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problems of confinement and dynamical mass generation are difficult, strong coupling 

(incl. recent) interest in various toroidal compactifications of 4d theories, which allow for 

calculable semiclassical studies of confinement on ℝ × 𝕋3, ℝ2 × 𝕋2, ℝ3 × 𝕊1 . . .

the big picture:

García Perez, González-Arroyo…1990+; Ünsal…2007+; Tanizaki-Ünsal…2020+

… this talk: 

 not the real world… but argue for /shown/ continuous connection to ℝ4

 particular focus on , fractional instantons, and the gaugino condensate𝕋4

I realize this is not a SUSY conference, so apologies! 

 raison d’être to speak here:  many things I use are relevant for non-SUSY theories 

                         e.g. fractional instantons  center vortices/monopole-instantons 
∃

≃



“Quanta”

Spring ’23 —>

renewed interest in  
due to generalized anomalies 

missed in the 1980s 

to see need spacetime with  
noncontractible 2-cycles

𝕋4

Gaiotto,Kapustin,Komargodski,Seiberg  

2014-



no way to review generalized anomalies, or many  details, will only give flavour

SYM in 4d: SU(N) + 1 massless adjoint Weyl fermion  (SUSY emergent when ) λa
α mλ = 0

so, get to the point: 

chiral U(1) broken to  by anomalyℤ2N

ℤ2N spontaneously broken to  by bilinear gaugino condensate ( )ℤ2 λ2(x) ≡ tr λα(x)λα(x)

⟨λ2⟩ = ei 2πk
N c Λ3, k = 1,...,N, the “mother” of all 


exact results in SUSY

1983-1999: Novikov, Shifman, Vainshtein, Zakharov; Amati, Konishi, Rossi, Veneziano; Affleck, Dine, Seiberg; Cordes; Finnell, Pouliot 
(SQCD —> SYM on );  Davies, Hollowood, Khoze, Mattis;… 2014 Anber, Teeple, EP (SYM on  —> SYM on )R4 R3 × S1 R4

c = 16π2

semiclassical weakly-coupled instanton calculations + power of SUSY

disclaimer: 

recent independent large-N lattice determination! 2406.08955 

Bonnano, García Perez, 

González-Arroyo, Okawa et al



SYM in 4d: SU(N) + 1 massless adjoint Weyl fermion  (SUSY emergent when m=0) λa
α

spontaneously broken to  by bilinear gaugino condensate ( )ℤ2 λ2(x) ≡ tr λα(x)λα(x)

⟨λ2⟩ = ei 2πk
N c Λ3, k = 1,...,N, c = 16π2

here, I will discuss the calculation of the condensate on 𝕋4

 why, if all agree so well? 

chiral U(1) broken to  by anomalyℤ2N

so, get to the point: 

ℤ2N



⟨λ2⟩ = ei 2πk
N c Λ3, k = 1,...,N, c = 16π2

here, I will talk about the calculation of the condensate on 𝕋4

 why, if all agree so well? 

1. because we can: new developments allow us to do the calculation 

-  first attempt in 1984, Cohen and Gomez, could not and did not compute “c”

𝕋4

2. the semiclassical objects (instantons on twisted torus) are closely related 
to both center vortices and monopoles, argued to be responsible for 
confinement/mass gap/chiral symmetry breaking - 


as opposed to BPST/ADHM instantons used in  calculationℝ4

: all argue for continuity to   
SYM the only theory where exact agreement should hold -and one should get that one case straight
ℝ × 𝕋3, ℝ2 × 𝕋2, ℝ3 × 𝕊1 . . . ℝ4

García Perez-González-Arroyo et al, more recent: Wandler-EP ’22; Hayashi-Tanizaki; Güvendik-Schäfer-Ünsal; Wandler ‘24



⟨λ2⟩ = ei 2πk
N c Λ3, k = 1,...,N, c = 16π2

here, I will talk about the calculation of the condensate on 𝕋4

 why, if all agree so well? 

3. we’ll see that calculation raises interesting questions about semiclassics, 

boiling down to the basic definition of path integrals … not quite understood!  

1. because we can: new developments allow us to do the calculation 

-  first attempt in 1984, Cohen and Gomez, could not and did not compute “c”

𝕋4

2. the semiclassical objects (instantons on twisted torus) are closely related 
to both center vortices and monopoles, argued to be responsible for 
confinement/mass gap/chiral symmetry breaking - 


as opposed to BPST/ADHM instantons used in  calculationℝ4
García Perez-González-Arroyo et al, more recent: Wandler-EP ’22; Hayashi-Tanizaki; Güvendik-Schäfer-Ünsal; Wandler ‘24



⟨λ2⟩ = c Λ3

in fact, on  we’ll be able to do more than𝕋4

SUSY Ward identities: ⟨λ2(x1)λ2(x2) . . . λ2(xk) ⟩ ≡ ⟨λ2k⟩ = (c Λ3)k

=> x-independence   / + clustering / 

verified in weak-coupling calculation of  in SQCD on  using ADHM 

                                                                    Dorey, Hollowood, Khoze, Mattis 2002 

⟨λ2k⟩ ℝ4

we will also calculate  on small , gcd(N,k)=1; agrees with   ⟨λ2k⟩ 𝕋4 ℝ4

(taking one particular vacuum)

symmetry generators T̂i in the xi, i = 1, 2, 3, directions. Thus, let |E,~eim3 be the simul-

taneous eigenstates of T̂i and the Hamiltonian Ĥ in the Hilbert space of states on T3 with

spatial twist m3 = n12 = �k (further below, we denote this Hilbert space by Hm3). Here ej

(~e = (e1, e2, e3)) are the (mod N) integer electric fluxes, labeling the eigenvalues of the Z(1)
N

generators, T̂j |E,~eim3 = |E,~eim3e
i
2⇡
N ej .

It is well known that super-Yang-Mills theory has a discrete Z(0)
2N 0-form chiral symmetry,

generated by the operator X̂2N . In the presence of ’t Hooft twists, the generators of the center

symmetry along the magnetic flux do not commute with the chiral symmetry, reflecting the

mixed chiral/center anomaly [14, 21]. Here, we write the commutation relation for our choice

m3 = �k, see [32] for derivation:

T̂3 X̂2N T̂
�1
3 = e

i
2⇡
N k

X̂2N . (5.1)

This relation implies that X̂2N |E,~ei is an eigenstate of T̂3 with eigenvalue e3 + k. But since

X̂2N is a symmetry, X̂2N |E,~ei has the same energy as |E,~ei. Since gcd(N, k) = 1, we conclude

that there are N degenerate eigenstates of the same energy, labeled by the N di↵erent values

of e3. This is an exact degeneracy (in addition to the degeneracy due to supersymmetry) of

all states in the Hilbert space on T3 with ’t Hooft twist m3 = k, with gcd(N, k) = 1.

In the Hamiltonian formalism, we consider expectation values of operators O, evaluated

using the twisted partition function, a trace over the Hilbert space Hm3 :

hOi ⌘ N�1 trHm3

h
Oe

��H
T̂3(�1)F

i
. (5.2)

Here, � (= L4) is the extent of the Euclidean time direction, (�1)F is inserted to impose

periodic boundary conditions on the fermions, and the insertion of the center symmetry

generator T̂3 (along the direction of the magnetic flux m3) is responsible for the mixed x3-

x4 twist of the boundary conditions by a center symmetry transformation (n34 = 1). A

normalization factor N is inserted for later convenience.

