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Takeaway message before I begin

Regulating the standard model (or chiral gauge theories) on the 
lattice has remained one of the nagging unsolved problems over 
the last forty years. 

Recent developments provide major breakthroughs that has 
brought us very close to solving this problem. 

But, some challenges remain.

That’s the whole talk!



Plan of the talk
• What are chiral gauge theories?

• Why is it hard to formulate them on the lattice? 

• A few of the past attempts, that are yet to work or don’t work. 

• What is new and why is it exciting?



Chiral gauge theories
Even dimensional world with massless fermions and gauge field. 

Chiral symmetry is gauged. 

Fermion mass terms transform under gauge transformation. 

So, a simple mass term is disallowed.

Example: The standard model.

Good chiral symmetry is essential



Why is chiral symmetry hard?

Nielsen-Ninomiya theorem is one of the major reasons.

Nielsen Ninomiya (1981): Cannot 
formulate Dirac fermion with exact 
chiral symmetry without an unwanted 
doubling of all fermion species. 

Arbitrary number of massless Dirac 
fermions hard: global chiral symmetry

Odd number of Weyl fermions needed 
for gauging chiral symmetry



Why chiral symmetry is hard: Dispersion 
(1 spatial dimension)

Continuum dispersion for a
Dirac Hamiltonian
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The no-go is better visualized 
using dispersion relation in 
Minkowski space-time (time 
continuous). 

Hamiltonian formulation. 

𝐸 = ±𝑝



Brilliuoin zones (Dirac)

Lattice in space. 

Time not discretized. 

Solving the naively discretized 
Dirac Hamiltonian with 
eigenvalues ±sin 𝑝

𝐸 = ±sin 𝑝
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Brilliuoin zones(Weyl)
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Wilson term for Dirac

Lattice in space. 

Time not discretized. 

Solving the naively discretized 
Dirac Hamiltonian with 
eigenvalues ±sin 𝑝

𝐸 = ±sin 𝑝
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Wilson term removes this. 
But kills chiral symmetryGaplessness is not protected



Domain wall fermion for global chiral 
symmetry

Standard domain wall
fermion defect 
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Periodic boundary condition in all 
directions

Kaplan 1992

Higher dimensional Dirac fermion theory
with mass defect



Domain wall fermion

Standard domain wall
fermion defect 

In fact, we can get rid of the negative mass region

and work with open boundary condition in 𝑥%

𝑥%

(OBC)



Towards the spectrum: the DW 
Hamiltonian
It’s the Wilson fermion with no discretization in time. 

Single particle Hamiltonian: H = −𝑖𝛾!∇! +𝑚 + "
#
∇

∇!= Symmetric finite difference in space
∇= symmetric discrete spatial Laplacian



Spectrum

PBC

Opposite chiralities

Momentum along the 
compacitified dimension 
with PBC (periodic 
boundary condition)
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=< 𝜓∗ 𝐻 𝜓 >

< 𝜓∗ ∇"𝜓 >



• Right and left moving modes separated in 
space. So, any quantum correction to mass 
exponentially suppressed. 

• Allow gauge fields to talk to both walls in the 
same way producing a vector gauge theory. 

• Very useful in QCD simulations.

Solved using domain wall fermions

𝑥%

𝑥&

Other work related to domain wall fermions: Neuberger, Narayanan, Luscher, 
Shamir, Ginsparg-Wilson



Doesn’t work for chiral gauge theories
The idea does not work for chiral gauge theories though. 

The construction in finite volume necessarily has two defects. 

Two defects lead to opposite chiralities producing vector theory.

We need to isolate Weyl fermions of a particular chirality --- impossible with the 
standard domain wall setup. 



How about a single disk-like defect?

Standard domain wall
fermion defect 

The new suggestion

𝑥%

Sew the ends partially



Opposite chirality on the two sides..

Maybe the problem is that we are keeping the 
definition of chirality position independent.

𝑥)

𝑥%



Single chirality: Weyl mode

Define chirality in a position dependent 
manner

Define chirality as clockwise travel vs
anticlockwise travel:

counter-clockwise

clockwise

Phys.Rev.Lett. 132 (2024) 14, 141603 (Kaplan)



Disc

𝑅

Check the dispersion.

