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Figure 1. Characteristics of effective models. Left: Linear initial matter power spectra ( (�linear(k)2 = k3Plinear(k)/(2⇡2))) for the different models
(CDM and ETSF models M1 to M3) as a function of comoving wavenumber k. The ETSF models M1 to M3 differ in the strength of the damping and the dark
acoustic oscillations present at large k. Right: Velocity dependence of the cross-section for the different models. All ETSF models M1 to M3 have velocity
dependent cross sections which decrease as v�4

rel
for large relative velocities. For low velocities the cross sections can reach up to 100 cm2 g�1

.

els discussed above can be mapped to the same effective lin-
ear power spectrum and effective velocity-dependent DM self-
interaction cross section (see Cyr-Racine et al. 2015, for details).
The models discussed in this study are benchmark cases of such
a mapping, which result in specific combinations of linear power
spectra and interaction cross-sections. Various particle models can
therefore be described by an effective theory specified by an ini-
tial power spectrum and a self-interaction cross section. We call
the resulting framework “effective theory for structure formation”
(ETSF), which aims at generalising the theory of DM structure for-
mation to include a wide range of allowed DM phenomenology.

This paper has the following structure. We present the models
discussed in this work in Section 2. Section 3 then discusses the
different simulations carried out to explore these models. Results
are then presented in Section 4. In this section we will also try to
construct a model which solves some of the outstanding small-scale
problems of the MW satellites. Finally, we present our summary
and conclusions in Section 5.

2 EFFECTIVE MODELS

The different DM models that we investigate in this paper are
are summarised in 1. For all simulations we use the following
cosmological parameters: ⌦m = 0.301712, ⌦⇤ = 0.698288,
⌦b = 0.046026, h = 0.6909, �8 = 0.839 and ns = 0.9671,
which are consistent with Planck (Planck Collaboration et al. 2014;
Spergel et al. 2013). We study four different DM models, which
we label CDM and M1 to M3 for the ETSF models. M1 to M3
are models that in our effective structure formation theory space
can be represented by a specific transfer function (see left panel
of Fig. 1 for the resulting linear non-dimensional power spectra),
and a specific velocity-dependent cross-section for DM (see right

Name ↵� ↵⌫ m� m� rDAO rSD
[MeV c�2] [GeV c�2] [h�1Mpc] [h�1Mpc]

CDM – – – – – –
M1 0.071 0.041 0.723 2000 0.362 0.225
M2 0.016 0.01 0.83 500 0.217 0.113
M3 0.006 0.006 1.15 178 0.141 0.063

Table 1. Parameters of the effective models considered in this paper. We
study in total four different scenarios (CDM and ETSF models M1 to M3).
CDM corresponds to the vanilla CDM case. We also provide two character-
istic comoving length scales: the DM sound horizon (rDAO), and the Silk
damping scale (rSD). The ETSF models are characterised by their linear
power spectra (transfer function) and the DM-DM cross sections, which we
present in Fig. 1.

panel of Fig. 1 for the resulting cross-sections). The underlying
particle physics model for those assumes a massive DM particle
(�) interacting with a massless “neutrino” (⌫) via a massive vector
mediator (�). These models are characterised by an interaction be-
tween DM and dark radiation (DR) and DM-DM self-interactions.
The DM-DR interaction give rise to the features in the power spec-
trum, which are absent in ordinary CDM transfer functions. Ta-
ble 1 specifies the relevant scales in the initial power spectrum:
the comoving diffusion (Silk) damping scale (rSD) and the DM
comoving sound horizon rDAO). These are generic scales which
occur in many models where DM is coupled to relativistic parti-
cles until relatively late times. There are two interesting regimes:
rSD ⌧ rDAO and rSD ⇠ rDAO. For the first case, the power
spectrum shows significant oscillations on small scales since dif-
fusion is ineffective around the sound horizon. The other case, on
the other hand, only shows a few oscillations since the damping is
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Figure 7. DM density projections of the selected MW-like halo for the four different models. The suppression of substructure can clearly be seen for M1 to
M3 compared to the CDM model, which does include power down to small scales without a resolved cutoff, which is present in the ETSF models M1 to M3.
The projection has a side length and depth of 500 kpc.

true although the self-interaction cross-section is smallest for this
model. This trend continues up to MW masses. Those halo masses
are not so strongly affected by the damping so the self-interactions
take offer such that the reduction of the central density is following
the strength of the cross section.