For O =
Q

k

i=1 tr(��)(xi), eqn. (5.2) is precisely the path integral (4.1) computed semi-

classically in this paper. For brevity, in what follows we denote O = (tr�2)k and write (5.2)

as

h(tr�2)ki = N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k T̂3|E,~ei

= N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k|E,~eiei

2⇡
N e3 . (5.3)

The sum is over all energy and center symmetry eigenstates |E,~eim3 (we omit the subscript

m3 for brevity).

Next, we use X̂
�1
2N (tr�2)k X̂2N = e

�i
2⇡
N k (tr�2)k to argue that the expectation values of

(tr�2)k in degenerate flux states di↵ering by k units of e3 flux di↵er by a ZN phase:

hE,~e+ �i3k|(tr�2)k|E,~e+ �i3ki = e
�i

2⇡
N khE,~e|(tr�2)k|E,~ei . (5.4)
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where the energy scale µ is taken to be the inverse size of T4, we finally obtain

C(x1, ..., xk) =
*

kY

i=1

tr(��)(xi)

+
= N�1

N
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In conclusion, our result for
DQ

k

i=1 tr(��)(xi)
E

shown in (4.9), momentarily ignoring the

normalization factor N�1, is N
2 times the known result from the weakly coupled (multi)-

instanton calculations on R4. We next turn to a discussion of the subtleties involved.

5 The Hamiltonian on T3
with a twist, the path integral, the normalization

N , and the gaugino condensate

So far in this paper, we performed a computation of the Euclidean path integral (4.1) with ’t

Hooft twists n12 = �k and n34 = 1. In order to come to grips with the factor of N2 that we

obtained when comparing the result for h(tr��)ki of (4.9) to the R4 result, here we reinterpret

the calculation using the Hamiltonian formalism on a spatial T3.

to reword this below...

That there is something to explain follows from holomorphy, reviewed in Appendix A.

Holomorphy implies that the gaugino condensates on the four torus should be independent

of the volume and thus coincide with the R4 result. That this should be so has been the

expectation at least since [28] (and probably the original toron calculation of [12]; we stress

again that the numerical coe�cient was not computed until our previous work [13] and its

extension here).

Thus, to address the mismatch, we begin by casting the calculation in the Hamiltonian

formalism. The exposition below may look familiar since the Hamiltonian formalism was also

an essential part of the discussion in [13]. However, apart from the more general focus of this

paper (e.g., going beyond N = 2, k = 1), there are a few subtleties that were missed there

and that point toward the resolution of the mismatch.

5.1 Mixed anomaly, degeneracies, and h(tr�2)ki

We begin by taking, for definiteness, space to be comprised of the x1,2,3 directions and

interpret x4 as Euclidean time. In view of n12 = �k, there is ’t Hooft “magnetic flux”

m3 = n12 = �k on the spatial torus.16 The quantization of SU(N) super-Yang-Mills the-

ory on a three-torus with twists is already familiar from the calculation of the Witten index

[30, 31]; a more recent introduction, also discussing generalized anomalies in this framework,

is in [32].

Briefly, upon quantizing (super-)Yang-Mills theory on T3, the energy eigenstates (with

eigenvalues E) can also be labelled by “electric flux,” the eigenvalues of the 1-form center

16Since gcd(k,N) = 1, a completely equivalent (to eqn. (5.6) below) result is obtained if we consider, say

x3,4,1 (or x3,4,2) to be the spatial torus coordinates with unit twist n34.

– 20 –

also  ℝ4

𝒩−1 = N2for 
rationale… 
nagging point



we will also calculate  on small , gcd(N,k)=1; agrees with   ⟨λ2k⟩ 𝕋4 ℝ4
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spatial twist m3 = n12 = �k (further below, we denote this Hilbert space by Hm3). Here ej

(~e = (e1, e2, e3)) are the (mod N) integer electric fluxes, labeling the eigenvalues of the Z(1)
N

generators, T̂j |E,~eim3 = |E,~eim3e
i
2⇡
N ej .

It is well known that super-Yang-Mills theory has a discrete Z(0)
2N 0-form chiral symmetry,

generated by the operator X̂2N . In the presence of ’t Hooft twists, the generators of the center

symmetry along the magnetic flux do not commute with the chiral symmetry, reflecting the

mixed chiral/center anomaly [14, 21]. Here, we write the commutation relation for our choice

m3 = �k, see [32] for derivation:

T̂3 X̂2N T̂
�1
3 = e

i
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N k

X̂2N . (5.1)

This relation implies that X̂2N |E,~ei is an eigenstate of T̂3 with eigenvalue e3 + k. But since

X̂2N is a symmetry, X̂2N |E,~ei has the same energy as |E,~ei. Since gcd(N, k) = 1, we conclude

that there are N degenerate eigenstates of the same energy, labeled by the N di↵erent values

of e3. This is an exact degeneracy (in addition to the degeneracy due to supersymmetry) of

all states in the Hilbert space on T3 with ’t Hooft twist m3 = k, with gcd(N, k) = 1.

In the Hamiltonian formalism, we consider expectation values of operators O, evaluated

using the twisted partition function, a trace over the Hilbert space Hm3 :

hOi ⌘ N�1 trHm3

h
Oe
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T̂3(�1)F

i
. (5.2)

Here, � (= L4) is the extent of the Euclidean time direction, (�1)F is inserted to impose

periodic boundary conditions on the fermions, and the insertion of the center symmetry

generator T̂3 (along the direction of the magnetic flux m3) is responsible for the mixed x3-

x4 twist of the boundary conditions by a center symmetry transformation (n34 = 1). A

normalization factor N is inserted for later convenience.

For O =
Q

k

i=1 tr(��)(xi), eqn. (5.2) is precisely the path integral (4.1) computed semi-

classically in this paper. For brevity, in what follows we denote O = (tr�2)k and write (5.2)

as

h(tr�2)ki = N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k T̂3|E,~ei

= N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k|E,~eiei

2⇡
N e3 . (5.3)

The sum is over all energy and center symmetry eigenstates |E,~eim3 (we omit the subscript

m3 for brevity).

Next, we use X̂
�1
2N (tr�2)k X̂2N = e

�i
2⇡
N k (tr�2)k to argue that the expectation values of

(tr�2)k in degenerate flux states di↵ering by k units of e3 flux di↵er by a ZN phase:

hE,~e+ �i3k|(tr�2)k|E,~e+ �i3ki = e
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In conclusion, our result for
DQ

k

i=1 tr(��)(xi)
E

shown in (4.9), momentarily ignoring the

normalization factor N�1, is N
2 times the known result from the weakly coupled (multi)-

instanton calculations on R4. We next turn to a discussion of the subtleties involved.

5 The Hamiltonian on T3
with a twist, the path integral, the normalization

N , and the gaugino condensate

So far in this paper, we performed a computation of the Euclidean path integral (4.1) with ’t

Hooft twists n12 = �k and n34 = 1. In order to come to grips with the factor of N2 that we

obtained when comparing the result for h(tr��)ki of (4.9) to the R4 result, here we reinterpret

the calculation using the Hamiltonian formalism on a spatial T3.

to reword this below...

