Dark-matter bound states: overhauling thermal decoupling at the TeV scale

Kallia Petraki

Sorbonne University, LPTHE, Paris and Nikhef, Amsterdam

TeVPA Sydney, 02 December 2019

Classification schemes

of dark matter candidates

Interaction with the SM

Portal operators $e^{E^{\mu\nu}F}$	SM interactions	Heavy mediators
$\epsilonF_{_Y}^{\mu u}F_{_D\mu u} \ (\mu\phi+\lambda\phi^2) H ^2$	WIMPs	EFTs
yLHN		

(Self-) interaction type

Production mechanism

Scalar condensates	Collapse of density	Freeze-in	Asymmetric freeze-out	Symmetric freeze-out
Q-balls Axions	Primordial black holes	Sterile neutrinos Gravitinos	Hidden sector models, e.g. dark U(1), dark QCD	WIMPs Heavy meds Light meds

Classification schemes

of dark matter candidates

most of DM research

Interaction with the SM

Portal operators

$$rac{\epsilon\,F_{_Y}^{\mu
u}F_{_D\,\mu
u}}{(\mu\phi+\lambda\phi^2)|H|^2} \ yLHN$$

SM interactions

WIMPs

Heavy mediators

EFTs

(Self-) interaction type

Long-range

Light mediators $m_{med} << m_{DM}$

Contact type

Heavy mediators $m_{med} \gtrsim m_{DM}$

Production mechanism

Scalar condensates
Q-balls Axions

Collapse of density perturbations

Primordial black holes

Freeze-in

Sterile neutrinos
Gravitinos

Asymmetric freeze-out

Hidden sector models, e.g. dark U(1), dark QCD

Symmetric freeze-out

WIMPs
Heavy meds
Light meds

Classification schemes

of dark matter candidates

Interaction with the SM

Portal operators

this talk

$$\epsilon\,F_{_Y}^{\mu
u}F_{_D\mu
u} \ (\mu\phi+\lambda\phi^2)|H|^2 \ m_{_{MMM}} yLHN$$

SM interactions

WIMPs

Heavy mediators

EFTS

(Self-) interaction type

Long-range

Light mediators $m_{med} << m_{DM}$

Contact type

Heavy mediators $m_{med} \gtrsim m_{DM}$

Production mechanism

Scalar	
condensate	S

Q-balls Axions Collapse of density perturbations

Primordial black holes

Freeze-in

Sterile neutrinos
Gravitinos

Asymmetric freeze-out

Hidden sector models, e.g. dark U(1), dark QCD Symmetric freeze-out

WIMPs
Heavy meds
Light meds

Long-range interactions Motivation

Long-range interactions appear in a variety of DM theories

- Self-interacting DM
- DM explanations of astrophysical anomalies,
 e.g. galactic positrons, IceCube PeV neutrinos
- Sectors with stable particles in String Theory
- WIMP DM with m_{DM} > few TeV. [Hisano et al. 2002]
- WIMP DM with m_{DM} < TeV, in scenarios of DM co-annihilation with coloured partners.

Long-range interactions mediated by massless or light particles

Bound states

Bound states Phenomenological implications

- Stable bound states
 - DM self-scattering in halos: Screening
 - Indirect detection signals: Radiative level transitions
 - Direct detection signals: Screening, inelastic scattering

- Unstable (positronium-like) bound states
 formation + decay = extra annihilation channel
 - Relic abundance
 - Indirect detection

Outline

Bound states and density of thermal relic DM

- Dark U(1) sector
- Neutralino-squark coannihilation scenarios
- The 125 GeV Higgs as a light mediator
- Bound-state formation via emission of a charged scalar
- Bound-state formation inside a relativistic thermal bath

Thermal freeze-out with long-range interactions

Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_D

$$egin{split} S_{
m ann} &\simeq \left(rac{2\pi\zeta}{1-e^{-2\pi\zeta}}
ight) & \stackrel{\zeta\gtrsim 1}{\longrightarrow} & 2\pi\zeta \ S_{
m BSF} &\simeq \left(rac{2\pi\zeta}{1-e^{-2\pi\zeta}}
ight) rac{2^9\zeta^4e^{-4\zeta{
m arccot}\zeta}}{3(1+\zeta^2)^2} & \stackrel{\zeta\gtrsim 1}{\longrightarrow} & 3.13 imes 2\pi\zeta \end{split}$$