4.2 Galactic halo

NOTE: All results are based on level-2. Level-1 is still running

(those are expensive and running around 1-2 months).

We will now consider the galactic scales by studying the
zoom-in simulation of the selected MW-sized halo. We start by
looking at the density distribution on these scales. Fig. 7 shows

density projections of the halo for CDM simulations and compares
to models M1-M3. At these scales, the suppression of small scale
structure is clearly visible, which is largely driven by the resolved
cutoff scale in the linear power spectra of M1-M3 compared to
CDM. This cutoff reduces the number of resolved subhaloes very
strongly for model M1, which has the largest damping scale. We
stress that self-interactions of the order discussed here largely af-
fect only the internal structure of haloes, but do not significantly
alter the number of subhaloes within MW-like haloes. This would
only happen for cross sections of the order of 10 cm2 g�1 on full
galactic scales, which is prevented in the the models discussed here
prevents due to the strong velocity-dependence. Fig. 7 also demon-
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ΛCDM cosmology

A great success 
on large scales...

Springel, Frenk & White, 
Nature ’06

Figure 1: �2(k) ⌘ 4⇡(k/2⇡)3
P(k), the linear power spectrum of density fluctuations at z = 0. The solid line is the

canonical cold DM model with an Eisenstein & Hu (1997) [10] transfer function. The dashed line is a thermal relic warm
DM model with mWDM = 8 keV [11]. The dotted line is an atomic DM model [12]. We used WMAP7 cosmological
parameters [13], ⌦m = 0.265, ⌦⇤ = 0.735, ⌦b = 0.0449, h = 0.71, �8 = 0.801, and ns = 0.963.

the important questions to tackle, and how best to do so? What developments should be pursued
in order to take advantage of technological advances?

2. Dark Matter Simulations and the Dark Universe

The numerical simulation discussed in this review together span an enormous range of length
scales, more than 8 orders of magnitude reaching from near horizon scale (⇠ 20 Gpc) down to
sub-Galactic (tens of pc). Individually they focus on di↵erent regimes (see §3 and Table 2), but
all have in common that they evolve the growth of DM density fluctuations all the way to the
present epoch at redshift zero.1

The shape of the CDM power spectrum results in a hierarchical, bottom-up process of struc-
ture formation, in which small and low mass objects collapse first and over time merge to form
ever more massive structures, until the onset at z ⇡ 1 of DE induced accelerated expansion begins
to halt further collapse. In Fig. 1 we show a plot of the linear dimensionless matter power spec-
trum �2(k) ⌘ 4⇡(k/2⇡)3

P(k) at z = 0 versus the wavenumber k of the fluctuation. Where � & 1,
gravitational collapse will have proceeded to the non-linear regime and typical objects of the cor-
responding mass will have collapsed. Cosmic scales, including the Baryon Acoustic Oscillation

1We deliberately omit from our discussion multi-billion particle simulations that focus only on the first billion years
of cosmic evolution, for studying the epoch of reionization [14] or early supermassive black hole growth [15].

3

Kuhlen, Vogelsberger & Angulo, PDU ’12

Figure 1: The galaxy distribution obtained from spectroscopic redshift surveys and from mock

catalogues constructed from cosmological simulations. The small slice at the top shows the CfA2

“Great Wall”3, with the Coma cluster at the centre. Drawn to the same scale is a small section of the

SDSS, in which an even larger “Sloan Great Wall” has been identified100. This is one of the largest

observed structures in the Universe, containing over 10,000 galaxies and stretching over more than 1.37

billion light years. The wedge on the left shows one-half of the 2dFGRS, which determined distances

to more than 220,000 galaxies in the southern sky out to a depth of 2 billion light years. The SDSS

has a similar depth but a larger solid angle and currently includes over 650,000 observed redshifts

in the northern sky. At the bottom and on the right, mock galaxy surveys constructed using semi-

analytic techniques to simulate the formation and evolution of galaxies within the evolving dark matter

distribution of the “Millennium” simulation5 are shown, selected with matching survey geometries and

magnitude limits.