That there is something to explain follows from holomorphy, reviewed in Appendix A.

Holomorphy implies that the gaugino condensates on the four torus should be independent

of the volume and thus coincide with the R4 result. That this should be so has been the

expectation at least since [28] (and probably the original toron calculation of [12]; we stress

again that the numerical coe�cient was not computed until our previous work [13] and its

extension here).

Thus, to address the mismatch, we begin by casting the calculation in the Hamiltonian

formalism. The exposition below may look familiar since the Hamiltonian formalism was also

an essential part of the discussion in [13]. However, apart from the more general focus of this

paper (e.g., going beyond N = 2, k = 1), there are a few subtleties that were missed there

and that point toward the resolution of the mismatch.

5.1 Mixed anomaly, degeneracies, and h(tr�2)ki

We begin by taking, for definiteness, space to be comprised of the x1,2,3 directions and

interpret x4 as Euclidean time. In view of n12 = �k, there is ’t Hooft “magnetic flux”

m3 = n12 = �k on the spatial torus.16 The quantization of SU(N) super-Yang-Mills the-

ory on a three-torus with twists is already familiar from the calculation of the Witten index

[30, 31]; a more recent introduction, also discussing generalized anomalies in this framework,

is in [32].

Briefly, upon quantizing (super-)Yang-Mills theory on T3, the energy eigenstates (with

eigenvalues E) can also be labelled by “electric flux,” the eigenvalues of the 1-form center

16Since gcd(k,N) = 1, a completely equivalent (to eqn. (5.6) below) result is obtained if we consider, say

x3,4,1 (or x3,4,2) to be the spatial torus coordinates with unit twist n34.
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also  ℝ4

𝒩−1 = N2for 
rationale… 
nagging point

  thus, the  
  main points 
  of my talk: 

semiclassical objects contributing to gaugino 
condensate on the torus are related to center 
vortices and monopoles, argued responsible 
for chiral symmetry breaking and confinement

1.

2. 3.

(just state… won’t describe relation…other talks?)



  the main points relevant for the calculation of  𝕋4 ⟨λ2k⟩
1.  Hamiltonian:  with ’t Hooft twist , 𝕋3 m3 = n12 = − k gcd(N, k) = 1

 chiral-  center anomaly: 
 exact degeneracies on !
ℤ2N ℤN

𝕋3

symmetry generators T̂i in the xi, i = 1, 2, 3, directions. Thus, let |E,~eim3 be the simul-

taneous eigenstates of T̂i and the Hamiltonian Ĥ in the Hilbert space of states on T3 with

spatial twist m3 = n12 = �k (further below, we denote this Hilbert space by Hm3). Here ej

(~e = (e1, e2, e3)) are the (mod N) integer electric fluxes, labeling the eigenvalues of the Z(1)
N

generators, T̂j |E,~eim3 = |E,~eim3e
i
2⇡
N ej .

It is well known that super-Yang-Mills theory has a discrete Z(0)
2N 0-form chiral symmetry,

generated by the operator X̂2N . In the presence of ’t Hooft twists, the generators of the center

symmetry along the magnetic flux do not commute with the chiral symmetry, reflecting the

mixed chiral/center anomaly [14, 21]. Here, we write the commutation relation for our choice

m3 = �k, see [32] for derivation:

T̂3 X̂2N T̂
�1
3 = e

i
2⇡
N k

X̂2N . (5.1)

This relation implies that X̂2N |E,~ei is an eigenstate of T̂3 with eigenvalue e3 + k. But since

X̂2N is a symmetry, X̂2N |E,~ei has the same energy as |E,~ei. Since gcd(N, k) = 1, we conclude

that there are N degenerate eigenstates of the same energy, labeled by the N di↵erent values

of e3. This is an exact degeneracy (in addition to the degeneracy due to supersymmetry) of

all states in the Hilbert space on T3 with ’t Hooft twist m3 = k, with gcd(N, k) = 1.

In the Hamiltonian formalism, we consider expectation values of operators O, evaluated

using the twisted partition function, a trace over the Hilbert space Hm3 :

hOi ⌘ N�1 trHm3

h
Oe

��H
T̂3(�1)F

i
. (5.2)

Here, � (= L4) is the extent of the Euclidean time direction, (�1)F is inserted to impose

periodic boundary conditions on the fermions, and the insertion of the center symmetry

generator T̂3 (along the direction of the magnetic flux m3) is responsible for the mixed x3-

x4 twist of the boundary conditions by a center symmetry transformation (n34 = 1). A

normalization factor N is inserted for later convenience.

For O =
Q

k

i=1 tr(��)(xi), eqn. (5.2) is precisely the path integral (4.1) computed semi-

classically in this paper. For brevity, in what follows we denote O = (tr�2)k and write (5.2)

as

h(tr�2)ki = N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k T̂3|E,~ei

= N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k|E,~eiei

2⇡
N e3 . (5.3)

The sum is over all energy and center symmetry eigenstates |E,~eim3 (we omit the subscript

m3 for brevity).

Next, we use X̂
�1
2N (tr�2)k X̂2N = e

�i
2⇡
N k (tr�2)k to argue that the expectation values of

(tr�2)k in degenerate flux states di↵ering by k units of e3 flux di↵er by a ZN phase:

hE,~e+ �i3k|(tr�2)k|E,~e+ �i3ki = e
�i

2⇡
N khE,~e|(tr�2)k|E,~ei . (5.4)
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 Cox, Wandler, EP 2021  flux-states N-fold degenerate e3̂T3 |E, e3, . . . ⟩ = |E, e3, . . . ⟩ ei 2π
N e3

 lowest E (=0, SUSY) degenerate flux states —> N clustering vacua in  limitℝ4



1.  Hamiltonian:  with ’t Hooft twist , 𝕋3 m3 = n12 = − k gcd(N, k) = 1

symmetry generators T̂i in the xi, i = 1, 2, 3, directions. Thus, let |E,~eim3 be the simul-

taneous eigenstates of T̂i and the Hamiltonian Ĥ in the Hilbert space of states on T3 with

spatial twist m3 = n12 = �k (further below, we denote this Hilbert space by Hm3). Here ej

(~e = (e1, e2, e3)) are the (mod N) integer electric fluxes, labeling the eigenvalues of the Z(1)
N

generators, T̂j |E,~eim3 = |E,~eim3e
i
2⇡
N ej .

It is well known that super-Yang-Mills theory has a discrete Z(0)
2N 0-form chiral symmetry,

generated by the operator X̂2N . In the presence of ’t Hooft twists, the generators of the center

symmetry along the magnetic flux do not commute with the chiral symmetry, reflecting the

mixed chiral/center anomaly [14, 21]. Here, we write the commutation relation for our choice

m3 = �k, see [32] for derivation:

T̂3 X̂2N T̂
�1
3 = e
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2⇡
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X̂2N . (5.1)

This relation implies that X̂2N |E,~ei is an eigenstate of T̂3 with eigenvalue e3 + k. But since

X̂2N is a symmetry, X̂2N |E,~ei has the same energy as |E,~ei. Since gcd(N, k) = 1, we conclude

that there are N degenerate eigenstates of the same energy, labeled by the N di↵erent values

of e3. This is an exact degeneracy (in addition to the degeneracy due to supersymmetry) of

all states in the Hilbert space on T3 with ’t Hooft twist m3 = k, with gcd(N, k) = 1.

