Capture of Dark Matter in Neutron Stars

Nicole Bell with Giorgio Busoni and Sandra Robles

arXiv:1807.02840 (JCAP 2018), arXiv:1904.09803 (JCAP 2019)

TEVPA 2019 – SYDNEY – 2 DECEMBER 2019 – N. BELL, U.MELBOURNE

Outline

- Introduction
 - Dark matter capture in the Sun
- Capture in Neutron Stars
 - black holes, gravitational waves
 - neutron star heating
 - DM-nucleon scattering
 - DM-lepton scattering
- Summary

Searching for dark matter particles - Direct Detection

Spin-independent (SI) interactions → stringent bounds Spin-dependent (SD) interactions → much weaker bounds

Searching for dark matter particles - Direct Detection

Sensitivity depends on interaction type

- Enhanced cross sections for SI (spin-independent) scattering
- Smaller cross sections for SD (spin-dependent) scattering

Limited by kinematics

- Some interactions feature only momentum or velocity suppressed cross section → these are very small numbers
- Mass of the target nuclei (or electron mass)
- Experimental thresholds for detecting recoil energy

An alternative approach → capture in the Sun, Earth, or Neutron Stars

Dark matter can accumulate in the Earth, Sun, or other stars, in considerable amounts.

Complementary to direct detection experiments.

Solar WIMPs

- Dark matter scatters, loses energy, becomes gravitationally bound to star
- Accumulates and annihilates in centre of Sun
- Only neutrinos escape Sun \rightarrow IceCube, SuperK \bullet

In equilibrium:

Annihilation rate = Capture rate

- \rightarrow controlled by DM-nucleon scattering cross section.
- \rightarrow probes the same quantity as direct detection experiments

Solar WIMPs

- For *spin-independent* interactions:
 → direct detection wins
- For *spin-dependent* interactions:
 → strong solar WIMP limits

Neutron Stars

Due to their density, neutron stars capture dark matter very efficiently.

Capture probability is of order unity when

$$\sigma_{n\chi} > \sigma_{th} \sim 10^{-45} \text{cm}^2$$

Neutron Stars → Black holes?

Kouvaris; Kouvaris & Tinyakov; McDermott, Yu & Zurek; Bramante, Fukushima & Kumar; NFB, Petraki & Melatos; Bertone, Nelson & Reddy; and others.

- Due to their density, neutron stars capture dark matter very efficiently
- Can neutron stars accumulate so much dark matter that they would collapse to back holes? Yes, but typically only if:
 - No annihilation (e.g. asymmetric DM)
 - DM is bosonic and condenses to a small self gravitating BEC, or
 - DM is fermionic with attractive self-interactions, and
 - No repulsive-self interactions that prevent collapse (even very <u>very</u> tiny selfinteraction is enough) NFB, Petraki & Melatos, PRD 2013
 - \rightarrow Black hole quite unlikely for *typical* WIMP-like dark matter

Neutron star mergers \rightarrow gravitational waves

Nelson, Reddy & Zhou, 1803.03266

• Light DM + light mediators (MeV scale)

- Increases the NS tidal deformability, Λ .
 - > LIGO observation of NS-NS merger, GW170817, constrains $\Lambda < 800$
 - > strong bounds, even for small DM component $\sim 10^{-4} M_{\odot}$

Neutron Star Kinetic Heating

DM

M. Baryakhtar et al.

arXiv:1704.01577

Collisions transfer the dark matter kinetic energy to the neutron star \rightarrow heating

TEVPA 2019 – SYDNEY – 2 DECEMBER 2019 – N. BELL, U.MELBOURNE

Dark matter heating

→ from scattering plus annihilation

Bramante, Delgardo and Martin; Raj, Tanedo and Yu

- Capture (plus subsequent energy loss)
 → DM *kinetic energy* heats neutron star ~ 1700K
- Annihilation of thermalised dark matter
 → DM rest mass energy heats neutron star ~ additional 700K

