

Recent results on UHE cosmic rays from the Pierre Auger Observatory

Bruce Dawson The University of Adelaide, Australia

The Pierre Auger Collaboration

20th Anniversary

of the Foundation of the Pierre Auger Observatory

November 2019 14-15 : Scientific Symposium Guided tour to the Observatory 16 : Anniversary Celebration

https://www.auger.org/

We will celebrate in Malargüe ... Join us!

Tour to the field

VIAJES-EXCURSIONES

UNIE T UE

Adelaide Design Workshop on Techniques for the Study of Cosmic Rays with Energies above 10¹⁹eV

Workshop where the idea that Auger should be a "hybrid" observatory was born!

January 4 - 15 1993

The Pierre Auge

Water-Cherenkov detector 10 m² , 1.2 m deep

3000 km²

66 water-Cherenkov detectors (on 1500 m or 750 m triangular grid) 27 fluorescence telescopes (4 sites)

The Pierre Auger Observatory

Water-Cherenkov stations ➡SD1500 : 1600, 1.5 km grid, 3000 km² ⇒SD750 : 61, 0.75 km grid, 25 km²

<u> ●</u> 4 Fluorescence Sites</u>

→24 telescopes, 1-30^o FoV

Underground Muon Detectors

➡7 in engineering array phase -61 aside the Infill stations

⊖<u>HEAT</u>

→ 3 high elevation FD, 30-60° FoV

→153 graded 17 km²

+Atmospheric monitoring devices CLF, XLF, Lidars, ...

A.Aab et al., [Auger Collaboration] PRD 100, 082003 2019

Observatory is Based on Fluorescence Measurements

V. Verzi [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Evolution of spect

Combined spectrum (components shifted within uncorrelated uncertainties)

V. Verzi [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Mass Composition

A. Yushkov [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Energy Dependance of Xmax

X_{max} resolution ~25 g cm⁻² at 10^{17.8} eV ~15 g cm⁻² for E> 10¹⁹ eV $\sigma_{sys} \le 10 \text{ g cm}^{-2}$

$\log_{10}(E/eV)$	FD
18.5-18.6	1098
18.6-18.7	834
18.7-18.8	578
18.8-18.9	469
18.9-19.0	356
19.0-19.1	281
19.1-19.2	191
19.2-19.3	131
19.3-19.4	111
19.4-19.5	66
> 19.5	62
Total	4177

Mean Xmax and its fluctuations

A. Yushkov [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Composition becoming lighter up to $\sim 2 \times 10^{18} \, \mathrm{eV}$, heavier above this energy

Mean Xmax from Auger's surface detector

C.J. Todero Peixoto [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Primary mass not constant with energy, in agreement with more direct fluorescence measurements

Combined fit of spectrum and Xmax data - astrophysics

Simple model: uniformly distributed identical sources, nuclei accelerated via a rigidity-dependent mechanism. Result: relatively low maximum acceleration energies, hard spectra and heavy chemical composition.

Large-scale anisotropy

Energy	[EeV]	N	d_{\perp}	d_z	d	α_d [°]	δ_d [°]	
interval	median							Exposure $> 92000 \text{km}$
4 - 8	5.0	88,317	$0.010\substack{+0.007\\-0.004}$	-0.016 ± 0.009	$0.019\substack{+0.009\\-0.006}$	70 ± 34	-57^{+24}_{-20}	for events with $\theta < 8$
≥ 8	11.5	36,924	$0.060\substack{+0.010\\-0.009}$	-0.028 ± 0.014	$0.066\substack{+0.012\\-0.008}$	98 ± 9	-25 ± 11	

Large-scale anisotropy

Energy	[EeV]	N	d_{\perp}	d_z	d	α_d [°]	δ_d [°]	2
interval	median							Exposure > $92000 \text{ km}^2 \text{ s}$
4 - 8	5.0	88,317	$0.010\substack{+0.007\\-0.004}$	-0.016 ± 0.009	$0.019\substack{+0.009\\-0.006}$	70 ± 34	-57^{+24}_{-20}	for events with $\theta < 80^{\circ}$
≥ 8	11.5	36,924	$0.060\substack{+0.010\\-0.009}$	-0.028 ± 0.014	$0.066\substack{+0.012\\-0.008}$	98 ± 9	-25 ± 11	

Search for large scale anisotropies down to 0.03 EeV

- SD1500 + SD750 data,
- East-West method below 2 EeV (to minimise detector systematics) -