In the Hamiltonian formalism, we consider expectation values of operators O, evaluated

using the twisted partition function, a trace over the Hilbert space Hm3 :

hOi ⌘ N�1 trHm3

h
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��H
T̂3(�1)F

i
. (5.2)

Here, � (= L4) is the extent of the Euclidean time direction, (�1)F is inserted to impose

periodic boundary conditions on the fermions, and the insertion of the center symmetry

generator T̂3 (along the direction of the magnetic flux m3) is responsible for the mixed x3-

x4 twist of the boundary conditions by a center symmetry transformation (n34 = 1). A

normalization factor N is inserted for later convenience.

For O =
Q

k

i=1 tr(��)(xi), eqn. (5.2) is precisely the path integral (4.1) computed semi-

classically in this paper. For brevity, in what follows we denote O = (tr�2)k and write (5.2)

as

h(tr�2)ki = N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k T̂3|E,~ei

= N�1
X
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e
��E(�1)F hE,~e|(tr�2)k|E,~eiei

2⇡
N e3 . (5.3)

The sum is over all energy and center symmetry eigenstates |E,~eim3 (we omit the subscript

m3 for brevity).

Next, we use X̂
�1
2N (tr�2)k X̂2N = e

�i
2⇡
N k (tr�2)k to argue that the expectation values of

(tr�2)k in degenerate flux states di↵ering by k units of e3 flux di↵er by a ZN phase:
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2⇡
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symmetry generators T̂i in the xi, i = 1, 2, 3, directions. Thus, let |E,~eim3 be the simul-

taneous eigenstates of T̂i and the Hamiltonian Ĥ in the Hilbert space of states on T3 with

spatial twist m3 = n12 = �k (further below, we denote this Hilbert space by Hm3). Here ej

(~e = (e1, e2, e3)) are the (mod N) integer electric fluxes, labeling the eigenvalues of the Z(1)
N

generators, T̂j |E,~eim3 = |E,~eim3e
i
2⇡
N ej .

It is well known that super-Yang-Mills theory has a discrete Z(0)
2N 0-form chiral symmetry,
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spatial twist m3 = n12 = �k (further below, we denote this Hilbert space by Hm3). Here ej

(~e = (e1, e2, e3)) are the (mod N) integer electric fluxes, labeling the eigenvalues of the Z(1)
N

generators, T̂j |E,~eim3 = |E,~eim3e
i
2⇡
N ej .

It is well known that super-Yang-Mills theory has a discrete Z(0)
2N 0-form chiral symmetry,

generated by the operator X̂2N . In the presence of ’t Hooft twists, the generators of the center

symmetry along the magnetic flux do not commute with the chiral symmetry, reflecting the

mixed chiral/center anomaly [14, 21]. Here, we write the commutation relation for our choice

m3 = �k, see [32] for derivation:

T̂3 X̂2N T̂
�1
3 = e

i
2⇡
N k

X̂2N . (5.1)

This relation implies that X̂2N |E,~ei is an eigenstate of T̂3 with eigenvalue e3 + k. But since

X̂2N is a symmetry, X̂2N |E,~ei has the same energy as |E,~ei. Since gcd(N, k) = 1, we conclude

that there are N degenerate eigenstates of the same energy, labeled by the N di↵erent values

of e3. This is an exact degeneracy (in addition to the degeneracy due to supersymmetry) of

all states in the Hilbert space on T3 with ’t Hooft twist m3 = k, with gcd(N, k) = 1.

In the Hamiltonian formalism, we consider expectation values of operators O, evaluated

using the twisted partition function, a trace over the Hilbert space Hm3 :

hOi ⌘ N�1 trHm3

h
Oe

��H
T̂3(�1)F

i
. (5.2)

Here, � (= L4) is the extent of the Euclidean time direction, (�1)F is inserted to impose

periodic boundary conditions on the fermions, and the insertion of the center symmetry

generator T̂3 (along the direction of the magnetic flux m3) is responsible for the mixed x3-

x4 twist of the boundary conditions by a center symmetry transformation (n34 = 1). A

normalization factor N is inserted for later convenience.

For O =
Q

k

i=1 tr(��)(xi), eqn. (5.2) is precisely the path integral (4.1) computed semi-

classically in this paper. For brevity, in what follows we denote O = (tr�2)k and write (5.2)

as

h(tr�2)ki = N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k T̂3|E,~ei

= N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k|E,~eiei

2⇡
N e3 . (5.3)

The sum is over all energy and center symmetry eigenstates |E,~eim3 (we omit the subscript

m3 for brevity).

Next, we use X̂
�1
2N (tr�2)k X̂2N = e

�i
2⇡
N k (tr�2)k to argue that the expectation values of

(tr�2)k in degenerate flux states di↵ering by k units of e3 flux di↵er by a ZN phase:

hE,~e+ �i3k|(tr�2)k|E,~e+ �i3ki = e
�i

2⇡
N khE,~e|(tr�2)k|E,~ei . (5.4)

– 21 –

 inserts ̂T3 n34 = 1

that the modding by Zk reduces the combined volume of each zµ and aµ k times, we perform

the integral over the collective coordinates, we readily find (see Appendix D.2 for details)

µB =

Z

�

Q4
µ=1

Q
k�1
b=1 da

b
µdzµ

p
DetUB

k!(
p
2⇡)4k

=
N

2

k!

 
4⇡

p
V

g2

!2k

. (3.15)

Here, we integrated over the bosonic moduli space � of eqn. (3.10), because, as we show in

the next section, to leading order in �, the integrand (tr��)k does not depend on the bosonic

moduli.

end of new

4 The gaugino condensates

In this section, we combine the above information to compute the higher-order condensate

C(x1, ..., xk) ⌘ h
Q

k

i=1 tr(��)(xi)i in SU(N) super Yang-Mills theory on a small deformed T4.

As we discussed above, there are 2k fermion zero modes in the background of a fractional

instanton carrying a topological charge Q = k/N . Therefore, we expect that these zero modes
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integral formalism, with action (2.1) (taking D = 0):
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tr(��)(xi)

#
e
�SSY M�i✓(⌫+ k

N )
����
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Here, we have emphasized that the computations are performed in the presence of the twists

imposed by the transition functions (2.8). The sum is over topological charges ⌫ + k

N
, keep-

ing in mind that it is only the sector ⌫ = 0 (of topological charge k/N) that contributes to

C(x1, .., xk) on a small T4 in the semi-classical regime. The pre-coe�cient N�1 is a normal-

ization constant that we shall return to.

