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Distinction between Higgs and confinement?

What is the physical distinction (if any) between the Higgs and confinement phases of, e.g., an
SU(2) gauge Higgs theory?

We know that both phases have C confinement: all asymptotic particle states are color neutral.
Yet there would appear to be some qualitative differences.

In the Higgs phase, as
we know from ordinary
perturbation theory:

1 There are only Yukawa forces.
2 There are no linear Regge

trajectories.
3 There is no flux tube formation,

even as metastable states.

Differs from the situation in the confined region of the phase diagram.

Can we make the distinction precise?
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What is the binding energy of the proton?

Or the J/ψ, or any hadron. Obviously we cannot ionize a proton, or quarkonium, at least experimentally.
Instead of an isolated quark and antiquark, we get a bunch of color neutral hadrons.

H atom

quarkonium

cloud of hadrons

But there are physical states in the Hilbert space which do correspond to isolated (“ionized”) quarks (e.g. of
electric charge± 2

3 e), separated by a large distance. Even if these states are hard to realize experimentally.

cloud of hadrons

glueΨV =
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Unscreened charge states

For a qq system, they have this form

ΨV ≡ qa(x)V ab(x,y;A)qb(y)Ψ0

where V (x,y;A) is a gauge bi-covariant operator which is a functional of only the gauge field,
transforming as

V (x,y;A)→ g(x)V (x,y;A)g†(y)

In QCD there would be, e.g., a + 2
3 electric charge at x, and a − 2

3 electric charge at y. Of
course the system would rapidly decay into integer-charged hadrons.

But the question is: what is the energy EV (R) of such states of isolated quarks, as separation
R→∞?
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Separation-of-charge (“Sc”) confinement

Let
EV (R) = 〈ΨV |H|ΨV 〉 − Evac

A gauge theory has the property of separation-of-charge confinement if the following condition
is satisfied:

Sc confinement

lim
R→∞

EV (R) = ∞

for ANY choice of bi-covariant V (x,y;A).

Again V (x,y;A) depends only on the gauge field, not on any matter fields.

This is a much stronger condition than C confinement. It holds for QCD. What about gauge
Higgs theories?
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Existence of Sc-confinement

Consider a lattice SU(2) gauge-Higgs theory with fixed modulus Higgs |φ| = 1:

S = −β
∑
plaq

1
2

Tr[UUU†U†]− γ
∑
links

φ†Uφ

1 Does Sc-confinement exist anywhere in the β − γ phase diagram, apart from pure gauge theory
(γ = 0)?

Yes. We can show that SU(2) gauge-Higgs theory is Sc-confining at least in the region

γ � β � 1 and γ �
1
10

This is based on strong-coupling expansions and a theorem (Gershgorim) in linear algebra.
Matsuyama & JG, PRD 98 (2018) 074504.

2 Then does Sc-confinement hold everywhere in the β − γ phase diagram?

No. We can construct V operators which violate the Sc-confinement criterion when γ is large enough.
Matsuyama & JG, PRD 96 (2017), 094510

So there must exist a transition between Sc and C confinement.
Does it have anything to do with symmetry?
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Spontaneous Breaking

of Gauge Symmetry
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Charged states and gauge symmetry

One often hears that physical states are always gauge invariant. This is demonstrably untrue.

Consider a quantized Maxwell field coupled to a static charge (e.g. infinite mass fermion). The ground state
of the system in an infinite volume is (Dirac, 1955)

Ψchrg = ψ(x)ρ(x;A)Ψ0

ρ(x;A) = exp
[
−i

e

4π

∫
d3z Ai(z)

∂

∂zi

1
|x− z|

]
Ψ0[A] = exp

[
−
∫

d3x

∫
d3y
∇×A(x) · ∇ ×A(y)

16π3|x− y|2

]

Consider a U(1) gauge transformation

g(x) = eiθ(x) = eiθ0eiθ̃(x)

where θ0 is the zero mode of θ(x).
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The Global Center Subgroup

Under this transformation

ψ(x)→ ψ(x)e−iθ(x) , ρ(x)→ eiθ̃(x) , Ψ0 → Ψ0

And therefore

Ψchrg → e−iθ0 Ψchrg

Although the Gauss Law is satisfied, and Ψchrg is physical state, it is nevertheless not invariant under
constant U(1) gauge transformations

g(x) = eiθ0

These transformations form the Global Center Subgroup (GCS) of the U(1) gauge group.

