{-1}^-) \right] 0\rangle$
	3	±	_	$\left[(a_{1}^{+}a_{1}^{+}a_{-2}^{+} - a_{2}^{+}a_{-1}^{+}a_{-1}^{+}) \pm (a_{1}^{-}a_{1}^{-}a_{-2}^{-} - a_{2}^{-}a_{-1}^{-}a_{-1}^{-}) \right] 0\rangle$
	4	+	+	$(a_1^+a_1^+a_{-1}^+a_{-1}^++a_1^-a_{-1}^-a_{-1}^-) 0\rangle$
	4	_	+	$(a_1^+a_1^+a_1^+a_1^+a_1^+a_1^-a_1^-a_1^-a_1^-a_1^-) 0\rangle$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2 (N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

Closed flux tube results: the 0^{++} states and the axion

				Results	for all t	the ense	mbles		
ΔE	8 6 5 4 3 2		$N_L = N_R$ R = 1	$N_R = 3$					
	1					1		I	
		1	2	3	$\frac{4}{R}$	ℓ_s^{-1}	6	7	8
Γ		<i>SU</i> (3),β	= 6.06	25 🛆	<i>SU</i> (5)	$\beta, \beta = 17.6$	3	> <i>SU</i> (6),β	= 25.55
	\bigcirc	<i>SU</i> (3),β	= 6.33	8 🗸	⁷ SU(5)	$\beta, \beta = 18.3$	75		

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 0$	0	+	+	0 angle
	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+} ight)\left 0 ight angle$
$N_{\rm r} = N_{\rm p} = 1$	0	-	-	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+} ight)\left 0 ight angle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-} ight)\left 0 ight angle$
	2	-	+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-} ight)\left 0 ight angle$
	0	+	+	$\left(a_{2}^{+}a_{-2}^{-}+a_{2}^{-}a_{-2}^{+}\right)\left 0 ight angle$
	0	-	-	$\left(a_{2}^{+}a_{-2}^{-}-a_{2}^{-}a_{-2}^{+} ight)\left 0 ight angle$
	0	+	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{+}a_{-1}^{+} ight)\left 0 ight angle$
	0	-	—	$(a_1^+a_1^+a_{-1}^-a_{-1}^a_1^-a_1^-a_{-1}^+a_{-1}^+) 0\rangle$
	0	+	+	$a_1^+a_1^-a_{-1}^+a_{-1}^- 0\rangle$
	1	±	+	$\left[(a_1^+a_1^+a_{-2}^- + a_2^-a_{-1}^+a_{-1}^+) \pm (a_1^-a_1^-a_{-2}^+ + a_2^-a_{-1}^+a_{-1}^+) \right] 0\rangle$
	1	±	-	$\left[(a_{1}^{+}a_{1}^{+}a_{-2}^{-} - a_{2}^{-}a_{-1}^{+}a_{-1}^{+}) \pm (a_{1}^{-}a_{1}^{-}a_{-2}^{+} - a_{2}^{-}a_{-1}^{+}a_{-1}^{+}) \right] 0\rangle$
	1	±	+	$\left[(a_1^+ a_1^- a_{-2}^+ + a_2^+ a_{-1}^- a_{-1}^+) \pm (a_1^- a_1^+ a_{-2}^- + a_2^- a_{-1}^+ a_{-1}^-) \right] 0\rangle$
$N_L = 2, N_R = 2$	1	±	-	$\left[(a_{1}^{+}a_{1}^{-}a_{-2}^{+}-a_{2}^{+}a_{-1}^{-}a_{-1}^{+}) \pm (a_{1}^{-}a_{1}^{+}a_{-2}^{-}-a_{2}^{-}a_{-1}^{+}a_{-1}^{-}) \right] 0\rangle$
	2	+	+	$\left(a_{2}^{+}a_{-2}^{+}+a_{2}^{-}a_{-2}^{-} ight)\left 0 ight angle$
	2	-	+	$\left(a_{2}^{+}a_{-2}^{+}-a_{2}^{-}a_{-2}^{-} ight)\left 0 ight angle$
	2	+	+	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right)+\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right] 0\rangle$
	2	+	-	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}+a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right)-\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}+a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right]\left 0\right\rangle$
	2	-	+	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right)+\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right]\left 0\right\rangle$
	2	-	-	$\left[\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{-}-a_{1}^{-}a_{1}^{-}a_{-1}^{-}a_{-1}^{+}\right)-\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}a_{-1}^{-}-a_{1}^{-}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}\right)\right]\left 0\right\rangle$
	3	±	+	$\left[(a_1^+ a_1^+ a_{-2}^+ + a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^- + a_2^- a_{-1}^- a_{-1}^-) \right] 0\rangle$
	3	±	-	$\left[(a_1^+ a_1^+ a_{-2}^+ - a_2^+ a_{-1}^+ a_{-1}^+) \pm (a_1^- a_1^- a_{-2}^ a_2^- a_{-1}^- a_{-1}^-) \right] 0\rangle$
	4	+	+	$(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}a_{-1}^{-})) 0\rangle$
	4	-	+	$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2 (N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right)}$$