One proceeds with the calculations of (4.1) by gauge-fixing and using the Fadeev-popov

method and finding the one-loop determinants of the bosonic and fermionic fluctuations in

the background of the fractional instanton. As we elaborated previously, there are both

bosonic and fermion zero modes (moduli), in addition to higher mode fluctuations. Taking

the contribution from each of these sectors is a standard procedure. The upshot is that the

correlator C(x1, ..., xk) is given by:
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M
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PVe

�
8⇡2k
Ng2

Z

�
dµB

Z
dµF

"
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i=1

tr(��)(xi)

#
. (4.2)

The pre-factor M3k
PVe

�
8⇡2k
Ng2 arises from the bosonic and fermionic determinants of the non-zero

modes after employing the Pauli-Villars regularization technique, andMPV is the Pauli-Villars
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3.  Multi-fractional instantons on the twisted 𝕋4
Anber, EP 2307.07495, 240*.xxxxx

Figure 1. The multi-fractional instanton solution of charge Q = k/N . Displayed is a 3D plot of the
profile described by eqn. (2.22) with k = 3, plotted as a function of x1, x2 while keeping x3, x4 fixed.
To enhance visualization, the plot extends to double the periods in x1 and x2. The graph reveals three
lumps, each one described by the function F of (2.22) (itself defined in (B.6)) but with a di↵erent
center. These are represented by red, yellow, and blue, clustered (lumped) around the three distinct
centers. These lumps, however, are closely packed, more akin to a liquid than a dilute gas. Previously,
similar configurations were generated numerically to investigate confinement, as detailed in [19] and
further explored in [20].

by Lµ (µ = 1, 2, 3, 4), satisfy the condition L1L2 = (N � k)L3L4. However, as noted in [13],

these solutions admit more fermion zero modes than necessary to saturate the condensates.

Additionally, in this case, the adjoint matter contributes a source term to the Yang-Mills

equations of motion, rendering these solutions invalid as legitimate backgrounds. To address

this issue and lift the extra fermion zero modes, one can detune the T4 periods by introducing

a small detuning parameter � ⌘ ((N � k)kL3L4 � kL1L2)/
p
L1L2L3L4. This adjustment

allows for the identification of an approximate self-dual solution to the Yang-Mills equations

of motion as a series expansion in �. The price one pays, however, is that such solutions are

fully nonabelian. This method, which originated in [16, 17] for instantons with topological

charge Q = 1/N , was further developed in [18] for Q = k/N , 1  k  N � 1.

The nonabelian solution of topological charge Q = k/N can be represented as a sum

over k closely packed lumps, resembling a liquid of instantons on T4, see Figure 1 for a

visualization. It admits k distinct holonomies in each spacetime direction (the holonomies are

along the Cartan generators of the group U(k)) for a total of 4k holonomies. These constitute

a compact bosonic moduli space of dimension 4k, as per the index theorem. Identifying the

symmetries and determining the shape and volume of this space is crucial for computing the

condensates. Additionally, each lump supports two adjoint fermion zero modes, for a total of

2k zero modes needed to saturate the higher-order gaugino condensates h
Q

k

i=1 tr(��)(xi)i.

– 4 –
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based on and extending 

permutation of lumps =  Weyl SU(k)combined weight-lattice/c.m. shifts

in view of the latter’s periodicity (in fact, it is easily seen, see Appendix D, that these

shifts are due to ⌦-periodic gauge transformations). Thus, we denote:

aµ 2 �SU(k)
r , 8µ, (3.7)

where �SU(k)
r denotes the fundamental cell of the root lattice of SU(k), which can be

mapped to the torus (S1)k�1.

4. Both the Wilson lines (3.4) and local gauge invariants (3.5) do not change, as shown

in Appendix D.1.1, upon SU(k) Weyl reflection with respect to the root ↵ij , i 6= j 2
{1, ..., k}, performed simultaneously on all four moduli aµ:

aµ ! µ↵ij (aµ) ⌘ aµ � (aµ ·↵ij)↵ij , µ = 1, 3, 4 ,

a2 ! a2 �
h
(a2 �

⇢

k
) ·↵ij

i
↵ij . (3.8)

It is shown in Appendix D.1.1 that the transformations are also due to ⌦-periodic gauge

transformations. The Weyl transformations are isomorphic to the permutation group

of k objects, Sk, of order k!.

A pictorial interpretation of (3.8) is that the Weyl transformation permutes the k lumps

appearing in (3.5).

5. There is yet another identification on the moduli space. To motivate it, consider SU(k)

weight-lattice shifts of aµ, compensated by shifts of zµ. These transformations, as shown

in Appendix D.1.2, leave invariant the gauge invariant Wilson loops W q
µ (3.4) and the

local densities (3.5). Explicitly,

aµ ! aµ +wa, zµ ! zµ � Ca
k

, a = 1, 2, ..., k � 1,

where NCa = a (mod k), Ca 2 Z+. (3.9)

The nonneggative integer Ca exists because of the gcd(N, k) = 1 condition. These

shifts are also due to ⌦-periodic gauge transformations, as shown in Appendix D.1.2.

Furthermore, these transformations are shown to form a Zk group when acting on the

moduli.

Collecting everything, we arrive at the following description of the moduli space as the product

of (3.6) and (3.7) modded by the action of the Zk shift acting on both aµ and zµ, eqn. (3.9),

and the simultaneous Weyl reflection (3.8):

� =

0

@
4Y

µ=1

S1µ ⇥ �SU(k)
r

Zk

1

A /Sk '

0

@
4Y

µ=1

(S1)k
Zk

1

A /Sk (3.10)
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In conclusion, our result for
DQ

k

i=1 tr(��)(xi)
E

shown in (4.9), momentarily ignoring the

normalization factor N�1, is N
2 times the known result from the weakly coupled (multi)-

instanton calculations on R4. We next turn to a discussion of the subtleties involved.

5 The Hamiltonian on T3
with a twist, the path integral, the normalization

N , and the gaugino condensate

So far in this paper, we performed a computation of the Euclidean path integral (4.1) with ’t

Hooft twists n12 = �k and n34 = 1. In order to come to grips with the factor of N2 that we

obtained when comparing the result for h(tr��)ki of (4.9) to the R4 result, here we reinterpret

the calculation using the Hamiltonian formalism on a spatial T3.

to reword this below...

That there is something to explain follows from holomorphy, reviewed in Appendix A.

Holomorphy implies that the gaugino condensates on the four torus should be independent

of the volume and thus coincide with the R4 result. That this should be so has been the

expectation at least since [28] (and probably the original toron calculation of [12]; we stress

again that the numerical coe�cient was not computed until our previous work [13] and its

extension here).

Thus, to address the mismatch, we begin by casting the calculation in the Hamiltonian

formalism. The exposition below may look familiar since the Hamiltonian formalism was also

an essential part of the discussion in [13]. However, apart from the more general focus of this

paper (e.g., going beyond N = 2, k = 1), there are a few subtleties that were missed there

and that point toward the resolution of the mismatch.

5.1 Mixed anomaly, degeneracies, and h(tr�2)ki

We begin by taking, for definiteness, space to be comprised of the x1,2,3 directions and

interpret x4 as Euclidean time. In view of n12 = �k, there is ’t Hooft “magnetic flux”

m3 = n12 = �k on the spatial torus.16 The quantization of SU(N) super-Yang-Mills the-

ory on a three-torus with twists is already familiar from the calculation of the Witten index

[30, 31]; a more recent introduction, also discussing generalized anomalies in this framework,

is in [32].