Add a dynamical scalar field φ, and we construct fully gauge-invariant neutral states

Ψneutral = ψ(x)φ(x)Ψ0 ,

Unless the GCS is spontaneously broken, there is a sharp distinction, in infinite volume, between charged
and neutral states

〈Ψneutral|Ψchrg〉 = 0
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Pseudomatter Fields

In SU(N) gauge theories the GCS is g(x) = z1 with z ∈ ZN .

Definition
A pseudomatter field ξ(x;A) is a functional of the gauge field on a time slice which
transforms like a field in the fundamental representation of the gauge group, except under
transformations in the GCS.

Examples:

ρ(x;A) = exp
[
−i

e

4π

∫
d3z Ai(z)

∂

∂zi

1
|x− z|

]
Gauge transformations to a physical gauge (F [A] = 0), e.g. Coulomb or axial gauge, can be
decomposed into pseudomatter fields.

Eigenstates ξn of the covariant lattice Laplacian

−Dabxy [U ]ξbn(y;U) = λnξ
a
n(x;U)

where

Dabxy =
3∑
k=1

[
2δabδxy − Uabk (x)δy,x+k̂ − U

†ab
k

(x− k̂)δy,x−k̂

]
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Gauge Higgs theory as a spin glass I

So in non-abelian theories, for arbitrary pseudomatter fields ξ(x; U), we can construct charged physical
states, and neutral states in which charge is screened by matter

Ψchrg = ψ(x)ξ(x; U)Ψ0

Ψneutral = ψ(x)φ(x)Ψ0

Charged states in SU(N) gauge theory transform covariantly under the GCS

Ψchrg → zΨchrg , z ∈ ZN

providing the GCS is not spontaneously broken, and in that case 〈Ψneutral|Ψchrg〉 = 0 for all neutral and all
charged states. This distinction is lost if the GCS is spontaneously broken.

The special role of the GCS, and an order parameter for that symmetry, appears when we write the usual
gauge Higgs partition function as a sum of “spin glass” partition functions

Z =
∫

DU ZSG[U]
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Gauge Higgs theory as a spin glass II

Model “Spin” random coupling global symmetry
Edwards-Anderson si Jij Z2

gauge Higgs φ(x) Uk(x) GCS

Let U,φ denote U, φ on a timeslice, say t = 0. Integrate out all other d.o.f.

e−HSG[U,φ] =
∫

DU0(DUDφ)t 6=0e
−S

ZSG[U] =
∫

Dφ e−HSG[U,φ]

Z =
∫

DU ZSG[U] (1)

HSG[U,φ] is the “spin glass” Hamiltonian, regarding φ as the dynamical variable, and U is fixed. It is
clearly invariant under GCS transformations φ→ zφ. In the statistical system defined by ZSG[U ], this
global symmetry can be spontaneously broken.

The order parameter is constructed as in the Edwards-Anderson model.
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We then define

ZSG(U) =
∫

Dφ(x) e−HSG(φ,U)/kT

φ(x; U) =
1

ZSG(U)

∫
Dφ φ(x)e−HSG(φ,U)/kT

Φ(U) =
1
V

∑
x

|φ(x; U)|

〈Φ〉 =
∫

DUi(x) Φ(U)P (U)

where

P (U) =
ZSG(U)
Z

=
1
Z

∫
DU0(DUk)t 6=0Dφ e

−S

is the probability distribution for a give U configuration on a time slice (obtained after integrating over all
other d.o.f).
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We now have a gauge invariant criterion for the spontaneous breaking of GCS symmetry:

lim
h→0

lim
V→∞

〈Φ〉

{ = 0 unbroken symmetry

> 0 broken symmetry

which is entirely analogous to the Edwards-Anderson criterion for the spontaneous symmetry
breaking of global Z2 symmetry in a spin glass:

lim
h→0

lim
V→∞

〈q〉

{ = 0 non-spin glass phase

> 0 spin glass phase

Goldstone modes in the gauge Higgs case are absent, for reasons known since 1965
(Guralnik et al).
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Numerical Evaluation

〈Φ〉 can be evaluated numerically by lattice Monte Carlo. Each data-taking sweep is itself a
Monte Carlo for nsym sweeps, holding link variables constant at t = 0, and evaluating φ(x, 0).
Then one extrapolates to nsym →∞.
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The essential result

Stated here without proof:

The transition to the spin-glass phase of a gauge Higgs theory coincides with
the transition from Sc confinement to C confinement.