28
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ΛCDM cosmology
Dark matter (DM) is a crucial ingredient
constant co-moving energy density
only gravitational interactions
cold + dissipation-less

Image credit: KIAS

Percent-level 
measurements of a 
single parameter!

⌦CDMh2 = 0.1188± 0.0010
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Ade+ [Planck Coll.],  A&A ‘16

DM conversion into (in)visible energy? 
E.g. decays, late-time annihilation, coalescing PBHs, …

constant density
only gravitational

ΩCDM decrease of up to 10% possible during matter domination! 
(model-independent; much more allowed during RD) TB, Kahlhoefer, Schmidt-Hoberg & Walia,  PRD ‘18

Non-gravitational interactions? 
DM — SM:  strong constraints from                   
                  standard DM searches cf. yesterday’s talks

ETHOSDM self-interactions
DM — dark radiation interactions

many possible models <latexit sha1_base64="OvntEfsQKQvyBVJ5vtIaSudu/9o=">AAACA3icdVDLSgMxFM3UV62vqks3wSK4GjKtj7orunFZwdpCO5RMJtOGZiZDkhHK0KU/4Fb/wJ249UP8Ab/DzHQELXogcDjnvnK8mDOlEfqwSkvLK6tr5fXKxubW9k51d+9OiUQS2iGCC9nzsKKcRbSjmea0F0uKQ4/Trje5yvzuPZWKiehWT2PqhngUsYARrI3UG3CKfaXFsFpD9ilyLs4QRDbKkZOm03CgUyg1UKA9rH4OfEGSkEaacKxU30GxdlMsNSOcziqDRNEYkwke0b6hEQ6pctP83hk8MooPAyHNizTM1Z8dKQ6VmoaeqQyxHqtFLxP/9GKWDVzYroOmm7IoTjSNyHx5kHCoBcwCgT6TlGg+NQQTycz9kIyxxESb2CommO/fw//JXd12Gnb95qTWuiwiKoMDcAiOgQPOQQtcgzboAAI4eARP4Nl6sF6sV+ttXlqyip598AvW+xfiN5i3</latexit>
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ΛCDM = the perfect success story?
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FIG. 8. Best fit regions for ⇤CDM (left panel) and our model with  = 1, ⇣ = 0.06 and at = 10�1.5 (right panel). The orange
and cyan bands indicate the direct measurements of �8(⌦m/0.27)0.3 = 0.78± 0.01 [52] and H0 = 73.24± 1.74 [46] respectively.

blue ellipses do not overlap.
The right panel of Fig. 8 demonstrates how our con-

version scenario may help to mitigate this discrepancy.
For this purpose we show how the best-fit regions shift
for specific values of our model parameters ( = 1,
at = 10�1.5, ⇣ = 0.06). We note that such an e�-
cient DM conversion would appear firmly excluded by
the CMB limits shown in Fig. 5, but we will discuss be-
low how adding large-scale structure data strongly re-
laxes those constraints (and, depending on the choice of
priors, even prefers such large values of ⇣, cf. Fig. 11).
For this model point, we find that the red ellipse, corre-
sponding to the parameter region preferred by the CMB
alone, moves downward and to the right, such that it
overlaps with the blue ellipse obtained from combining
all data sets at 95%C.L.

We can qualitatively understand this e↵ect by recall-
ing that ⌦�h

2 is tightly constrained at recombination.
The decreasing DM component of our model at later
times thus implies that we have to simultaneously in-
crease the Hubble rate in order to remain compatible
with CMB data. At the same time, the total mat-
ter density ⌦m = ⌦� + ⌦b also decreases, which shifts
�8(⌦m/0.27)0.30 downwards, even though �8 increases
slightly with respect to the ⇤CDM case (see Fig. 7). In-
cluding Lensing (green contours) slightly enhances the
tension with the �8 measurement again, but does not
change the picture qualitatively. We finally checked that
adding Baryon Acoustic Oscillations measurements from
the galaxy surveys in Refs. [54–56] would not a↵ect the
left panel of Fig. 8, but shift the blue contour in the right
panel slightly to the left (to the point where the 1� con-
tour does not quite overlap any more with the 1� band
of the H0 measurement).