Briefly, upon quantizing (super-)Yang-Mills theory on T3, the energy eigenstates (with

eigenvalues E) can also be labelled by “electric flux,” the eigenvalues of the 1-form center

16Since gcd(k,N) = 1, a completely equivalent (to eqn. (5.6) below) result is obtained if we consider, say

x3,4,1 (or x3,4,2) to be the spatial torus coordinates with unit twist n34.
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m3 = �k, see [32] for derivation:

T̂3 X̂2N T̂
�1
3 = e

i
2⇡
N k

X̂2N . (5.1)

This relation implies that X̂2N |E,~ei is an eigenstate of T̂3 with eigenvalue e3 + k. But since

X̂2N is a symmetry, X̂2N |E,~ei has the same energy as |E,~ei. Since gcd(N, k) = 1, we conclude
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symmetry generators T̂i in the xi, i = 1, 2, 3, directions. Thus, let |E,~eim3 be the simul-

taneous eigenstates of T̂i and the Hamiltonian Ĥ in the Hilbert space of states on T3 with

spatial twist m3 = n12 = �k (further below, we denote this Hilbert space by Hm3). Here ej

(~e = (e1, e2, e3)) are the (mod N) integer electric fluxes, labeling the eigenvalues of the Z(1)
N

generators, T̂j |E,~eim3 = |E,~eim3e
i
2⇡
N ej .

It is well known that super-Yang-Mills theory has a discrete Z(0)
2N 0-form chiral symmetry,

generated by the operator X̂2N . In the presence of ’t Hooft twists, the generators of the center

symmetry along the magnetic flux do not commute with the chiral symmetry, reflecting the

mixed chiral/center anomaly [14, 21]. Here, we write the commutation relation for our choice

m3 = �k, see [32] for derivation:

T̂3 X̂2N T̂
�1
3 = e

i
2⇡
N k

X̂2N . (5.1)

This relation implies that X̂2N |E,~ei is an eigenstate of T̂3 with eigenvalue e3 + k. But since

X̂2N is a symmetry, X̂2N |E,~ei has the same energy as |E,~ei. Since gcd(N, k) = 1, we conclude

that there are N degenerate eigenstates of the same energy, labeled by the N di↵erent values

of e3. This is an exact degeneracy (in addition to the degeneracy due to supersymmetry) of

all states in the Hilbert space on T3 with ’t Hooft twist m3 = k, with gcd(N, k) = 1.

In the Hamiltonian formalism, we consider expectation values of operators O, evaluated

using the twisted partition function, a trace over the Hilbert space Hm3 :

hOi ⌘ N�1 trHm3

h
Oe

��H
T̂3(�1)F

i
. (5.2)

Here, � (= L4) is the extent of the Euclidean time direction, (�1)F is inserted to impose

periodic boundary conditions on the fermions, and the insertion of the center symmetry

generator T̂3 (along the direction of the magnetic flux m3) is responsible for the mixed x3-

x4 twist of the boundary conditions by a center symmetry transformation (n34 = 1). A

normalization factor N is inserted for later convenience.

For O =
Q

k

i=1 tr(��)(xi), eqn. (5.2) is precisely the path integral (4.1) computed semi-

classically in this paper. For brevity, in what follows we denote O = (tr�2)k and write (5.2)

as

h(tr�2)ki = N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k T̂3|E,~ei

= N�1
X

E,~e

e
��E(�1)F hE,~e|(tr�2)k|E,~eiei

2⇡
N e3 . (5.3)

The sum is over all energy and center symmetry eigenstates |E,~eim3 (we omit the subscript

m3 for brevity).

Next, we use X̂
�1
2N (tr�2)k X̂2N = e

�i
2⇡
N k (tr�2)k to argue that the expectation values of

(tr�2)k in degenerate flux states di↵ering by k units of e3 flux di↵er by a ZN phase:

hE,~e+ �i3k|(tr�2)k|E,~e+ �i3ki = e
�i

2⇡
N khE,~e|(tr�2)k|E,~ei . (5.4)
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In conclusion, our result for
DQ

k

i=1 tr(��)(xi)
E

shown in (4.9), momentarily ignoring the

normalization factor N�1, is N
2 times the known result from the weakly coupled (multi)-

instanton calculations on R4. We next turn to a discussion of the subtleties involved.

5 The Hamiltonian on T3
with a twist, the path integral, the normalization

N , and the gaugino condensate

So far in this paper, we performed a computation of the Euclidean path integral (4.1) with ’t

Hooft twists n12 = �k and n34 = 1. In order to come to grips with the factor of N2 that we

obtained when comparing the result for h(tr��)ki of (4.9) to the R4 result, here we reinterpret

the calculation using the Hamiltonian formalism on a spatial T3.

to reword this below...

That there is something to explain follows from holomorphy, reviewed in Appendix A.

Holomorphy implies that the gaugino condensates on the four torus should be independent

of the volume and thus coincide with the R4 result. That this should be so has been the

expectation at least since [28] (and probably the original toron calculation of [12]; we stress

again that the numerical coe�cient was not computed until our previous work [13] and its

extension here).

Thus, to address the mismatch, we begin by casting the calculation in the Hamiltonian

formalism. The exposition below may look familiar since the Hamiltonian formalism was also

an essential part of the discussion in [13]. However, apart from the more general focus of this

paper (e.g., going beyond N = 2, k = 1), there are a few subtleties that were missed there

and that point toward the resolution of the mismatch.

5.1 Mixed anomaly, degeneracies, and h(tr�2)ki

We begin by taking, for definiteness, space to be comprised of the x1,2,3 directions and

interpret x4 as Euclidean time. In view of n12 = �k, there is ’t Hooft “magnetic flux”

m3 = n12 = �k on the spatial torus.16 The quantization of SU(N) super-Yang-Mills the-

ory on a three-torus with twists is already familiar from the calculation of the Witten index

[30, 31]; a more recent introduction, also discussing generalized anomalies in this framework,

is in [32].

Briefly, upon quantizing (super-)Yang-Mills theory on T3, the energy eigenstates (with

eigenvalues E) can also be labelled by “electric flux,” the eigenvalues of the 1-form center

16Since gcd(k,N) = 1, a completely equivalent (to eqn. (5.6) below) result is obtained if we consider, say

x3,4,1 (or x3,4,2) to be the spatial torus coordinates with unit twist n34.
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taneous eigenstates of T̂i and the Hamiltonian Ĥ in the Hilbert space of states on T3 with

spatial twist m3 = n12 = �k (further below, we denote this Hilbert space by Hm3). Here ej

(~e = (e1, e2, e3)) are the (mod N) integer electric fluxes, labeling the eigenvalues of the Z(1)
N

generators, T̂j |E,~eim3 = |E,~eim3e
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It is well known that super-Yang-Mills theory has a discrete Z(0)
2N 0-form chiral symmetry,

generated by the operator X̂2N . In the presence of ’t Hooft twists, the generators of the center

symmetry along the magnetic flux do not commute with the chiral symmetry, reflecting the

mixed chiral/center anomaly [14, 21]. Here, we write the commutation relation for our choice

m3 = �k, see [32] for derivation:

T̂3 X̂2N T̂
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3 = e
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N k

X̂2N . (5.1)

This relation implies that X̂2N |E,~ei is an eigenstate of T̂3 with eigenvalue e3 + k. But since

X̂2N is a symmetry, X̂2N |E,~ei has the same energy as |E,~ei. Since gcd(N, k) = 1, we conclude

that there are N degenerate eigenstates of the same energy, labeled by the N di↵erent values

of e3. This is an exact degeneracy (in addition to the degeneracy due to supersymmetry) of

all states in the Hilbert space on T3 with ’t Hooft twist m3 = k, with gcd(N, k) = 1.