Closed flux tube results: the 0^{++} states and the axion

Closed flux tube results: J = 1, q = 1 ground, 1^{st} and 2^{nd}

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2 (N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4}} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right) + \left(\frac{2\pi q}{R}\right)^2$$

Closed flux tube results: 0^- , q = 1 ground and first excitations

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = 1, N_R = 0$	1	±		$\left(a_{1}^{+}\pm a_{1}^{-} ight)\left 0 ight angle$
	0	+		$(a_2^+a_{-1}^- + a_2^-a_{-1}^+) 0\rangle$
	0	-		$\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left 0 ight angle$
	1	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right)\left 0 ight angle$
$N_L = 2, N_R = 1$	1	+ ±		$\left(a_{1}^{+}a_{-1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right)\left 0 ight angle$
	2	+		$\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
	2	-		$(a_2^+a_{-1}^+ - a_2^-a_{-1}^-) 0\rangle$
	3	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$

N_L, N_R	J	P_{\perp}	P_{\parallel}	String State
$N_L = N_R = 1$	0	-	-	$ A_0 0 angle$
$N_{-} = 2 N_{-} = 1$	0	—		$A_1 0 angle$
$N_L = 2, N_R = 1$	1	±		$A_0\left(a_1^+\mp a_1^- ight)\left 0 ight angle$
	0	+	+	$A_0A_0 0 angle$
	0	-	-	$A_0 \left(a_1^+ a_{-1}^- + a_1^- a_{-1}^+ \right) \left 0 \right\rangle$
$N_{2} = 2 N_{2} = 2$	1	±	+	$\left[A_1\left(a_{-1}^+\mp a_{-1}^-\right)-A_{-1}\left(a_1^+\mp a_1^-\right)\right]\ket{0}$
$N_L = 2, N_R = 2$	1	±	-	$\left[A_{1}\left(a_{-1}^{+}\mp a_{-1}^{-} ight)+A_{-1}\left(a_{1}^{+}\mp a_{1}^{-} ight) ight]\left 0 ight angle$
	2	+	-	$A_0 \left(a_1^+ a_{-1}^+ - a_1^- a_{-1}^- ight) \ket{0}$
	2	_	-	$A_0 \left(a_1^+ a_{-1}^+ + a_1^- a_{-1}^- \right) \left 0 \right\rangle$

$$E_{\text{GGRT}}(N_L, N_R) = \sqrt{\frac{4\pi^2 (N_L - N_R)^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N_L + N_R - \frac{D-2}{12}\right) + \left(\frac{2\pi q}{R}\right)^2}$$

Open flux tube results: Σ_g^+ representation in SU(6)