Since our model of DM conversion clearly has the po-
tential to reduce the tension between CMB and LSS data,
we can expect that the inclusion of the latter will also sig-
nificantly modify the constraints discussed in Sec. III. In
Fig. 9 we demonstrate this for the case of  = 1. As
before, we show both the Bayesian limits (left panel) and
approximate frequentist constraints (right panel). The

most prominent change compared to the bounds obtained
from CMB data only is that constraints for large at are
substantially weaker. This is a direct consequence of the
fact that in this region (and for ⇣ ⇠ 10�2) our model
actually gives a better fit to data than ⇤CDM (mostly
by increasing the Hubble rate, as already indicated in
Fig. 8). At the same time, the limits for small values
of at strengthen because CMB and LSS independently
constrain a constant �Ne↵ . We complement Fig. 9 with
Fig. 10, where we show the limits fromCMB + Lensing

+ HST + PC for di↵erent choices of . In each case
we observe a substantial weakening of the constraints for
large at compared to the limits obtained from CMB data
only (see Figs. 5 and 6).
At this stage the obvious question arises whether our

model of DM conversion only reduces the tension between
CMB and LSS data, or whether one may even claim pos-
itive evidence for this model based on LSS data. From
the frequentist perspective the preference is at the ⇠ 2�
level and hence not very significant. We indicate in the
right panel of Fig. 9 the parameter region preferred by
the combination of CMB and LSS data at 68% C.L.9 A
Bayesian model comparison would even favour ⇤CDM,
as the parameter region in which the extended model is
preferred over ⇤CDM is much smaller than the parameter
region in which the model is strongly disfavoured. This
conclusion nevertheless depends strongly on the priors
assumed for our e↵ective description and could be modi-
fied in a set-up where favourable values of at and ⇣ occur
naturally.
In Fig. 11 we provide a supplementary perspective on

our discussion so far, by showing the marginalised 1D

9
To construct this parameter region, we again use the test statis-

tic defined in Eq. (17). The preferred parameter region at 68%

C.L. is then given by the requirement t < 2.28. We refrain

from attempting an exact reconstruction of the 2� contour, which

would require a higher sampling e�ciency. This parameter re-

gion is similar also in the other cases shown in Fig. 10, except for

 = 1/2, where the preference is slightly less than 2� and hence

the 1� region is somewhat larger.

Direct measurements of 
Hubble constant (HST)

normalisation of 
power spectrum 
(from Planck 
clusters)

(Fig from 1803.03644)

Ade+ [Planck coll.],  A&A ‘14

Measurements at high and low redshifts do 
not seem to quite agree

Every party has 
a pooper…

Health warning:
DES is consistent 
with  CMB … !

Macaulay+, MNRAS ’19
see also Rameez & Sarkar, 

1911.06456
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Small-scale problems ?

2 DARK MATTER SUBSTRUCTURE

2. SUBSTRUCTURE WITHIN GALAXIES AND CLUSTERS

We simulate the hierarchical formation of dark matter
halos in the correct cosmological context using a high res-
olution parallel treecode pkdgrav. An object is chosen
from a simulation of an appropriate cosmological volume.
The small scale waves of the power spectrum are realised
within the volume that collapses to this object with pro-
gressively lower resolution at increasing distances from the
object. The simulation is then re-run to the present epoch
with the higher mass and force resolution. We have ap-
plied this technique to several halos identified from a 106

Mpc3 volume, including a cluster similar to the nearby
Virgo cluster (Ghigna et al. 1998) and a galaxy with a
circular velocity and isolation similar to the Milky Way.