In the Hamiltonian formalism, we consider expectation values of operators O, evaluated

using the twisted partition function, a trace over the Hilbert space Hm3 :

hOi ⌘ N�1 trHm3

h
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T̂3(�1)F
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. (5.2)

Here, � (= L4) is the extent of the Euclidean time direction, (�1)F is inserted to impose

periodic boundary conditions on the fermions, and the insertion of the center symmetry

generator T̂3 (along the direction of the magnetic flux m3) is responsible for the mixed x3-

x4 twist of the boundary conditions by a center symmetry transformation (n34 = 1). A

normalization factor N is inserted for later convenience.

For O =
Q

k

i=1 tr(��)(xi), eqn. (5.2) is precisely the path integral (4.1) computed semi-

classically in this paper. For brevity, in what follows we denote O = (tr�2)k and write (5.2)

as

h(tr�2)ki = N�1
X
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e
��E(�1)F hE,~e|(tr�2)k T̂3|E,~ei

= N�1
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e
��E(�1)F hE,~e|(tr�2)k|E,~eiei

2⇡
N e3 . (5.3)

The sum is over all energy and center symmetry eigenstates |E,~eim3 (we omit the subscript

m3 for brevity).

Next, we use X̂
�1
2N (tr�2)k X̂2N = e

�i
2⇡
N k (tr�2)k to argue that the expectation values of

(tr�2)k in degenerate flux states di↵ering by k units of e3 flux di↵er by a ZN phase:

hE,~e+ �i3k|(tr�2)k|E,~e+ �i3ki = e
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In conclusion, our result for
DQ

k

i=1 tr(��)(xi)
E

shown in (4.9), momentarily ignoring the

normalization factor N�1, is N
2 times the known result from the weakly coupled (multi)-

instanton calculations on R4. We next turn to a discussion of the subtleties involved.

5 The Hamiltonian on T3
with a twist, the path integral, the normalization

N , and the gaugino condensate

So far in this paper, we performed a computation of the Euclidean path integral (4.1) with ’t

Hooft twists n12 = �k and n34 = 1. In order to come to grips with the factor of N2 that we

obtained when comparing the result for h(tr��)ki of (4.9) to the R4 result, here we reinterpret

the calculation using the Hamiltonian formalism on a spatial T3.

to reword this below...

That there is something to explain follows from holomorphy, reviewed in Appendix A.

Holomorphy implies that the gaugino condensates on the four torus should be independent

of the volume and thus coincide with the R4 result. That this should be so has been the

expectation at least since [28] (and probably the original toron calculation of [12]; we stress

again that the numerical coe�cient was not computed until our previous work [13] and its

extension here).

Thus, to address the mismatch, we begin by casting the calculation in the Hamiltonian

formalism. The exposition below may look familiar since the Hamiltonian formalism was also

an essential part of the discussion in [13]. However, apart from the more general focus of this

paper (e.g., going beyond N = 2, k = 1), there are a few subtleties that were missed there

and that point toward the resolution of the mismatch.

5.1 Mixed anomaly, degeneracies, and h(tr�2)ki

We begin by taking, for definiteness, space to be comprised of the x1,2,3 directions and

interpret x4 as Euclidean time. In view of n12 = �k, there is ’t Hooft “magnetic flux”

m3 = n12 = �k on the spatial torus.16 The quantization of SU(N) super-Yang-Mills the-

ory on a three-torus with twists is already familiar from the calculation of the Witten index

[30, 31]; a more recent introduction, also discussing generalized anomalies in this framework,

is in [32].

Briefly, upon quantizing (super-)Yang-Mills theory on T3, the energy eigenstates (with

eigenvalues E) can also be labelled by “electric flux,” the eigenvalues of the 1-form center

16Since gcd(k,N) = 1, a completely equivalent (to eqn. (5.6) below) result is obtained if we consider, say

x3,4,1 (or x3,4,2) to be the spatial torus coordinates with unit twist n34.
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𝒩 = trm3=n12
e−βH(−1)F = NNow, my final story: let  be the Witten index, 𝒩

 calculated in Hamiltonian on  with twist𝕋3
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A=0 and  center-symmetry transforms thereofx3
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𝒩 = trm3=n12
e−βH(−1)F = N

Here, we took into account that, as explained in section 5.1, eqn. (5.6) is proportional to the

contribution of one of N degenerate zero energy states built over the classical states (5.8),

the one with e3 = 0 (and e1 = e2 = 0); we also took (�1)F = 1.21 Further taking the infinite

T3-volume limit, V3 ! 1, as per the remarks at the end of section 2.4, eqn. (5.11) becomes

the gaugino condensate in one of the N vacua on R4. We denote the large V3 limit of (5.11)

by h(tr�2)ki
��
�,V3!1

.

We now recall that our semiclassical path-integral calculation of (5.2) yielded eqn. (4.9).

Upon taking N = N (as done above and in [13]) and using the volume independence, we

arrive from (4.9) at the result

h(tr�2)ki
��
�,V3!1

= N�1
N

2
�
16⇡2⇤3

�k
= N

�
16⇡2⇤3

�k
. (5.12)

Thus, assuming that the path integral we calculated, with N = N , matches the Hilbert space

expression (5.11) above, gives the expected result for h(tr�2)ki in one of the R4 vacua, albeit

with a factor of N discrepancy. This discrepancy was already observed for k = 1, N = 2

in [13]. The calculation of this paper, valid for general values of k,N (with gcd(k,N) = 1),

yields the same discrepancy. We take this to imply that the discrepancy has a common origin,

as we now desribe.

5.4 The gaugino condensate: N as a semiclassical path integral

We go back to the path integral (4.1) and the normalization factor N . Sticking entirely with

the path integral formalism, it is natural to take it as given by the path integral with the

SYM action (2.1):22

N =
X

⌫2Z

Z
[DAµ][D�][D�̄][DD] e�SSY M�i✓⌫

����
n12=�k ,n34=0

. (5.13)

We note that the sum here, as opposed to (4.1), is over integer topological charges ⌫, since

with the twists indicated, the topological charge (2.5) is integer.

We consider two lines of thought on the expected value of N . The first, more intuitive

and based on the expected validity of semiclassics at small T4, is presented below. The

second, more formal argument (which, however, we think is worthy of further development),

is based on supersymmetric localization; it appears to lead to a similar result and is presented

in Appendix E.

Semiclassics at small T4
: This is the limit where all our calculations were done. The gauge

coupling is weak and we expect that a semiclassical calculation of the path integral (5.13)

holds. Sectors with ⌫ > 0 require fermion insertions and so should not contribute to (5.13).