Thermalisation is essentially guaranteed for unsuppressed DM-nucleon scattering. If there is some kinematic suppression of the scattering process, it can take much longer (velocity or momentum suppressions; inelastic, etc)

Cooling and Heating

In the standard NS cooling scenario, nucleons and charged leptons in beta equilibrium

 $C \frac{dT^{\infty}}{dt} = -L_{\nu}^{\infty} - L_{\gamma}^{\infty} + L_{DM}^{\infty} + L_{other heating}^{\infty}$ = cooling by ν and γ emission + heating due to dark matter

- Early cooling is dominated by neutrino emission
- Photon emission dominates at late times

Coolest known neutron star (PSR J2144-3933) has a temperature of 4.2 x 10^4 K. Astrophys.J. 874 (2019) no.2, 175

Old isolated neutron stars should cool to: 1000 K after ~ 10 Myr 100 K after ~ 1 Gyr

Detecting the Heating

Nearby $\lesssim 50 \text{ pc}$ isolated old NSs

M. Baryakhtar et al. PRL 119, 131801 (2017) arXiv:1704.01577

FAST (radio)

JWST (NIRCam)

TEVPA 2019 – SYDNEY – 2 DECEMBER 2019 – N. BELL, U.MELBOURNE

Neutron Star Heating: Advantages

✓ High probability of gravitational capture.

✓ DM particles accelerated to O(0.5c) **→ no momentum suppression**

✓ Cross section for efficient trapping $O(10^{-45} \text{ cm})$ for large DM mass range

✓ Unlike direct detection, not restricted by **recoil detection threshold**.

✓ Similar sensitivity to SI and SD cross scattering

Elastic and inelastic scattering cross sections of same order of magnitude.

Kinetic Heating: Sensitivity

TEVPA 2019 – SYDNEY – 2 DECEMBER 2019 – N. BELL, U.MELBOURNE

Kinematics

Pauli blocking from degenerate neutrons restricts scattering when $m_{DM} < 1$ GeV. Need: momentum transfer > neutron Fermi momentum Momentum transfer in single collision not sufficient for capture when $m_{DM} > 10^6$ GeV

Direct Detection vs Neutron Stars

Operator			Coupling	Direct Detection	Momentum suppressed	DD vs NS
D1	SS	$(\bar{\chi}\chi)(\bar{q}q)$	y_q/Λ^2	SI	×	NS or DD
D2	PS	$(\bar{\chi}\gamma_5\chi)(\bar{q}q)$	y_q/Λ^2	SI	\checkmark	NS
D3	SP	$(\bar{\chi}\chi)(\bar{q}\gamma_5 q)$	y_q/Λ^2	SD	\checkmark	NS
D4	PP	$(\bar{\chi}\gamma_5\chi)(\bar{q}\gamma_5q)$	y_q/Λ^2	SD	\checkmark	NS
D5	VV	$(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma_{\mu}q)$	$1/\Lambda^2$	SI	×	NS or DD
D6	VA	$(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma_{\mu}\gamma_{5}q)$	$1/\Lambda^2$	SI,SD	\checkmark	NS
D7	AV	$(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}q$	$1/\Lambda^2$	SD	\checkmark	NS
D8	AA	$(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}\gamma_{5}q)$	$1/\Lambda^2$	SD	×	NS

Projected neutron star heating sensitivity:

- comparable to direct detection experiments for scalar and vector interactions
- more sensitive than DD for all other interaction types (typically by orders of magnitude.

Neutron star sensitivity - SI scattering $\bar{\chi}\gamma_{\mu}\chi \ \bar{q}\gamma^{\mu}q$

Neutron star kinetic heating sensitivity comparable to Xenon 1T Direct Detection limits for vector-vector interaction

Momentum suppressed scattering

TEVPA 2019 – SYDNEY – 2 DECEMBER 2019 – N. BELL, U.MELBOURNE

Spin-dependent scattering (pseudoscalar)

Inelastic dark matter

Two almost degenerate dark matter states: χ_1 and χ_2

Inelastic in the sense that the dominant interaction is off-diagonal:

 $\chi_1 + n \rightarrow \chi_1 + n$ highly suppressed $\chi_1 + n \rightarrow \chi_2 + n$ kinematically forbidden except for $\delta m \ll m$

Well motivated if dark matter is quasi-Dirac (small Majorana mass)

Inelastic dark matter

Assume all dark matter in Universe today is in χ_1 state

 \rightarrow The only scattering process is $\chi_1 n \rightarrow \chi_2 n$

- Xenon based DD experiments restricted to $\delta m < 180 \text{ keV}$
- Capture in the Sun can probe only slightly higher mass splittings
- Neutron stars can probe much higher mass splittings, because the dark matter has a lot more kinetic energy (quasi-relativistic, due to acceleration on infall) $\delta m < 330$ MeV

Inelastic scattering cross section

Maximum mass splitting

$$k = \frac{\delta m}{m_{\chi}} \le k_{\mathrm{MAX}}$$

$$k_{MAX} = \sqrt{1 + \frac{2}{\mu\sqrt{B}} + \frac{1}{\mu^2}} - 1 - \frac{1}{\mu}$$

$$B = 1 - \frac{2GM_{\star}}{c^2 R_{\star}} \simeq 0.55$$
$$\mu = \frac{m_{\chi}}{m_T} \qquad \qquad \text{In NSs} \\ m_T = m_n$$

Leptons in Neutron Stars

Beta-decay equilibrium in the core determines the composition:

- Degenerate neutrons
- Smaller and approximately equal electron and proton abundances
- Small muon component

Leptons in Neutron Stars

Beta-decay equilibrium in the core determines the composition:

- Degenerate neutrons
- Smaller and approximately equal electron and proton abundances
- Small muon component

Leptons in Neutron Stars

Lepton density of few % in NS core, lower in crust. Fermi-momentum ~ constant in core.

TEVPA 2019 – SYDNEY – 2 DECEMBER 2019 – N. BELL, U.MELBOURNE

Neutron Star Equation of State

Pearson et al, Mon. Not. Roy. Astron. Soc. 481 no. 3, (2018)

EoS	BSk24-1	BSk24-2	BSk25-1	BSk25-2	
$\rho_c [\mathrm{g} \mathrm{cm}^{-3}]$	7.76×10^{14}	2.00×10^{15}	7.46×10^{14}	2.10×10^{15}	
$M \ [M_{\odot}]$	1.500	2.271	1.400	2.222	
$R \; [m km]$	12.593	11.310	12.387	11.166	
NS core					
$M_{\rm core} \ [M_{\odot}]$	1.483	2.266	1.383	2.217	
$R_{\rm core} [{\rm km}]$	11.643	10.977	11.389	10.834	
$\langle Y_n(r) \rangle$	92.68~%	86.43~%	93.69~%	86.41~%	
$\langle Y_p(r) \rangle$	7.32~%	13.57%	6.31~%	13.59~%	
$\langle Y_e(r) \rangle$	5.46~%	8.41~%	4.86~%	8.37~%	
$\langle Y_{\mu}(r) \rangle$	1.85~%	5.16~%	$1,\!44~\%$	5.22%	
$\langle p_{F,n}(r) \rangle [\text{MeV}]$	372.56	426.11	374.80	428.72	
$\langle p_{F,p}(r) \rangle \; [\text{MeV}]$	160.23	230.36	152.79	230.57	
$\langle p_{F,e}(r) \rangle [\text{MeV}]$	145.64	197.67	140.31	197.98	
$\langle p_{F,\mu}(r) \rangle \; [\text{MeV}]$	50.38	89.58	45.66	90.01	

Composition varies according to the neutron star EoS

Insensitive to details of NS Equation of State

NFB, Busoni & Robles arXiv:1904.09803

TEVPA 2019 – SYDNEY – 2 DECEMBER 2019 – N. BELL, U.MELBOURNE

Neutron star limits on leptophilic DM

TEVPA 2019 – SYDNEY – 2 DECEMBER 2019 – N. BELL, U.MELBOURNE

Leptophilic dark matter \rightarrow loop-level quark couplings

1-loop photon-mediateddiagrams are the mostimportant.(Non-zero only for certainoperators)

Other cases suppressed by Z-mass or by two loops.

Name	Operator	Coupling G
L1	$ar{\chi}\chi\ ar{\ell}\ell$	y_ℓ/Λ^2
L2	$ar{\chi}\gamma^5\chi\;ar{\ell}\ell$	$i y_\ell / \Lambda^2$
L3	$ar{\chi}\chi\ ar{\ell}\gamma^5\ell$	$i y_\ell / \Lambda^2$
L4	$ar{\chi}\gamma^5\chi\;ar{\ell}\gamma^5\ell$	y_ℓ/Λ^2
L5	$ar{\chi}\gamma_\mu\chi\;ar{\ell}\gamma^\mu\ell$	$1/\Lambda^2$
L6	$ar{\chi}\gamma_{\mu}\gamma^{5}\chi\;ar{\ell}\gamma^{\mu}\ell$	$1/\Lambda^2$
m L7	$ar{\chi}\gamma_\mu\chi\;ar{\ell}\gamma^\mu\gamma^5\ell$	$1/\Lambda^2$
L8	$ar{\chi}\gamma_{\mu}\gamma^{5}\chi\;ar{\ell}\gamma^{\mu}\gamma^{5}\ell$	$1/\Lambda^2$
L9	$ar{\chi}\sigma_{\mu u}\chi\;ar{\ell}\sigma^{\mu u}\ell$	$1/\Lambda^2$
L10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\;\bar{\ell}\sigma^{\mu\nu}\ell$	i/Λ^2

Lepton operators \rightarrow Quark operators

Operator	Coupling	Induced by
D1	$2 \text{ loop } (\gamma, \mathbf{Z})$	L1
D2	-	-
D3	$2 \text{ loop } (\gamma, \mathbf{Z})$	L3
D4	-	-
D5	$1 \text{ loop } (\gamma)$	L5
	$1 \log (Z)$	L5, L7
D6	$1 ext{ loop } (\gamma)$	L6
	$1 \log (Z)$	L6, L8
D7	$1 \log (Z)$	L5, L7
D8	$1 \log (Z)$	L6, L8

Vector interactions (L5)

Axial-vector interactions (L8)

Scaler interactions (L1)

Pseudo-scaler interactions (L4)

NFB, Busoni & Robles arXiv:1904.09803

Unknowns

Are there other sources of neutron star heating?

Rotochemical Heating (Hamaguchi et al., arXiv:1905.02991)

- For rotating pulsars, slow down in rotation may drive NS out of beta equilibrium
- Resulting imbalance in chemical potential induces rotochemical heating
- Dark matter may be observable for ordinary pulsars, but masked by rotochemical heating in millisecond pulsars with period < 7ms.

Are the uncertainties in the NS composition sufficiently well understood?

Scattering in the crust alone

Acevedo, Bramante, Leane & Raj, arXiv:1911.06334

Even scattering in just the crust gives interesting sensitivity at low DM mass

TEVPA 2019 – SYDNEY – 2 DECEMBER 201

Summary & Conclusions

- Dark matter capture in stars → cosmic laboratory to probe DM scattering interactions
- Neutron Stars \rightarrow completely different kinematic regime to direct detection experiments
 - Scattering of quasi-relativistic dark matter with neutron stars:
 - > no velocity or momentum suppressions
 - > access larger mass splittings in inelastic models
 - Excellent sensitivity to DM-lepton scattering cross sections, with electron and especially muon scattering.
 - Neutron Star kinetic heating sensitivity is better than current and forthcoming Direct Detection experiments, for both nucleon and electron scattering.