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

 $\begin{array}{ll} \textbf{Direct Annihilation} & X\bar{X} \to \gamma_{\scriptscriptstyle D} \gamma_{\scriptscriptstyle D} \\ \textbf{Bound-state formation} & X\bar{X} \to \mathcal{B}(X\bar{X}) + \gamma_{\scriptscriptstyle D} \\ \textbf{and decay} & \mathcal{B}(X\bar{X}) \to 2\gamma_{\scriptscriptstyle D} \ \ \textbf{or} \ \ 3\gamma_{\scriptscriptstyle D} \end{array}$

m [GeV]

Neutralino in SUSY models Squark-neutralino co-annihilation scenarios

- Degenerate spectrum → soft jets → evade LHC constraints
- Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP
 - ⇒ DM density determined by "effective" Boltzmann equation

$$\sigma_{\rm ann}^{\rm eff} = [\,n_{_{\rm LSP}}^2\,\sigma_{\rm ann}^{^{\rm LSP}} + n_{_{\rm NLSP}}^2\,\sigma_{\rm ann}^{^{\rm NLSP}} + n_{_{\rm LSP}}\,n_{_{\rm NLSP}}\,\sigma_{\rm ann}^{^{\rm LSP-NLSP}}\,]/n_{\rm tot}^2$$
 | Important to compute accurately! \rightarrow QCD corrections

QCD corrections to stop annihilation

[Klasen+ (since 2014), DM@NLO]

QCD loop corrections

Gluon emission

Sommerfeld effect

broadly, the most important

QCD corrections to stop annihilation

[Klasen+ (since 2014), DM@NLO]

QCD loop corrections

Sommerfeld effect

broadly, the most important

Gluon emission

$$egin{array}{lll} \mathcal{L} &\supset &rac{1}{2}\overline{\chi^c}\,i enta\chi -rac{1}{2}m_\chi\,\overline{\chi^c}\chi \ &+& \left[(\partial_\mu + ig_sG_\mu^aT^a)X
ight]^\dagger \left[(\partial^\mu + ig_sG^{a,\mu}T^a)X
ight] - m_X^2|X|^2 \ &+& (\chi\leftrightarrow X,X^\dagger) ext{ interactions in chemical equilibrium during freeze-out} \end{array}$$

Harz. KP: 1805.01200

Bound-state formation and decay

Harz, KP: 1805.01200

Bound-state formation vs Annihilation

Relic density

Harz, KP: 1805.01200

Relic density

Harz, KP: 1805.01200

Can the Higgs mediate a long-range force?

Common reactions

YES
if DM is heavy
enough

NO

- The Higgs is quite heavy, and certainly heavier than all SM gauge bosons.
- The coupling of DM to the Higgs is not expected or allowed to be very large.

Can the Higgs mediate a long-range force?

Common reactions

YES

if DM is heavy enough

NO

- The Higgs is quite heavy, and certainly heavier than all SM gauge bosons.
- The coupling of DM to the Higgs is not expected or allowed to be very large.

Not obvious

Doesn't happen in the simplest cases

Not true

- For multi-TeV DM, the Higgs is light
- In coannihilation scenarios, the coupling to the Higgs can be sizable.
- Interference effect between Higgs and other (SM) mediators

Neutralino in SUSY models Squark-neutralino co-annihilation scenarios

- Degenerate spectrum → soft jets → evade LHC constraints
- Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP
 - ⇒ DM density determined by "effective" Boltzmann equation

$$\sigma_{\rm ann}^{\rm eff} = [\,n_{_{\rm LSP}}^2\,\sigma_{\rm ann}^{^{\rm LSP}} + n_{_{\rm NLSP}}^2\,\sigma_{\rm ann}^{^{\rm NLSP}} + n_{_{\rm LSP}}\,n_{_{\rm NLSP}}\,\sigma_{\rm ann}^{^{\rm LSP-NLSP}}\,]/n_{\rm tot}^2$$
 | Important to compute accurately! \rightarrow QCD corrections

Higgs enhancement and relic density MSSM-inspired toy model

DM co-annihilating with scalar colour-triplet that has a sizeable coupling to the Higgs

e.g. stop-neutralino co-annihilation scenarios with large A terms

$$\begin{array}{ll} \mathcal{L} & \supset & \frac{1}{2}\overline{\chi^c}\,i\partial\!\!\!/\chi - \frac{1}{2}m_\chi\,\overline{\chi^c}\chi \\ & + & \left[(\partial_\mu + ig_sG_\mu^aT^a)X\right]^\dagger\,\left[(\partial^\mu + ig_sG^{a,\mu}T^a)X\right] - m_X^2|X|^2 \\ & + & \frac{1}{2}\partial_\mu h\partial^\mu h - \frac{1}{2}m_h^2h^2 - g_hm_\chi\,h|X|^2 \\ & + & (\chi \leftrightarrow X, X^\dagger) \text{ interactions in chemical equilibrium during freeze-out} \end{array}$$

$$lpha_s = rac{g_s^2}{4\pi} \ lpha_h = rac{g_h^2}{16\pi} \
angle$$

Higgs enhancement and relic density MSSM-inspired toy model

$$\boxed{2PI} = \boxed{\mathbf{g}} + \boxed{\mathbf{h}}$$

Gluon potential influences the long-range effect of the Higgs!

Higgs enhancement

interference between Coulomb & Yukawa potentials

How "long-range" the Higgs exchange is depends on the other mediators, here the gluons!

Harz, KP: 1711.03552, 1901.10030

Higgs enhancement and relic density MSSM-inspired toy model

Harz, KP: 1711.03552, 1901.10030

Higgs as a light mediator

Sommerfeld enhancement of direct annihilation ✓

Harz, KP: 1711.03552

Binding of bound states ✓

Harz, KP: 1901.10030

Higgs as a light mediator

Sommerfeld enhancement of direct annihilation ✓ Harz

Harz, KP: 1711.03552

Binding of bound states ✓

Harz, KP: 1901.10030

Formation of bound states via Higgs emission?

Capture via emission of neutral scalar suppressed, due to cancellations in amplitude.

KP, Postma, Wiechers: 1505.00109 An, Wise, Zhang: 1606.02305 KP, Postma, de Vries: 1611.01394

Capture via emission of charged scalar [or its Goldstone mode]

Very very rapid!

Ko,Matsui,Tang:1910:04311
Oncala, KP: 1911.02605

Sudden change in effective Hamiltonian precipitates transitions. Akin to atomic transitions precipitated by β decay of nucleus.

BSF via emission of a *charged* scalar U(1) model with scalar DM

$$egin{align} \mathcal{L} \supset & -igX^\dagger V^\mu(\partial_\mu X) \ -i2g\Phi^\dagger V^\mu(\partial_\mu \Phi) \ -rac{ym_X}{2}\,XX\Phi^\dagger + h.c. \ & m_X \gg m_\Phi \ \end{matrix}$$

$$U_{{\scriptscriptstyle X}{\scriptscriptstyle X}^\dagger}(r) \; = \; - \, rac{lpha_{\scriptscriptstyle V}}{r} \, - (-1)^\ell \, rac{lpha_{\scriptscriptstyle \Phi}}{r} \, e^{-m_\Phi r}$$

$$X \longrightarrow X = X \longrightarrow X = X \longrightarrow X$$

$$X \longrightarrow X = X \longrightarrow X$$

$$U_{\scriptscriptstyle XX}(r) \; = \; + rac{lpha_{\scriptscriptstyle V}}{r}$$

Change in effective Hamiltonian. Very fast transition!

BSF via emission of a *charged* scalar U(1) model with scalar DM

BSF via emission of a *charged* scalar U(1) model with scalar DM

BSF via emission of a *charged* scalar U(1) model with scalar DM

Bound-state formation via scattering on relativistic bath particles

Radiative capture

Capture via bath scattering

Dissipation of energy may occur:

- Radiatively (usually emission of force mediator)
- Via scattering, if mediator couples to light species
 - Suppressed by extra α.
 - Enhanced by large number density of relativistic particles, $(T/\omega)^3$, where $\omega = m_x (\alpha^2 + v_{rel}^2) / 4$ is the dissipated energy.
 - Kinematically accessible even if $m_{mediator} > \omega$.

Bound-state formation via scattering on relativistic bath particles

Radiative capture

Capture via bath scattering

Bound-state formation via scattering on relativistic bath particles

U(1) model with fermionic DM

Radiative capture

Capture via bath scattering

Conclusion

 Bound states impel complete reconsideration of thermal decoupling at / above the TeV scale.

In fact, the unitarity limit can be approached / realised only by attractive long-range interactions ⇒ bound states play very important role!

Baldes, KP: 1703.00478

Important experimental implications:

DM heavier than anticipated: multi-TeV probes very important.

- Indirect detection
 - Enhanced rates due to BSF
 - Novel signals: low-energy radiation emitted in BSF
 - Indirect detection of asymmetric DM
- Colliders: improved detection prospects due increased mass gap in coannihilation scenarios