See Matsuyama & JG, PRD 101, 054508 (2020), arXiv: 2001.03068
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Higgs and Confinement phases

|chargedxy〉 = qa(x)V ab(x,y;U)qb(y)|Ψ0〉 = |ΨV 〉

|neutralxy〉 = (qa(x)φa(x))(φ†b(y)qb(y))|Ψ0〉

Higgs phase

∃ V such that lim
|x−y|→∞

〈neutralxy|chargedxy〉 6= 0

No firm distinction, in the Higgs phase, between ZN charged and neutral states.
EV (R) of ΨV is finite as R→∞. No Sc confinement.

Confinement phase

for all V , lim
|x−y|→∞

〈neutralxy|chargedxy〉 = 0

There is a sharp distinction between charged and neutral states.

Charged state of finite energy =⇒ massless phase.
Charged state of infinite energy =⇒ Sc confinement phase.
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Examples from SU(3) gauge Higgs theory

Look at E(R, 1) for the Higgs Φ4(R) and pseudomatter Φ1(R) states, as well as the overlap of these
(normalized) states at β = 5.5 in the confinement phase (γ = 0.5) and Higgs phase (γ = 3.5) respectively.
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Against the common view...

1 What is meant by the word confinement, in a theory (such as QCD) with matter in the fundamental
representation of the gauge group?

It means Sc (separation-of-charge) confinement. Roughly speaking, an infinite “ionization” energy to
isolated quark states.

2 What is meant by the phrase spontaneously broken gauge symmetry?

It means that the global center subgroup of the gauge symmetry group is spontaneously broken. The
gauge-invariant order parameter is the same as for a spin glass.

The Sc to C confinement transition coincides with the transition to the
(Higgs/spin glass) phase of spontaneously broken gauge symmetry.
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New Particles in the

Higgs Phase?
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Excitations of “elementary” particles

Composite systems (molecules, atoms, nuclei, hadrons...) generally have a spectrum of excitations. What
about non-composite systems: charged “elementary” particles like quarks and leptons?

If the particle is charged, then by Gauss’s Law it is accompanied by a surrounding gauge (and possibly
other) fields. If these surrounding fields interact with themselves, could they not also exhibit a spectrum of
excitations? This would look like a mass spectrum of the isolated elementary particle.

glueΨV =

         confined phase

known spectrum of excitations
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SU(3) gauge Higgs theory

J.G., PRD 102 (2020) 5, 054504

S = −
β

3

∑
plaq

ReTr[Uµ(x)Uν(x+ µ̂)U†µ(x+ ν̂)U†ν (x)]

−γ
∑
x,µ

Re[φ†(x)Uµ(x)φ(x+ µ̂)]

We construct a set of four states, coupling pseudomatter fields, or the Higgs field, to a static quark and
antiquark of separation R

Φn(R) = [qa(x)ξan(x)] × [ξ†bn (y)qb(y)] Ψ0 (n = 1, 2, 3)

Φ4(R) = [qa(x)φa(x)] × [φ†b(y)qb(y)] Ψ0

We then diagonalize the transfer matrix in this 4-dimensional subspace, denoting the eigenstates Ψn(R).
These states then propagate for Euclidean time T , and we compute the energy expectation values
En(R, T ).
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details

We have computed En(R, T ) for SU(3) gauge theory with a unimodular Higgs field on a
143 × 32 lattice volume, at β = 5.5 with γ = 0.5 and γ = 3.5, in the confinement and Higgs phases
respectively.

The calculation requires computing matrix elements of the transfer matrix 〈Φi|T T |Φj〉, which are
expectation values of products of Wilson lines, terminated by matter or pseudomatter fields:

ξ ξ

ξ  ξ  

i i

jj

+

+

R

T

This part is done by lattice Monte Carlo. The rest is algebra.
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Higgs phase

Now we show En(R, T ) and the overlap for Ψ1(R),Ψ2(R) and T = 4− 12.
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There seems to be clear evidence of a metastable excited state in the spectrum, orthogonal to the
ground state.

The energy gap is far smaller than the threshold for vector boson creation.
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New gauge bosons?

(in progress)

Lattice formulation of the electroweak sector without quarks and leptons:

S = −β
∑
plaq

[1
2

Tr[UUU†U†] +
1

tan2(θW )
Re[V V V †V †]

]
−2
∑
x,µ

Re[φ†(x)Uµ(x)Vµ(x)φ(x+ µ̂)]−
∑
x

{−(γ − 8)φ†(x)φ(x) + λ(φ†(x)φ(x))2}

with SU(2) gauge field Uµ(x), U(1) gauge field Vµ(x) = eiθµ(x), and Higgs field φ(x), with θW the
Weinberg angle. Phenomenology (tree level) gives

sin2 θW = 0.231 , β = 10.1 , λ = 0.13

The Z mass, in lattice units, is proportional to
√
γ. Get the lattice spacing by fixing to the physical Z mass;

then only the lattice spacing, but not physical masses, should depend on γ.
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Create a subspace of Hilbert Space

Let Ũ = UV be the SU(2)× U(1) gauge field, and Dabxy [Ũ ] the lattice Laplacian.

Denote ζ1(x) = φ(x) the Higgs field, and {ζn+1(x), n = 1, 2, ..., 10} the first ten Laplacian eigenstates.

We create a subspace of excited states spanned by (non-orthogonal) states {|Φnµ〉, n = 1, 2, ..., 11}

η(x)eiA
n
µ(x) = ζ†n(x)Ũµ(x, t)ζn(x + µ̂)

Anµ(x) = sin(Aiµ(x))

Qnµ =
1
L3

∑
x

Anµ(x)

|Φnµ〉 = Qnµ|Ψ0〉
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Diagonalize the transfer matrix in the subspace

Compute

Oab = 〈Φaµ|Φbµ〉 = 〈Qa†µ (t)Qbµ(t)〉

Tab = 〈Φaµ|τ |Φbµ〉 = 〈Qa†µ (t+ 1)Qbµ(t)〉

Solve numerically the Generalized Eigenvalue Problem (GEP)

[T ]~υn = λn[O]~υn

There will be N + 1 vectors ~vn which satisfy this equation, and then

|Ψnµ〉 =
∑
a

υna |Φaµ〉

with energies

Mn = − log(λn)

We are free to vary the number nev ≤ 10 included in the calculation, to see whether Mn reaches a plateau
with increasing nev .
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Transition, time correlator

We can also study numerically

Gn(t) = 〈Ψnµ|τ t|Ψnµ〉

=
∑

vn∗a vnb 〈Φ
a
µ|τ t|Φbµ〉

At fixed β, λ, sin θW , there is a transition at γ ≈ 1.45
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We carry out the numerical calculations at γ = 2, 3, ..., 8.
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The Z boson I

At tree level mZ = 1
cos θW

√
γ
β

.
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Figur: Mass of the Z boson in lattice units vs. the
number of Laplacian eigenstates used in the GEP
calculation, for γ = 2− 8. This an all subsequent
calculations were carried out on a 163 × 36 lattice
volume.
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Z Boson II

As an alternative to solving the generalized eigenvalue problem, we can also fit the corresponding G(t) to

Gfit(t) = a(e−bt + e−b(36−t)) + c
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Figur: An example of G(t) for the excitation identified as the Z boson at γ = 4 and nev = 10. The solid is
a best fit to eq. (30) of the first six data points.

The result for b = mZ is consistent with the GEP.
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The Photon

For nev ≥ 2, the lowest mass state is massless.
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Figur: G(T ) for the lowest mass excitation. The nearly T -independent result is consistent with zero mass,
hence the identification with the photon.
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Something new I

The second excitation:

 0

 5

 10

 15

 20

 25

 2  3  4  5  6  7  8

e
x
it
a

ti
o

n
 m

a
s
s
 (

G
e

V
)

γ

nev=4
nev=6
nev=8

nev=10

(a) from GEP, various γ

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8

G
2
(t

)
T

intermediate boson, γ=4, nev=10

(b) sampleG2(t) correlator

Greensite (SFSU) light Z 32 / 35



Something new II
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The second excitation looks like a new particle state, at rest, of mass m2 ≈ 10.2 GeV. The third excitation
is consistent with two particles, at rest, each of mass m2.
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Where is it?

There are a lot of peaks in e+e− scattering in the 10-11 GeV range. This is the region of the Υ particles.
Could the new “light Z” be mixing with one of them? Some of them are not consistent with pure bb.
Possible room for mixing with a light Z?
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That’s all

Thanks for your attention!

Any questions?
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