How? 

Broken translation invariance
along both 𝑥' and 𝑥(

Does not make sense to plot
𝐸 vs 𝑝'

𝑥'

𝑥(
Kaplan, Sen, Phys.Rev.Lett. 132 (2024) 14, 141604



Disc

𝐽

𝑅

We have rotational invariance (approx).

Diagonalize the lattice Hamiltonian.

Compute expectation values of
angular momentum 𝐽

Plot 𝐸 vs 𝐽

𝑥'

𝑥(
Kaplan, Sen, Phys.Rev.Lett. 132 (2024) 14, 141604



Dispersion for the disk
Exactly as expected 
from the continuum

Type
equation
here.

𝐸 = < 𝜓∗𝐻 𝜓 >

Disk of radius 𝑅 = 34 in 
lattice units.

< 𝜓∗𝐽 𝜓 >

Linear dispersion:

𝐸 = −𝐽/𝑅

Each point 
corresponds to a 
single state.

Kaplan, Sen, Phys.Rev.Lett. 132 (2024) 14, 141604



Kaplan, Sen, Phys.Rev.Lett. 132 (2024) 14, 141604



Kaplan, Sen, Phys.Rev.Lett. 132 (2024) 14, 141604



Gauging

Can engineer any number of Weyl fermions on the boundary.

We can gauge any subgroup of the available global symmetry of the 
free fermion theory. ---- Makes sense only if the theory is anomaly 
free.



1+1 D massless Dirac fermion spectrum

Right movingLeft moving
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Edge world: Anomaly, Weyl fermion

Right moving
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Vector current not conserved, by 
itself is sick in an electric field.

Current ∝ 𝐸
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Can exist on the boundary of a 
higher dimensional theory



Domain wall + anomaly

Right moving

Left moving 𝑬𝟏 = 𝝏𝟎𝑨𝟏 − 𝝏𝟏𝑨𝟎

𝒎 > 𝟎 𝒎 < 𝟎𝒎 < 𝟎

⇒ 𝑗%= 𝜕<𝐴& − 𝜕&𝐴< = 𝐸&

𝒙𝟏

𝒙𝟐

Fermion number 
current (bulk) Gauge the Dirac 

fermion

2 + 1 D Dirac fermion 
setup with domain walls

Bulk talks to the 
boundary, great for 
QCD



Domain wall + anomaly + QCD

Right chirality

Left chirality

𝒎 > 𝟎 𝒎 < 𝟎𝒎 < 𝟎

𝒙𝟐
Bulk talks to the 
boundary, great for 
QCD

The two walls talk 
to each other

The same 
locations in 
the universe



disk + anomaly 

Different locations in the 
universe, shouldn’t 
communicate across the 
defect



disk + anomaly 

Different locations in the 
universe, shouldn’t 
communicate across the 
defect

But they will if the 
boundary theory has 
gauge anomaly



disk + anomaly 

Different locations in the 
universe, shouldn’t 
communicate across the 
defect

But they will if the 
boundary theory has 
gauge anomaly

Thankfully the standard 
model is anomaly free. 

So, the disk construction 
makes sense and the 
boundary theory is local. 



Gauging

Integrate over the boundary gauge field 
𝐴%

Bulk gauge field satisfies equations of 
motion (e.g. YM) while matching 𝐴%
on the boundary.

𝐴A

𝐵A

YM

YM

Want a 𝑑 = 2, dimensional gauge field 𝐴$ on the edge.. 

𝑑 = 2 dimensional gauge field 𝐵$ in 𝑑 + 1=3 dimensional
bulk.



Summary

We have a sensible microscopic theory of a Dirac fermion which at 
low energy produces a single Weyl fermion on the lattice.

Nielsen Ninomiya is not an obstacle. We were fixated on the wrong
kind of defect.

Removes one of the most significant obstacles of realizing a chiral 
gauge theory. 

There is more to do though!



Future work 
What’s the overlap operator for this setup?

How does the latticized version of the overlap operator (lattice 
boundary theory) realize a Weyl fermion?

Gauge this theory on a small lattice and compute the path integral 
exactly.

What’s the ideal way to simulate this theory? (gauging the full theory 
or the overlap operator?)