Excitation	Symmetry	State	
N = 0	Σ_q^+	$ 0\rangle$	
N = 1	Π_u	$a_{1\pm}^{\dagger} 0 angle$	$a_{1-}^{\dagger} 0 angle$
N = 2	$\Sigma_g^{+\prime}$	$a_{1+}^{\dagger}a_{1-}^{\dagger} 0 angle$	
	Π_g	$a^{\dagger}_{2^+} 0 angle$	$a^{\dagger}_{2^{-}} 0 angle$
	Δ_g	$(a_{1^+}^\dagger)^2 0 angle$	$(a_{1^-}^\dagger)^2 0 angle$
N = 3	$\Sigma_u^{+\prime}$	$(a^{\dagger}_{1^+}a^{\dagger}_{2^-}+a^{\dagger}_{1^-}a^{\dagger}_{2^+}) 0 angle$	
	Σ_u^-	$ (a_{1+}^{\dagger}a_{2-}^{\dagger}-a_{1-}^{\dagger}a_{2+}^{\dagger}) 0 angle$	
	Π'_u	$a^{\dagger}_{3^+} 0 angle$	$a^{\dagger}_{3-} 0 angle$
	Π''_u	$(a_{1+}^{\dagger})^2 a_{1-}^{\dagger} 0 angle$	$a^{\dagger}_{1+}(a^{\dagger}_{1-})^2 0 angle$
	Δ_u	$a^{\dagger}_{1\pm}a^{\dagger}_{2\pm} 0 angle$	$a_{1-}^{\dagger}a_{2-}^{\dagger}\left 0 ight angle$
	ϕ_u	$(a_{1+}^{\dagger})^3 0 angle$	$(a_{1^-}^\dagger)^3 0 angle$
N = 4	$\Sigma_g^{+ \prime \prime}$	$a_{2\pm}^{\dagger}a_{2\pm}^{\dagger}\left 0 ight angle$	
	$\Sigma_a^{+\prime\prime\prime}$	$(a_{1+}^{\dagger})^2 (a_{1-}^{\dagger})^2 0\rangle$	
	$\Sigma_g^{+(iv)}$	$(a_{1+}^{\dagger}a_{3-}^{\dagger}+a_{1-}^{\dagger}a_{3+}^{\dagger}) 0\rangle$	
	Σ_g^-	$ (a_{1+}^{\dagger}a_{3-}^{\dagger}-a_{1-}^{\dagger}a_{3+}^{\dagger}) 0 angle$	
	Π'_g	$a_{4^+}^{\dagger} 0 angle$	$a^{\dagger}_{4^{-}} 0 angle$
	$\Pi_{g}^{\prime\prime}$	$(a^\dagger_{1+})^2a^\dagger_{2-} 0 angle$	$(a_{1-}^\dagger)^2 a_{2+}^\dagger 0 angle$
	$\Pi_{g}^{\prime\prime\prime}$	$a^\dagger_{1+}a^\dagger_{1-}a^\dagger_{2+}\ket{0}$	$a^\dagger_{1+}a^\dagger_{1-}a^\dagger_{2-}\ket{0}$
	Δ'_g	$a^{\dagger}_{1+}a^{\dagger}_{3+} 0 angle$	$a^{\dagger}_{1-}a^{\dagger}_{3-}\ket{0}$
	Δ_g''	$(a_{2^+}^{\dagger})^2 0\rangle$	$(a_{2^-}^{\dagger})^2 0 angle$
	$\Delta_g^{\prime\prime\prime}$	$(a_{1+}^{\dagger})^{3}a_{1-}^{\dagger} 0 angle$	$a^{\dagger}_{1+} (a^{\dagger}_{1-})^3 0 angle$
	Φ_g	$(a_{1\pm}^{\dagger})^2 a_{2\pm}^{\dagger} 0 angle$	$(a_{1^-}^\dagger)^{\hat{2}}a_{2^-}^\dagger 0 angle$
	Γ_g	$(a_{1\pm}^{\dagger})^4 0 angle$	$(a_{1^-}^\dagger)^4 0 angle$

Open flux tube results: Σ_g^- representation in SU(6)

Excitation	Symmetry	State	
N = 0	Σ_g^+	$ 0\rangle$	
N = 1	Π_u	$a_{1^+}^\dagger \ket{0}$	$a_{1-}^{\dagger} 0 angle$
N=2	$\Sigma_g^{+\prime}$	$a_{1+}^{\dagger}a_{1-}^{\dagger}\ket{0}$	
	Π_g	$a^{\dagger}_{2^+} 0 angle$	$a^{\dagger}_{2^{-}} \ket{0}$
	Δ_g	$(a_{1^+}^\dagger)^2 0 angle$	$(a_{1^-}^\dagger)^2 0 angle$
N = 3	$\Sigma_u^{+\prime}$	$ (a_{1+}^{\dagger}a_{2-}^{\dagger}+a_{1-}^{\dagger}a_{2+}^{\dagger}) 0 angle$	
	Σ_u^-	$ (a_{1+}^{\dagger}a_{2-}^{\dagger}-a_{1-}^{\dagger}a_{2+}^{\dagger}) 0 angle$	
	Π'_u	$ a_{3^+}^{\dagger} 0 angle$	$a^{\dagger}_{3^+} 0 angle$
	Π''_u	$(a_{1^+}^{\dagger})^2 a_{1^-}^{\dagger} 0 angle$	$a^{\dagger}_{1\pm}(a^{\dagger}_{1-})^2 0 angle$
	Δ_u	$a^{\dagger}_{1\pm}a^{\dagger}_{2\pm} 0 angle$	$a_{1-}^{\dagger}a_{2-}^{\dagger}\ket{0}$
	ϕ_u	$(a_{1\pm}^{\dagger})^3 0 angle$	$(a_{1^-}^\dagger)^3 0 angle$
N = 4	$\Sigma_g^{+ \prime \prime}$	$a^{\dagger}_{2^+}a^{\dagger}_{2^-}\ket{0}$	
	$\Sigma_{g}^{+\prime\prime\prime}$	$(a_{1^+}^\dagger)^2 (a_{1^-}^\dagger)^2 0 angle$	
	$\Sigma_g^{+(\mathrm{iv})}$	$ (a_{1+}^{\dagger}a_{3-}^{\dagger}+a_{1-}^{\dagger}a_{3+}^{\dagger}) 0 angle$	
	Σ_{q}^{-}	$ (a_{1^+}^{\dagger}a_{3^-}^{\dagger}-a_{1^-}^{\dagger}a_{3^+}^{\dagger}) 0 angle$	
	Π'_g	$a^{\dagger}_{4^+} 0 angle$	$a^{\dagger}_{4^{-}} 0 angle$
	$\Pi_{g}^{\prime\prime}$	$(a_{1+}^{\dagger})^{2}a_{2-}^{\dagger} 0 angle$	$(a^\dagger_{1-})^2 a^\dagger_{2+} 0 angle$
	$\Pi_{g}^{\prime\prime\prime}$	$a^\dagger_{1+}a^\dagger_{1-}a^\dagger_{2+} 0 angle$	$a_{1+}^{\dagger}a_{1-}^{\dagger}a_{2-}^{\dagger}\ket{0}$
	Δ'_{g}	$a^\dagger_{1+}a^\dagger_{3+} 0 angle$	$a^\dagger_{1-}a^\dagger_{3-}\ket{0}$
	Δ_g''	$(a_{2^+}^{\dagger})^2 0 angle$	$(a^{\dagger}_{2^-})^2 0 angle$
	$\Delta_g^{\prime\prime\prime}$	$(a_{1+}^{\dagger})^{3}a_{1-}^{\dagger} 0 angle$	$a_{1^+}^{\dagger} ar{(} a_{1^-}^{\dagger})^3 0 angle$
	Φ_g	$(a_{1+}^{\dagger})^2 a_{2+}^{\dagger} 0 angle$	$(a_{1^-}^\dagger)^2 a_{2^-}^\dagger 0 angle$
	Γ_g	$(a_{1^+}^\dagger)^{4} 0 angle$	$(a_{1^-}^\dagger)^4 0 angle$

Open flux tube results: Σ_g^- representation in SU(6)

Excitation	Symmetry	State	
N = 0	Σ_q^+	$ 0\rangle$	
N = 1	Π_u	$a_{1+}^{\dagger} 0 angle$	$a_{1-}^{\dagger} 0 angle$
N=2	$\Sigma_g^{+\prime}$	$a_{1+}^{\dagger}a_{1-}^{\dagger} 0 angle$	
	Π_g	$a^{\dagger}_{2^+} 0 angle$	$a^{\dagger}_{2^-} 0 angle$
	Δ_g	$(a_{1^+}^\dagger)^2 0 angle$	$(a_{1^-}^\dagger)^2 0 angle$
N = 3	$\Sigma_u^{+\prime}$	$ (a_{1^+}^{\dagger}a_{2^-}^{\dagger}+a_{1^-}^{\dagger}a_{2^+}^{\dagger}) 0 angle$	
	Σ_u^-	$ (a_{1+}^{\dagger}a_{2-}^{\dagger}-a_{1-}^{\dagger}a_{2+}^{\dagger}) 0 angle$	
	Π'_u	$a_{3+}^{\dagger} 0 angle$	$a_{3-}^{\dagger} 0 angle$
	Π''_u	$(a_{1^+}^{\dagger})^2 a_{1^-}^{\dagger} 0 angle$	$a_{1+}^{\dagger}(a_{1-}^{\dagger})^{2} 0 angle$
	Δ_u	$a^\dagger_{1\pm}a^\dagger_{2\pm} 0 angle$	$a_{1-}^{\dagger}a_{2-}^{\dagger}\left 0 ight angle$
	ϕ_u	$(a_{1\pm}^{\dagger})^3 0 angle$	$(a_{1^-}^\dagger)^3 0 angle$
N = 4	$\Sigma_g^{+ \prime \prime}$	$ a_{2^+}^\dagger a_{2^-}^\dagger 0 angle$	
	$\Sigma_{g}^{+\prime\prime\prime}$	$(a_{1^+}^\dagger)^2 (a_{1^-}^\dagger)^2 0 angle$	
	$\Sigma_g^{+(\mathrm{iv})}$	$(a_{1+}^{\dagger}a_{3-}^{\dagger}+a_{1-}^{\dagger}a_{3+}^{\dagger}) 0 angle$	
	Σ_{g}^{-}	$ (a_{1^+}^{\dagger}a_{3^-}^{\dagger}-a_{1^-}^{\dagger}a_{3^+}^{\dagger}) 0 angle$	
	Π'_g	$a^{\dagger}_{4^+} 0 angle$	$a^{\dagger}_{4^{-}} 0 angle$
	$\Pi_{g}^{\prime\prime}$	$(a_{1+}^{\dagger})^{2}a_{2-}^{\dagger} 0 angle$	$(a^\dagger_{1-})^2 a^\dagger_{2+} 0 angle$
	$\Pi_{g}^{\prime\prime\prime}$	$a^\dagger_{1+}a^\dagger_{1-}a^\dagger_{2+} 0 angle$	$a^\dagger_{1+}a^\dagger_{1-}a^\dagger_{2-}\ket{0}$
	Δ'_{g}	$a^\dagger_{1+}a^\dagger_{3+} 0 angle$	$a^\dagger_{1-}a^\dagger_{3-}\ket{0}$
	$\Delta_{g}^{\prime\prime}$	$(a^{\dagger}_{2^+})^2 0 angle$	$(a^{\dagger}_{2^-})^2 0 angle$
	$\Delta_g^{\prime\prime\prime}$	$(a_{1^+}^{\dagger})^3 a_{1^-}^{\dagger} 0 angle$	$a^{\dagger}_{1+}(a^{\dagger}_{1-})^{3} 0 angle$
	Φ_g	$(a^{\dagger}_{1+})^2a^{\dagger}_{2+} 0 angle$	$(a^{\dagger}_{1-})^2a^{\dagger}_{2-}\ket{0}$
	Γ_g	$(a^{\dagger}_{1^+})^4 0 angle$	$(a_{1^-}^\dagger)^4 0 angle$

 $SU(6), \Sigma_{g}^{-}, \beta = 24.00, \xi = 4.0, a_{s} = 0.4113(2), a_{t} = 0.0996(0)$ $\Delta V_{0,0} = 2.0247(99) \qquad \Delta V_{V} = 2.25 SU(3)$

Open flux tube results: Σ_u^+ representation in SU(6)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Excitation	Symmetry	State	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N = 0	Σ_g^+	$ 0\rangle$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N = 1	Π_u	$a_{1^+}^\dagger \ket{0}$	$a_{1^{-}}^{\dagger} 0 angle$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N=2	$\Sigma_g^{+\prime}$	$a_{1+}^{\dagger}a_{1-}^{\dagger}\ket{0}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Π_g	$a^{\dagger}_{2^+} 0 angle$	$a_{2^-}^{\dagger} 0 angle$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Δ_g	$(a_{1^+}^\dagger)^2 0 angle$	$(a_{1^-}^\dagger)^2 0 angle$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N = 3	$\Sigma_u^{+\prime}$	$ (a_{1^+}^{\dagger}a_{2^-}^{\dagger}+a_{1^-}^{\dagger}a_{2^+}^{\dagger}) 0 angle$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Σ_u^-	$ (a_{1+}^{\intercal}a_{2-}^{\intercal}-a_{1-}^{\intercal}a_{2+}^{\intercal}) 0 angle$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Π'_u	$a_{3+}^{\dagger}\ket{0}$	$a_{3-}^{\dagger}\ket{0}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Π''_u	$(a_{1,+}^{\dagger})^2 a_{1,-}^{\dagger} 0 angle$	$a_{1+1}^{\dagger}(a_{1-1}^{\dagger})^2 0 angle$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Δ_u	$a_{1+}^{\dagger}a_{2+}^{\dagger} 0 angle$	$a_{1-}^{\intercal}a_{2-}^{\intercal}\left 0 ight angle$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ϕ_u	$(a_{1+}^{\dagger})^3 0\rangle$	$(a_{1^-}^{\scriptscriptstyle \intercal})^3 0 angle$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N = 4	$\Sigma_{g}^{+\prime\prime}$	$a_{2+}^{\dagger}a_{2-}^{\dagger} 0 angle$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\Sigma_g^{+\prime\prime\prime}$	$(a_{1^+}^{\dagger})^2 (a_{1^-}^{\dagger})^2 0\rangle$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\Sigma_g^{+(W)}$	$ (a_{1^+}^{\scriptscriptstyle \intercal}a_{3^-}^{\scriptscriptstyle \intercal} + a_{1^-}^{\scriptscriptstyle \intercal}a_{3^+}^{\scriptscriptstyle \intercal}) 0 angle$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Σ_g^-	$ (a_{1+}^{\dagger}a_{3-}^{\dagger}-a_{1-}^{\dagger}a_{3+}^{\dagger}) 0 angle$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Π'_{g}	$a_{4+}^{\intercal} 0 angle$	$a_{4-}^{\intercal} 0 angle$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Π_{g}	$(a_{1+}^{\dagger})^2 a_{2-}^{\dagger} 0 angle$	$(a_{1-}^{\dagger})^2a_{2+}^{\dagger} 0 angle$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\Pi_{g}^{\prime\prime\prime}$	$a^\dagger_{1+}a^\dagger_{1-}a^\dagger_{2+}\ket{0}$	$a^{\dagger}_{1+}a^{\dagger}_{1-}a^{\dagger}_{2-}\left 0 ight angle$
$ \begin{vmatrix} \Delta_{g}^{''} & (a_{2^{+}}^{\dagger})^{2} 0\rangle & (a_{2^{-}}^{\dagger})^{2} 0\rangle \\ \Delta_{g}^{'''} & (a_{1^{+}}^{\dagger})^{3}a_{1^{-}}^{\dagger} 0\rangle & a_{1^{+}}^{\dagger}(a_{1^{-}}^{\dagger})^{3} 0\rangle \\ \Phi_{g} & (a_{1^{+}}^{\dagger})^{2}a_{2^{+}}^{\dagger} 0\rangle & (a_{1^{-}}^{\dagger})^{2}a_{2^{-}}^{\dagger} 0\rangle \\ \Gamma_{g} & (a_{1^{+}}^{\dagger})^{4} 0\rangle & (a_{1^{-}}^{\dagger})^{4} 0\rangle \end{vmatrix} $		Δ'_{g}	$a_{1+}^{\dagger}a_{3+}^{\dagger} 0 angle$	$a_{1-}^{\dagger}a_{3-}^{\dagger}\left 0 ight angle$
$ \begin{vmatrix} \Delta_{g}^{'''} & (a_{1^+}^{\dagger})^3 a_{1^-}^{\dagger} 0 \rangle & a_{1^+}^{\dagger} (a_{1^-}^{\dagger})^3 0 \rangle \\ \Phi_{g} & (a_{1^+}^{\dagger})^2 a_{2^+}^{\dagger} 0 \rangle & (a_{1^-}^{\dagger})^2 a_{2^-}^{\dagger} 0 \rangle \\ \Gamma_{g} & (a_{1^+}^{\dagger})^4 0 \rangle & (a_{1^-}^{\dagger})^4 0 \rangle \end{vmatrix} $		$\Delta_{g}^{\prime\prime}$	$(a_{2^+}^{\dagger})^2 0 angle$	$(a^{\dagger}_{2^-})^2 0 angle$
$ \begin{vmatrix} \Phi_g \\ \Gamma_g \end{vmatrix} \begin{pmatrix} (a_{1+}^{\dagger})^2 a_{2+}^{\dagger} 0 \rangle & (a_{1-}^{\dagger})^2 a_{2-}^{\dagger} 0 \rangle \\ (a_{1+}^{\dagger})^4 0 \rangle & (a_{1-}^{\dagger})^4 0 \rangle \\ \end{vmatrix} $		$\Delta_g^{\prime\prime\prime}$	$(a_{1^+}^\dagger)^3 a_{1^-}^\dagger 0 angle$	$a^\dagger_{1+}(a^\dagger_{1-})^3 0 angle$
$ \Gamma_g (a_{1^+}^{\dagger})^4 0 angle (a_{1^-}^{\dagger})^4 0 angle$		Φ_g	$(a_{1+}^{\dagger})^2 a_{2+}^{\dagger} 0 angle$	$(a^{\dagger}_{1-})^2a^{\dagger}_{2-}\left 0 ight angle$
		Γ_g	$(a^{\dagger}_{1^+})^4 0 angle$	$(a_{1^-}^\dagger)^4 0 angle$

Open flux tube results: Σ_u^- representation in SU(6)

Symmetry	State	
Σ_g^+	$ 0\rangle$	
Π_u	$a^{\dagger}_{1^+} 0 angle$	$a_{1^{-}}^{\dagger} 0 angle$
$\Sigma_g^{+\prime}$	$a^{\dagger}_{1+}a^{\dagger}_{1-}\left 0 ight angle$	
Π_g	$a^{\dagger}_{2^+} 0 angle$	$a^{\dagger}_{2^{-}} 0 angle$
Δ_g	$(a_{1^+}^\dagger)^2 0 angle$	$(a_{1^-}^\dagger)^2 0 angle$
$\Sigma_u^{+\prime}$	$(a_{1+}^{\dagger}a_{2-}^{\dagger}+a_{1-}^{\dagger}a_{2+}^{\dagger}) 0 angle$	
Σ_u^-	$(a_{1+}^{\dagger}a_{2-}^{\dagger}-a_{1-}^{\dagger}a_{2+}^{\dagger}) 0 angle$	
Π'_u	$a^{\dagger}_{3^+} 0 angle$	$a^{\dagger}_{3^{-}}\ket{0}$
Π_u''	$(a^\dagger_{1\pm})^2a^\dagger_{1\pm} 0 angle$	$a^\dagger_{1\pm}(a^\dagger_{1-})^2 0 angle$
Δ_u	$a^\dagger_{1\pm}a^\dagger_{2\pm} 0 angle$	$a_{1-}^{\dagger}a_{2-}^{\dagger}\ket{0}$
ϕ_u	$(a_{1+}^{\dagger})^3 0 angle$	$(a_{1-}^{\dagger})^3 0 angle$
$\Sigma_g^{+ \prime \prime}$	$ a_{2^+}^\dagger a_{2^-}^\dagger 0 angle$	
$\Sigma_{g}^{+\prime\prime\prime}$	$(a_{1^+}^{\dagger})^2 (a_{1^-}^{\dagger})^2 0 angle$	
$\Sigma_g^{+(\mathrm{iv})}$	$(a_{1+}^{\dagger}a_{3-}^{\dagger}+a_{1-}^{\dagger}a_{3+}^{\dagger}) 0\rangle$	
Σ_g^-	$(a_{1+}^{\dagger}a_{3-}^{\dagger}-a_{1-}^{\dagger}a_{3+}^{\dagger}) 0 angle$	
Π'_g	$a^{\dagger}_{4^+} 0 angle$	$a^{\dagger}_{4^-} 0 angle$
$\Pi_{g}^{\prime\prime}$	$(a_{1+}^{\dagger})^2 a_{2-}^{\dagger} 0 angle$	$(a^\dagger_{1-})^2 a^\dagger_{2+} 0 angle$
$\Pi_{g}^{\prime\prime\prime}$	$a^\dagger_{1+}a^\dagger_{1-}a^\dagger_{2+}\ket{0}$	$a^\dagger_{1+}a^\dagger_{1-}a^\dagger_{2-}\ket{0}$
Δ'_g	$a_{1+}^{\dagger}a_{3+}^{\dagger} 0 angle$	$a^{\dagger}_{1-}a^{\dagger}_{3-} 0 angle$
$\Delta_g^{\prime\prime}$	$(a_{2^+}^{\dagger})^2 0\rangle$	$(a^{\dagger}_{2^-})^2 0 angle$
$\Delta_g^{\prime\prime\prime}$	$(a_{1+}^{\dagger})^{3}a_{1-}^{\dagger} 0 angle$	$a^{\dagger}_{1+} ilde{(}a^{\dagger}_{1-})^3 0 angle$
Φ_g	$(a_{1+}^{\dagger})^2 a_{2+}^{\dagger} 0\rangle$	$(\hat{a}_{1^{-}}^{\dagger})^{2}\hat{a}_{2^{-}}^{\dagger} 0 angle$
Γ_g	$(a^{\dagger}_{1^+})^{ ilde{4}} 0 angle$	$(a^{\dagger}_{1-})^{ ilde{4}} 0 angle$
	$\frac{\sum_{g}^{+}}{\prod_{u}}$ $\frac{\sum_{g}^{+'}}{\prod_{g}}$ $\frac{\sum_{g}^{+''}}{\prod_{g}}$ $\frac{\sum_{u}^{+''}}{\sum_{u}^{-}}$ $\frac{\sum_{u}^{+''}}{\prod_{u}^{u}}$ $\frac{\sum_{g}^{+'''}}{\sum_{g}^{+''''}}$ $\frac{\sum_{g}^{+'''}}{\sum_{g}^{+''''}}$ $\frac{\sum_{g}^{-}}{\prod_{g}^{'''}}$ $\frac{\prod_{g}^{'''}}{\prod_{g}^{''''}}$ $\frac{\sum_{g}^{-}}{\prod_{g}^{'''''}}$ $\frac{\sum_{g}^{-}}{\prod_{g}^{'''''''''''''''''''''''''''''''''''$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Open flux tube results: Σ_u^- representation in SU(6)

0.354(6)

 Q_{ϕ}

0.346(7)

0.337(10)

Excitation	Symmetry	State	
N = 0	Σ_g^+	$ 0\rangle$	
N = 1	Π_u	$a_{1+}^{\dagger} 0 angle$	$a_{1-}^{\dagger} 0 angle$
N=2	$\Sigma_g^{+\prime}$	$a_{1+}^{\dagger}a_{1-}^{\dagger} 0 angle$	
	Π_g	$a^{\dagger}_{2^+} 0 angle$	$a^{\dagger}_{2^{-}} 0 angle$
	Δ_g	$(a_{1^+}^\dagger)^2 0 angle$	$(a_{1^-}^\dagger)^2 0 angle$
N = 3	$\Sigma_u^{+\prime}$	$ (a_{1+}^{\dagger}a_{2-}^{\dagger}+a_{1-}^{\dagger}a_{2+}^{\dagger}) 0 angle$	
	Σ_u^-	$ (a_{1+}^{\intercal}a_{2-}^{\intercal}-a_{1-}^{\intercal}a_{2+}^{\intercal}) 0 angle$	
	Π'_u	$ a_{3^+}^{\dagger} 0 angle$	$a^{\dagger}_{3^{-}} 0 angle$
	Π''_u	$(a_{1+}^{\dagger})^{2}a_{1-}^{\dagger} 0 angle$	$a^{\dagger}_{1+}(a^{\dagger}_{1-})^2 0 angle$
	Δ_u	$a^\dagger_{1\pm}a^\dagger_{2\pm} 0 angle$	$a_{1-}^{\dagger}a_{2-}^{\dagger}\ket{0}$
	ϕ_u	$(a_{1\pm}^{\dagger})^3 0 angle$	$(a_{1-}^{\dagger})^3 0 angle$
N = 4	$\Sigma_g^{+ \prime \prime}$	$a_{2^+}^\dagger a_{2^-}^\dagger \ket{0}$	
	$\Sigma_{g}^{+\prime\prime\prime}$	$(a_{1^+}^\dagger)^2 (a_{1^-}^\dagger)^2 0 angle$	
	$\Sigma_g^{+(\mathrm{iv})}$	$ (a_{1+}^{\dagger}a_{3-}^{\dagger}+a_{1-}^{\dagger}a_{3+}^{\dagger}) 0\rangle$	
	Σ_g^-	$ (a_{1+}^{\dagger}a_{3-}^{\dagger}-a_{1-}^{\dagger}a_{3+}^{\dagger}) 0 angle$	
	Π'_g	$a^{\dagger}_{4^+} 0 angle$	$a^{\dagger}_{4^{-}} 0 angle$
	$\Pi_{g}^{\prime\prime}$	$(a_{1+}^{\dagger})^{2}a_{2-}^{\dagger} 0 angle$	$(a_{1-}^\dagger)^2 a_{2+}^\dagger 0 angle$
	$\Pi_{g}^{\prime\prime\prime}$	$a^\dagger_{1+}a^\dagger_{1-}a^\dagger_{2+} 0 angle$	$a^{\dagger}_{1+}a^{\dagger}_{1-}a^{\dagger}_{2-}\left 0 ight angle$
	Δ'_g	$a_{1+}^{\dagger}a_{3+}^{\dagger} 0\rangle$	$a^{\dagger}_{1-}a^{\dagger}_{3-} 0 angle$
	Δ_g''	$(a_{2^+}^{\dagger})^2 0\rangle$	$(a^{\dagger}_{2^-})^2 0 angle$
	$\Delta_g^{\prime\prime\prime}$	$(a_{1+}^{\dagger})^{3}a_{1-}^{\dagger} 0 angle$	$a^\dagger_{1+} ar{(}a^\dagger_{1-})^3 0 angle$
	Φ_g	$(a_{1+}^{\dagger})^2 a_{2+}^{\dagger} 0 angle$	$(a^\dagger_{1-})^2 a^\dagger_{2-} 0 angle$
	Γ_g	$(a_{1+}^{\dagger})^{4} 0 angle$	$(a_{1^-}^\dagger)^{ar{4}} 0 angle$

 $SU(6), \Sigma_u^-, \beta = 24.00, \xi = 4.0, a_s = 0.4113(2), a_t = 0.0996(0)$ $\Delta V_{0,0} = 1.6638(86)$ $\Delta_V = 1.85 \ SU(3)$ 11 5.0 $\Delta V_{1,0} = 2.8498(357)$ $\Delta_V = 3.30 \; SU(3)$ • • T $\Delta V_{2,0} = 4.4757(349)$ 曲 4.54.0 $\cdot V_{\Sigma_g^+}(R)]\ell_s$ $\mathbf{\Phi}$ $\Delta V_{0,0}$ $\Delta V_{1,0}$ 3.5- $\Delta V_{2,0}$ ж 3.0[V(R)2.5Θ 2.0SU(3)SU(5)SU(6) 2^{++} 3 1.812(16)1.647(23)1.653(17)5 $m\ell_s$ Q_{ϕ} 0.377(7)0.387(10)0.385(10) $R\ell_s^{-1}$ 1.656(2) from closed string 2+ $m\ell_s$ 1.811(16)1.648(23)1.656(17)

Outlook

- We have obtained the spectrum of closed flux-tubes in 4D SU(N) Gauge Theories
 - The interaction involving axions can be approximated by $T\overline{T}$ deformation
 - We observe two towers of states (phonon) + (axions + phonon) states
- We have obtained the spectrum of open flux-tubes in 4D SU(N) Gauge Theories
 - The spectrum involves an axion with the same mass as that for the closed flux-tube
 - There is need for an Effective String Theory for Open Flux Tubes
 - TBA analysis for the Open Flux tube is needed
- Spectrum of closed flux tube supports that it can be described by worldsheet fields only

Thanks for your attention!!!

Thanks Derek Leinweber for the amazing visualizations