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• Introduction
o Dark matter capture in the Sun

• Capture in Neutron Stars
o black holes, gravitational waves
o neutron star heating
 DM-nucleon scattering
 DM-lepton scattering

• Summary

Outline



TEVPA 2019   – SYDNEY   – 2 DECEMBER 2019    – N. BELL, U.MELBOURNE 3

Searching for dark matter particles - Direct Detection

Spin-independent (SI) interactions 
 stringent bounds

M. Tanabashi et al. (PDG) 2018

Spin-dependent (SD) interactions 
much weaker bounds
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Sensitivity depends on interaction type
• Enhanced cross sections for SI (spin-independent) scattering 
• Smaller cross sections for SD (spin-dependent) scattering

Limited by kinematics 
• Some interactions feature only momentum or velocity 

suppressed cross section  these are very small numbers
• Mass of the target nuclei (or electron mass)
• Experimental thresholds for detecting recoil energy

Searching for dark matter particles - Direct Detection
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Dark matter can accumulate in the 
Earth, Sun, or other stars, in 
considerable amounts.

Complementary to direct 
detection experiments. 

An alternative approach
 capture in the Sun, Earth, or Neutron Stars



TEVPA 2019   – SYDNEY   – 2 DECEMBER 2019    – N. BELL, U.MELBOURNE 6

• Dark matter scatters, loses energy, becomes 
gravitationally bound to star

• Accumulates and annihilates in centre of Sun
• Only neutrinos escape Sun IceCube, SuperK

In equilibrium: 
Annihilation rate = Capture rate 
 controlled by DM-nucleon scattering cross section.
 probes the same quantity as direct detection     

experiments 

Solar WIMPs
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Solar WIMPs

• For spin-independent interactions: 
 direct detection wins

• For spin-dependent interactions:
 strong solar WIMP limits

arXiv:1705.03380
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Neutron Stars

Scattering

DM

Due to their density, 
neutron stars capture dark 
matter very efficiently.

Capture probability is of 
order unity when

𝜎𝜎𝑛𝑛𝑛𝑛 > 𝜎𝜎𝑡𝑡𝑡~10−45cm2

Image: NASA 
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Neutron Stars → Black holes?

• Due to their density, neutron stars capture dark matter very efficiently

• Can neutron stars accumulate so much dark matter that they would collapse to 
back holes? Yes, but typically only if:
• No annihilation (e.g. asymmetric DM)
• DM is bosonic and condenses to a small self gravitating BEC, or 
• DM is fermionic with attractive self-interactions, and
• No repulsive-self interactions that prevent collapse (even very very tiny self-

interaction is enough) NFB, Petraki & Melatos, PRD 2013

 Black hole quite unlikely for typical WIMP-like dark matter

Kouvaris; Kouvaris & Tinyakov; McDermott, Yu & Zurek; Bramante, Fukushima & Kumar;  NFB, Petraki & Melatos; 
Bertone, Nelson & Reddy; and others.
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Neutron star mergers → gravitational waves Nelson, Reddy 
& Zhou, 
1803.03266

• Light DM + light mediators (MeV scale)
 DM component extents to large radii  NS dark matter halo

• Increases the NS tidal deformability, Λ.
 LIGO observation of NS-NS merger, GW170817, constrains Λ < 800
 strong bounds, even for small DM component ~10−4𝑀𝑀⊙
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Neutron Star Kinetic Heating

Scattering

DM

M. Baryakhtar et al. 
PRL 119, 131801 (2017)
arXiv:1704.01577

TNS ~1700 K
1 - 2 μm
near IR

Collisions transfer the 
dark matter kinetic energy 
to the neutron star
 heating
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Dark matter heating 
 from scattering plus annihilation 

Bramante, Delgardo and Martin;  Raj, Tanedo and Yu

• Capture (plus subsequent energy loss)
 DM kinetic energy heats neutron star ~ 1700K

• Annihilation of thermalised dark matter
 DM rest mass energy heats neutron star ~ additional 700K

Thermalisation is essentially guaranteed for unsuppressed DM-nucleon scattering.  If there is 
some kinematic suppression of the scattering process, it can take much longer (velocity or 
momentum suppressions; inelastic, etc)
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Cooling and Heating
In the standard NS cooling scenario, nucleons and charged leptons in beta equilibrium

𝐶𝐶 𝑑𝑑𝑇𝑇∞

𝑑𝑑𝑑𝑑
= −𝑳𝑳𝝂𝝂∞ − 𝑳𝑳𝜸𝜸

∞ + 𝑳𝑳𝑫𝑫𝑫𝑫∞ + 𝑳𝑳other heating∞

= cooling by 𝜈𝜈 and 𝛾𝛾 emission  +  heating due to dark matter

• Early cooling is dominated by neutrino emission
• Photon emission dominates at late times

Coolest known neutron star (PSR J2144-3933) has a temperature of 4.2 x 104 K. 
Astrophys.J. 874 (2019) no.2, 175

Old isolated neutron stars should cool to: 1000 K after ~ 10 Myr
100 K after ~ 1 Gyr
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Detecting the Heating

FAST (radio) JWST (NIRCam)

TNS ~1700 K

1 - 2 μm
M. Baryakhtar et al. 
PRL 119, 131801 (2017)
arXiv:1704.01577

Nearby ≲ 50 pc
isolated old NSs

near IR



TEVPA 2019   – SYDNEY   – 2 DECEMBER 2019    – N. BELL, U.MELBOURNE 15

High probability of gravitational capture.

DM particles accelerated to 𝒪𝒪 0.5𝑐𝑐

Cross section for efficient trapping 𝒪𝒪 10−45 cm for large DM mass range

Unlike direct detection, not restricted by recoil detection threshold.

Similar sensitivity to SI and SD cross scattering  

Elastic and inelastic scattering cross sections of same order of magnitude.       

no momentum suppression

Neutron Star Heating: Advantages
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Kinetic Heating: Sensitivity
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Kinematics

Momentum transfer in single 
collision not sufficient for capture 
when 𝑚𝑚𝐷𝐷𝐷𝐷 > 106 GeV

Pauli blocking from degenerate neutrons restricts 
scattering when 𝑚𝑚𝐷𝐷𝐷𝐷 < 1 GeV.  
Need: momentum transfer > neutron Fermi momentum 
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Direct Detection vs Neutron Stars

Projected neutron star heating sensitivity: 
• comparable to direct detection experiments for scalar and vector interactions
• more sensitive than DD for all other interaction types (typically by orders of magnitude.

Operator Coupling Direct 
Detection

Momentum 
suppressed

DD vs NS

D1 SS (𝜒̅𝜒𝜒𝜒)(�𝑞𝑞𝑞𝑞) yq/Λ2 SI  NS or DD

D2 PS 𝜒̅𝜒𝛾𝛾5𝜒𝜒 (�𝑞𝑞𝑞𝑞) yq/Λ2 SI  NS

D3 SP (𝜒̅𝜒𝜒𝜒)(�𝑞𝑞𝛾𝛾5𝑞𝑞) yq/Λ2 SD  NS

D4 PP (𝜒̅𝜒𝛾𝛾5𝜒𝜒)(�𝑞𝑞𝛾𝛾5𝑞𝑞) yq/Λ2 SD  NS

D5 VV (𝜒̅𝜒𝛾𝛾𝜇𝜇𝜒𝜒 )(�𝑞𝑞𝛾𝛾𝜇𝜇𝑞𝑞) 1/Λ2 SI  NS or DD

D6 VA (𝜒̅𝜒𝛾𝛾𝜇𝜇𝜒𝜒 )(�𝑞𝑞𝛾𝛾𝜇𝜇𝛾𝛾5𝑞𝑞) 1/Λ2 SI,SD  NS

D7 AV (𝜒̅𝜒𝛾𝛾𝜇𝜇𝛾𝛾5𝜒𝜒 )(�𝑞𝑞𝛾𝛾𝜇𝜇𝑞𝑞 1/Λ2 SD  NS

D8 AA (𝜒̅𝜒𝛾𝛾𝜇𝜇𝛾𝛾5𝜒𝜒 )(�𝑞𝑞𝛾𝛾𝜇𝜇𝛾𝛾5𝑞𝑞) 1/Λ2 SD  NS
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Neutron star sensitivity - SI scattering

NFB, Busoni, Robles, arXiv:1807.02840 

Neutron star kinetic heating 
sensitivity comparable to Xenon 
1T Direct Detection limits for 
vector-vector interaction
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Non relativistic limit – Direct Detection regime

Momentum suppressed scattering

Momentum 
suppressed

Relativistic limit – Neutron Star regime 

NFB, Busoni, Robles, arXiv:1807.02840 
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Non relativistic limit – Direct Detection regime

Spin-dependent scattering (pseudoscalar)

Momentum 
suppressed 
by 𝒒𝒒𝟒𝟒 and SD

Relativistic limit – Neutron Star regime 

NFB, Busoni, Robles, arXiv:1807.02840 (JCAP 2018)
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Inelastic dark matter

highly suppressed

kinematically forbidden except for 𝛿𝛿𝛿𝛿 ≪ 𝑚𝑚

Two almost degenerate dark matter states:  𝜒𝜒1 and 𝜒𝜒2

Inelastic in the sense that the dominant interaction is off-diagonal:

𝜒𝜒1 + 𝑛𝑛 → 𝜒𝜒2 + 𝑛𝑛
𝜒𝜒1 + 𝑛𝑛 → 𝜒𝜒1 + 𝑛𝑛

Well motivated if dark matter is quasi-Dirac (small Majorana mass)
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Inelastic dark matter

• Xenon based DD experiments restricted to 𝛿𝛿𝛿𝛿 < 180 keV

• Capture in the Sun can probe only slightly higher mass splittings

• Neutron stars can probe much higher mass splittings, because the 
dark matter has a lot more kinetic energy (quasi-relativistic, due to 
acceleration on infall) 𝛿𝛿𝛿𝛿 < 330 MeV

Assume all dark matter in Universe today is in 𝜒𝜒1 state

 The only scattering process is 
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Inelastic scattering cross section

In NSs

Maximum mass splitting
NFB, Busoni, Robles, arXiv:1807.02840 (JCAP 2018)

𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 = 1 +
2

𝜇𝜇 𝐵𝐵
+

1
𝜇𝜇2

− 1 −
1
𝜇𝜇
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Leptons in Neutron Stars

Beta-decay equilibrium in the core 
determines the composition:

• Degenerate neutrons

• Smaller and approximately equal 
electron and proton abundances

• Small muon component
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Leptons in Neutron Stars

Beta-decay equilibrium in the core 
determines the composition:

• Degenerate neutrons

• Smaller and approximately equal 
electron and proton abundances

• Small muon component
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Leptons in Neutron Stars
Lepton density of  few % in NS core, lower in crust.
Fermi-momentum ~ constant in core.

crust-core boundary
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Neutron Star Equation of State
Pearson et al, Mon. Not. Roy. Astron. Soc. 481 no. 3, (2018)

Composition varies 
according to the 
neutron star EoS
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Insensitive to details of NS Equation of State

NFB, Busoni & Robles arXiv:1904.09803 

Electron scattering 

Muon Scattering

Neutron scattering 

Proton scattering 
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Neutron star limits on leptophilic DM

Electron scattering 

Muon scattering 

NFB, Busoni & Robles arXiv:1904.09803 
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Leptophilic dark matter → loop-level quark couplings

1-loop photon-mediated 
diagrams are the most 
important.
(Non-zero only for certain 
operators)

Other cases suppressed by 
Z-mass or by two loops.
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Lepton operators        → Quark operators
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Vector interactions (L5)

NFB, Busoni & Robles arXiv:1904.09803 
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Axial-vector interactions (L8)

NFB, Busoni & Robles arXiv:1904.09803 
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Scaler interactions (L1)

NFB, Busoni & Robles arXiv:1904.09803 
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Pseudo-scaler interactions (L4)

NFB, Busoni & Robles arXiv:1904.09803 
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Unknowns

Are there other sources of neutron star heating?

Rotochemical Heating (Hamaguchi et al., arXiv:1905.02991)
• For rotating pulsars, slow down in rotation may drive NS out of beta equilibrium
• Resulting imbalance in chemical potential induces rotochemical heating
• Dark matter may be observable for ordinary pulsars, but masked by 

rotochemical heating in millisecond pulsars with period < 7ms.

Are the uncertainties in the NS composition sufficiently well understood?
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Scattering in the crust alone 
Acevedo, Bramante, Leane & Raj, arXiv:1911.06334

Even scattering in just the crust gives 
interesting sensitivity at low DM mass
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• Dark matter capture in stars  cosmic laboratory to probe DM scattering interactions

• Neutron Stars  completely different kinematic regime to direct detection experiments
o Scattering of quasi-relativistic dark matter with neutron stars:
 no velocity or momentum suppressions
 access larger mass splittings in inelastic models
 Excellent sensitivity to DM-lepton scattering cross sections, with electron and 

especially muon scattering.
 Neutron Star kinetic heating sensitivity is better than current and forthcoming 

Direct Detection experiments, for both nucleon and electron scattering.

Summary & Conclusions
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