At small volume, the contribution of the sector with ⌫ = 0 can be evaluated perturbatively, by

21A slight technical remark is that e3 flux states (T̂3 eigenstates) are a discrete ZN Fourier transform of the

states defined in (5.8). The latter map into each other upon the T̂3 action.
22The integral over the auxiliary field is denoted by [DD].
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symmetry along the magnetic flux do not commute with the chiral symmetry, reflecting the
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m3 = �k, see [32] for derivation:
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This relation implies that X̂2N |E,~ei is an eigenstate of T̂3 with eigenvalue e3 + k. But since

X̂2N is a symmetry, X̂2N |E,~ei has the same energy as |E,~ei. Since gcd(N, k) = 1, we conclude

that there are N degenerate eigenstates of the same energy, labeled by the N di↵erent values

of e3. This is an exact degeneracy (in addition to the degeneracy due to supersymmetry) of
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hOi ⌘ N�1 trHm3

h
Oe

��H
T̂3(�1)F

i
. (5.2)

Here, � (= L4) is the extent of the Euclidean time direction, (�1)F is inserted to impose

periodic boundary conditions on the fermions, and the insertion of the center symmetry

generator T̂3 (along the direction of the magnetic flux m3) is responsible for the mixed x3-
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normalization factor N is inserted for later convenience.

For O =
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classically in this paper. For brevity, in what follows we denote O = (tr�2)k and write (5.2)
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So far in this paper, we performed a computation of the Euclidean path integral (4.1) with ’t

Hooft twists n12 = �k and n34 = 1. In order to come to grips with the factor of N2 that we

obtained when comparing the result for h(tr��)ki of (4.9) to the R4 result, here we reinterpret

the calculation using the Hamiltonian formalism on a spatial T3.

to reword this below...

That there is something to explain follows from holomorphy, reviewed in Appendix A.

Holomorphy implies that the gaugino condensates on the four torus should be independent

of the volume and thus coincide with the R4 result. That this should be so has been the

expectation at least since [28] (and probably the original toron calculation of [12]; we stress

again that the numerical coe�cient was not computed until our previous work [13] and its

extension here).

Thus, to address the mismatch, we begin by casting the calculation in the Hamiltonian

formalism. The exposition below may look familiar since the Hamiltonian formalism was also

an essential part of the discussion in [13]. However, apart from the more general focus of this

paper (e.g., going beyond N = 2, k = 1), there are a few subtleties that were missed there

and that point toward the resolution of the mismatch.

5.1 Mixed anomaly, degeneracies, and h(tr�2)ki

We begin by taking, for definiteness, space to be comprised of the x1,2,3 directions and

interpret x4 as Euclidean time. In view of n12 = �k, there is ’t Hooft “magnetic flux”

m3 = n12 = �k on the spatial torus.16 The quantization of SU(N) super-Yang-Mills the-

ory on a three-torus with twists is already familiar from the calculation of the Witten index

[30, 31]; a more recent introduction, also discussing generalized anomalies in this framework,

is in [32].

Briefly, upon quantizing (super-)Yang-Mills theory on T3, the energy eigenstates (with

eigenvalues E) can also be labelled by “electric flux,” the eigenvalues of the 1-form center

16Since gcd(k,N) = 1, a completely equivalent (to eqn. (5.6) below) result is obtained if we consider, say

x3,4,1 (or x3,4,2) to be the spatial torus coordinates with unit twist n34.
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for chiral symmetry breaking and confinement
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The factor k! takes into consideration the fact that the lumpy solution is invariant under the

Weyl group, given by (D.6), which is isomorphic to the permutation group Sk of order k! The

pre-coe�cient is always N2 for all values of k, reminding we always assume gcd(k,N�k) = 1.

E A supersymmetric localization for N?

A more sophisticated approach to the calculation of (5.13) (which needs further development,

see below) is based on supersymmetric localization. The point is that the super-Yang-Mills

action (2.1) can be written as a supersymmetry variation. Explicitly, one can show by direct

caclulation that38
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It is easy to check that �↵SSYM = �↵̇SSYM = 0.

The fact that the action is a supersymmetry variation (E.1) and the vanishing of its su-

persymmetry variation imply, formally, that the path integral (5.13) is coupling-independent:

dN
dg�2

= �
Z

T4 with n12 6=0 (modN)

DA D� D�̄ DD
⇥
�
↵(O↵e

�SSY M ) + �↵̇(O↵̇
e
�SSY M )

⇤
= 0.

(E.3)

38A Minkowski space version of (E.1) can be found in [38].
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fact that there are precisely N zero-energy nonequivalent classical field configurations (5.8)

means, at small T3, that there are N quantum states of zero energy. Since these are the only

states that contribute to IW and since IW does not depend on the volume of T3 and on �,

one concludes that IW = N .

5.3 The gaugino condensate: Hamiltonian vs. path integral and N = IW = N

Returning to our result (5.6) for the gaugino condensate from the Hamiltonian trace and

taking N = N , the Witten index, we obtain, after taking � ! 1 (so that only zero energy

states contribute):

h(tr�2)ki
��
�!1

= hE = 0,~e = 0|(tr�2)k|0,~e = E = 0i . (5.11)

Here, we took into account that, as explained in section 5.1, eqn. (5.6) is proportional to the

contribution of one of N degenerate zero energy states built over the classical states (5.8),

the one with e3 = 0 (and e1 = e2 = 0); we also took (�1)F = 1.22 Further taking the infinite

T3-volume limit, V3 ! 1, as per the remarks at the end of section 2.4, eqn. (5.11) becomes

the gaugino condensate in one of the N vacua on R4. We denote the large V3 limit of (5.11)

by h(tr�2)ki
��
�,V3!1

.

We now recall that our semiclassical path-integral calculation of (5.2) yielded eqn. (4.9).

Upon taking N = N (as done above and in [13]) and using the volume independence, we

arrive from (4.9) at the result

h(tr�2)ki
��
�,V3!1

= N�1
N

2
�
16⇡2⇤3

�k
= N

�
16⇡2⇤3

�k
. (5.12)

Thus, assuming that the path integral we calculated, with N = N , matches the Hilbert space

expression (5.11) above, gives the expected result for h(tr�2)ki in one of the R4 vacua, albeit

with a factor of N discrepancy. This discrepancy was already observed for k = 1, N = 2

in [13]. The calculation of this paper, valid for general values of k,N (with gcd(k,N) = 1),

yields the same discrepancy. We take this to imply that the discrepancy has a common origin,

as we now desribe.

5.4 The gaugino condensate: N as a semiclassical path integral

We go back to the path integral (4.1) and the normalization factor N . Sticking entirely with

the path integral formalism, it is natural to take it as given by the path integral with the

SYM action (2.1):23

N =
X

⌫2Z

Z
[DAµ][D�][D�̄][DD] e�SSY M�i✓⌫

����
n12=�k ,n34=0

. (5.13)

22A slight technical remark is that e3 flux states (T̂3 eigenstates) are a discrete ZN Fourier transform of the

states defined in (5.8). The latter map into each other upon the T̂3 action.
23The integral over the auxiliary field is denoted by [DD].

– 26 –hence, calculate at : integral localizes to sum over zero action saddles + 1-loopg2 → 0

(usually, localization leads to an integral over moduli; here: a discrete set of points… should be simpler?)

(formal) localization argument:


