

Updates on the GAPS experiment - a search for light cosmic ray antinuclei

TeVPA, Sydney, Dec 5th 2019

Achim Stößl for the GAPS collaboration

$oldsymbol{d}$ as probes for DM

assumption:

cosmic rays from dark matter annihilation follow different kinematics than conventional production

- > peak/bump/shoulder on top of conventional spectrum
- ➤ Anti-deuteron search channel benefits from extremely low conventional production, especially in the region below 0.25 GeV/n!

GAPS detector - ToF

ToF system (1+2):

- (1) Umbrella (outer)
- (2) Cube (inner)

Plastic scintillator:

Eljen EJ-200, 160-180cm, long, 0.6 cm thick <u>SiPM</u>: Hamamatsu S13360-6050VE, 6 per each side of each paddel <u>Sampling</u>: DRS4 ASIC:

- ➤ Will provide trigger decision based on number of hits, beta, deposited energy
- ➤ Good beta resolution crucial for particle identification. ~300ps timing resolution been demonstrated in the lab

GAPS detector - Tracker

Tracker system (3):

- ➤ 4" lithium-drifted Si detectors Si(Li) arrenged in modules a 4 each
- ➤ the tracker will operate at temperatures > -45°C < -35°C
- ➤ 360 modules of 4 Si(Li) each stacked on top of each other in 10 layers
- ➤ energy resolution of < 4keV
- custom 11bit ASIC for readout, ' non-linear response for high dynamic range,
- ➤ 527 detectors received, parts for 40 modules on order

Perez et al., NIM A 905, 12 (2018) Kozai et al., NIM A 947, 162695 (2019) Rogers et al., IINST 14, P10009 (2019)

Module calibration

Si(Li) modules are currently calibrated and tested

- ➤ Test sites operational or curretnly being set up at MIT (Cambridge), CU (NYC) and UHM (Honolulu)
- ➤ Automatic test system to run tests with 2 different X-ray sources at different temperatures as efficient as possible
- ➤ Operational temperatures achieved with dedicated climate chamber with LN2 flow
- ➤ First results at MIT show that the module can reach the required resolutions of <= 4keV

Radiator test flight

- ➤ a novel passive cooling system with new type of oscillatory capillary heat-pipe will be used
- ➤ a down-sized version of the GAPS radiator for the cooling system was tested in a test flight from Ft. Sumner on Sep. 23, 2019
- ➤ data stored onboard, successfuly recovered and will be copared to thermal model

➤ early analysis indicates *operation of the* radiator as expected

d identification challenge W

- ➤ Rare event search: *Large rejection power needed* for p, He, e⁻, e⁺ and especially antiprotons.
- **➤** Long flight time & large acceptance: 30 days LDB flights from McMurdo

➤ antiparticle discrimination:

Among other techniques, use a novel approach - exotic X-rays from decaying excited atoms (similar to muonic atoms)

ratios of antideuteron fluxes. The antideuteron background refers to secondary production. Predicted fluxes for DM from Korsmeier et al., 2017 arXiv:1711.08465.

antiproton on the left, antideuteron on the right besides the different average pion multiplicity we expect different characteristic X-rays from decays of exotic atoms

Event reconstruction

antiproton (red) pion (black) electron (blue)

R. Munini, INFN, ICRC 2019

Event reconstruction

- ➤ Reconstruct annihilation vertex and beta
- ➤ Vertex finding utilizes iterative, adaptive, multi-step process, incorperating different techniques
- ➤ Vertex reconstructed for annihilation events within 8 cm
- ➤ Primary beta resolution 4% incorporating TOF timing resolution (~400ps)

Exotic X-rays have been implemented in Geant4 simulation

- ➤ So far implementation for Si, C, Al and antiproton and antideuteron primary
- ➤ X-ray floor (decays of daughter nuclei, different materials, ...) needs to be well understood
- ➤ Studies are ongoing
- ➤ It is planned to generally become available in Geant4 (collaborating with G4 developers)

- > Energy deposition of the primary track one of the most powerful variables due to kinematic cut off
- > Can be verified with proton/deuteron with high statistics
- ➤ All variables will be combined in a likelihood analysis

Expected sensitivity

➤ **GAPS** will detect ~1000 antiprotons per 30day flight

(order of magnitude more than BESS Polar II)

antiprotons

- background validation
- comparison with other experiments
- exotic X-ray technique validation
- are DM probes of its own
- antideuteron sensitivity at 2x10⁻⁶ (sm²sr GeV/n)⁻¹
 A single antideuteron in 3x30 days flight is a 3σ discovery
- ➤ large dynamic range of custom ASIC allows for antihelium capabilities

Theoretical bands from Korsmeier's 2017 paper, upper and lower edges refer to ALICE (248MeV/c) and ALEPH (160MeV/c) coalescence momenta

Summary & next steps

- ➤ **GAPS** is a balloon-born payload under construction with the goal to *search for low-energy antiparticles*, scheduled *to fly from McMurdo in late 2021*.
- ➤ **GAPS** has a rich science program and unique capabilities for a search for antinuclei with unprecedented sensitivity

- ➤ **GAPS Functional Prototype** with 3 tracker layers (36 modules) and 2 ToF planes will be built in spring
- ➤ testing of the read-out chain, X-ray data, muon data

GAPS collaboration

Massachusetts Institute of Technology

Backup

particle/antiparticle discrimination

charge/mass discrimination

Discirimination categories

Interaction characteristics

- number of tracks from vertex
- total hits
- characteristic X-rays
- energy deposition within sphere around vertex

T.Aramaki, et al, 2015, arXiv:1506.02513

Primary track characteristics:

- penetration depth
- column density
- total energy deposition on primary track

Final annihilation states

Total number of charged pions independent of individual channel, Si-pbar/Si-dbar interactions at rest.

Larger nuclei expected to produce more pions.

Studying final states of annihilation with Geant4 - validation with pbar data at rest

➤ close collaboration with Geant4 developers

Some fixes already included in Geant10.5

Some channels already in good agreement, others need more work, integrated distributions look as expected