E. Roulet [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Intermediate-scale anisotropy - blind scan & Cen A

Total SD events with E>32 EeV : 2157 Total exposure 101,400 km² sr yr

L. Caccianiga [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Blind search

Scan ranges: $32 \text{ EeV} \le \text{Eth} \le 80 \text{ EeV} (1 \text{ EeV steps})$ $1^{\circ} \le \Psi \le 30^{\circ} (1^{\circ} \text{ steps})$

Most significant excess for E>38 EeV (α =202°, δ = -45°) ~2° from CenA

2.5% post-trial chance probability

Centaurus A

3.9 σ effect (post-trial) for E>37 EeV, 28^o window

Intermediate-scale anisotropy - catalog search

γ AGNs

3FHL catalog < 250 Mpc 33 sources (CenA, Fornax A, M87...) Flux proxy ϕ (>10 GeV)

Starburst Galaxies

32 sources (Circinus, M82, M83,...) <250 Mpc Flux proxy ϕ (>1.4 GHz), > 0.3 Jy

Swift-BAT

>300 radio loud and quiet sources <250 Mpc ϕ > 13.4 10⁻¹² erg cm⁻² s⁻¹

2MRS

~10⁴ sources with D>1 Mpc

<250 Mpc

Flux proxy K-band flux.

L. Caccianiga [Auger Collaboration], ICRC 2019 arXiv:1909.09073

		•				
5	$E_{\rm th}$	TS	Local p-value	post-trial	f_{aniso}	
st	38 EeV	29.5	4×10^{-7}	4.5σ	$11^{+5}_{-4}\%$	15
V	39 EeV	17.8	1×10^{-4}	3.1 σ	$6^{+4}_{-3}\%$	14
ΥT	38 EeV	22.2	2×10^{-5}	3.6 σ	$8^{+4}_{-3}\%$	15
	40 EeV	22.0	2×10^{-5}	3.6 σ	$19^{+10}_{-7}\%$	15

(given source smearing, clearly some overlap between catalogs)

Intermediate-scale anisotropy - catalog search

Signific Beginific anieging with time!

A.Aab et al. [Auger Collaboration], ApJ Lett. 853 L29 (2018) L. Caccianiga [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Rejection of isotropy hypothesis

ApJ Lett. [Jan 2004-Apr 2017]

 4.0σ for SBGs 2.7 σ for γ -AGN

ICRC2019 [Jan 2004-Aug 2018]

 4.5σ for SBGs 3.1 σ for γ -AGN

Cosmogenic neutrino and photon limits

F. Pedreira [Auger Collaboration], ICRC 2019 arXiv:1909.09073

23/30

Constraining cosmogenic neutrino models

Exclusion of a significant region of parameter Ex dpsice (of a significant regions of atam roteter trinos

F. Pedreira [Auger Collaboration], ICRC 2019 arXiv:1909.09073

space (z_{max}, m) from non observation of V Excluded: high max *z* of CR acceleration and/or rapid source evolution

Muon content of air showers - hadronic interaction physics

The UMD is providing the latest evidence for deficit of muons in air shower simulations

(also see talk of Jose Bellido last Tuesday)

he the ensurgangle $3x^{1}x^{1}$ for to $2x^{1}0x^{8}$ to $x^{2}b^{1}$ in the indication of the second constraints of the In 38%(53%)/6) cinearses in $N_{p} > N_{q} > Ee V Eree/endeed for EPEPS-ISHCH(Q)(GS)/6)/4)$

(consistent with a number of other measurements at Auger)

F. Sanchez [Auger Collaboration], ICRC 2019 arXiv:1909.09073

Fluctuations in the muon content of air showers

Observing very inclined air showers with the main surface detector array

Fluctuations in the muon number — a probe of the first interaction at ultra-high energy. Fluctuations in the muon number = probe of the first interation at UHE Post-LPPSt-LHGensodelsagive a geochidescription of particle production first the first interation. action

- Study the highest energy cosmic rays (spectral suppression region) with mass composition information
- Select light primaries for charged particle astronomy
- Provide better estimates of the UHE neutrino and photon fluxes. Establish potential for future experiments.
- Be**Everene** aspreasing were big points, study hadronsinghysics asis arch for non-standard physics

Improve the sensitivity to the Augen position at extended dise tagle the electromagnetic and **muonic components**

lg(E/eV)

yr⁻¹ sr⁻¹ eV²

[km⁻²

 E^{3}

×

J(E)

AugerPrime - science case for the upgrade 10^{38} E_{Auger} > 40 EeV / E_{TA} > 53.2 EeV, 20° smeari 10^{37} SGP local Li–Ma significance [d 16.5 17.518.5 19 18 19.5 17 $\log_{10}(E/eV)$ data $\pm \sigma_{\rm stat}$ \pm syst. So far, event by event iron mass estimates limited to 13% FD duty cycle EPC S-LHC Sibyll2.3 QGS Jet II-04 Preliminary 17.5 18.0 18.5 19.0 19.5 20.0

AugerPrime - deployment underway

Mass-composition information for all events, including the very highest energies

- Engineering array (12 stations) since 2016, scintillator (SSD), new electronics (faster sampling, increased dynamic range)
- Pre-production SSD array (80 stations) since March 2019.
- 559 SSD stations installed up to now (Nov 2019)
- Underground muon detector (UMD) construction continues
- New: 3000 km² radio detector

November 17, 2019

Significance of distinguishing two different realisations of Scenario 1 (maximum rigidity model) :

- as it predicts, i.e. no protons at UHE
- adding 10% protons

$>5\sigma$ in 5 years of operations

R. Engel [Auger Collaboration], ICRC 2015 arXiv:1509.03732

AugerPrime - the new detectors

Horizontal showers

120

р

Conclusion and Outlook

• We will double our exposure in the next 10 years, before any future observatory takes over.

• Auger continues to provide a rich array of results, including increasingly significant anisotropies.

• AugerPrime will offer mass (charge) estimates for 100% of events (improved sky maps).

[Auger Preliminary Design Report, arXiv:10 [EPJ Web of Conf.210 (2019) 060

Auger and Telescope Array spectrum working group

- Agree in the ankle region 10^{18.4} eV < E < 10^{19.4}eV after rescaling
- Difference above 10^{19.4} eV persists after locking energy scales of experiments

Source of Nonlinearity	Amount (percent per decade above 10 ¹⁹ eV)
FD missing energy correction	1% +/- 1%
FD Fluorescence Yield Model	-1% +/- 1%
FD Atmospheric Conditions	1.7% +/- 1%
SD and FD comparison:	-2% +/- 9%
Net	-0.3% +/- 9%

Better agreement between TA and Auger in the common declination band

Sources of Energy-Dependent Energy
Reconstruction Bias in Auger

Sources of nonlinearities	% per decade > 10 EeV
Aerosols	± 1%
stat. uncertainties calib. param.	± 1%
check with hybrids SD/FD comparison	± 2%
energy dependent CIC	± 2%
Net	≈± 3%

Full sky search with Auger and Telescope Array

Large Scale Anisotropy

Energy threshold

8.86 EeV (Auger) EeV (Telescope Array) 10

Events

~31000 events

Intermediate Scale Anisotropy

Energy threshold

40 EeV (Auger) 53.2 EeV (Telescope Array)

Events

969 events

A.di Matteo #439 ICRC 2019

 $d_r = (-0.7 \pm 1.1_{\text{stat}} \pm 0.01_{\text{calib}})\%$ $d_{\rm v} = (+4.2 \pm 1.1_{\rm stat} \pm 0.04_{\rm calib})\%$ $d_z = (-2.6 \pm 1.3_{\text{stat}} \pm 1.4_{\text{calib}})\% \ (\pm 1.9\%_{\text{tot}})$

Agreement with Auger alone, smaller uncertainty Hint for a quadrupole moment

Blind search

 $(\alpha = 12^{h}50^{m}, \delta = -50^{0}), 4.7 \text{ local sign} (2.6 \text{ post-trial})$ $(\alpha = 9^{h}30^{m}, \delta = +54^{0}), 4.2 \text{ local sign (1.5 post-trial)}$

Local Sheet

26% higher flux in a band of $\pm 24^{\circ}$ around the Local Sheet (global significance 2.8σ)

Summary

 $\langle X_{\max}^{\mathsf{TA}} \rangle < \langle X_{\max}^{\mathsf{Auger}} \rangle$ for almost all energies agreement within (stat + sys) errors

 $\sigma(X_{\text{max}}^{\text{TA}}) > \sigma(X_{\text{max}}^{\text{Auger}}) \text{ for } \lg(E/eV) = 18.6 - 19.0$

A. Yushkov et al. (Auger/TA mass working group) UHECR2018, Paris