Fig. 1.— The density of dark matter within a cluster halo of mass
5×1014M⊙ (upper) and a galaxy halo of mass 2×1012M⊙ (lower).
The edge of the box is the virial radius, 300kpc for the galaxy and
2000 kpc for the cluster (peak circular velocities of 200 km s−1 and
1100 km s−1 respectively).

The cosmology that we investigate is a universe dom-
inated with a critical density of cold dark matter, nor-
malised to reproduce the local abundance of galaxy clus-

ters. The important numerical parameters to remember
are that each halo contains more than one million particles
within the final virial radius rvir , and we use a force reso-
lution ∼ 0.1%rvir. Further details of computational tech-
niques and simulation parameters can be found in Ghigna
et al. (1998) and Moore et al. (1999). Here we focus our
attention directly on a comparison with observations.

Figure 1 shows the mass distribution at a redshift z = 0
within the virial radii of our simulated cluster and galaxy.
It is virtually impossible to distinguish the two dark mat-
ter halos, even though the cluster halo is nearly a thou-
sand times more massive and forms 5 Gyrs later than the
galaxy halo. Both objects contain many dark matter sub-
structure halos. We apply a group finding algorithm to
extract the sub-clumps from the simulation data and use
the bound particles to directly measure their kinematical
properties; mass, circular velocity, radii, orbital parame-
ters (c.f. Ghigna et al. 1998). Although our simulations
do not include a baryonic tracer component, we can com-
pare the properties of these systems with observations us-
ing the Tully-Fisher relation (Tully & Fisher 1977). This
provides a simple benchmark for future studies that in-
corporate additional physics such as cooling gas and star-
formation.

Fig. 2.— The abundance of cosmic substructure within our
Milky Way Galaxy, the Virgo cluster and our models of comparable
masses. We plot the cumulative numbers of halos as a function of

their circular velocity (vc =
√

(Gmb/rb), where mb is the bound
mass within the bound radius rb of the substructure, normalised to
the circular velocity, Vglobal of the parent halo that they inhabit.
The dotted curve shows the distribution of the satellites within the
Milky Way’s halo (Mateo 1998) and the open circles with Poisson
errors is data for the Virgo galaxy cluster (Binggeli et al. 1985). We
compare these data with our simulated galactic mass halo (dashed
curves) and cluster halo (solid curve). The second dashed curve
shows data for the galaxy at an earlier epoch, 4 billion years ago -
dynamical evolution has not significantly altered the properties of
the substructure over this timescale.

Figure 2 shows the observed mass (circular velocity)
function of substructure within the Virgo cluster of galax-
ies compared with our simulation results. The circular ve-
locities of substructure halos are measured directly from

“mass”
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1. Missing satellites?

More satellites 
in simulations 
of MW-like 
galaxies than 
observed

Moore et al., ApJ ’99

6 de Blok et al.

Fig. 2.— Histogram of the values of the inner power-law slope α of the mass density profiles presented in Fig. 1. We distinguish between
well-resolved (hatched histogram) and unresolved (blank histogram) galaxies. The unresolved galaxies generally have higher values of α.

Fig. 3.— Value of the inner slope α of the mass density profiles plotted against the radius of the innermost point. Black dots are from the
dBMR sample, stars are from the de Blok & Bosma (2001) sample, open circles represent the four LSB galaxies from the Verheijen (1997)
sample. Over-plotted are the theoretical slopes of a pseudo-isothermal halo model (dotted lines) with core radii of 0.5 (left-most), 1 (canter)
and 2 (right-most) kpc. The full line represents a NFW model (Navarro, Frenk & White 1996), the dashed line a CDM r−1.5 model (Moore
et al. 1999). Both of the latter models have parameters c = 8 and V200 = 100 km s−1, which were chosen to approximately fit the data points
in the lower part of the diagram.

2. Cusps or cores?

Cuspy inner 
density profiles 
predicted by 
simulations not 
found in (all) 
observations 

Blok et al., ApJ ’01

The `Too big to fail’ problem
6 M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat

Figure 3. Rotation curves for all subhalos with Vinfall > 30 km s�1 and Vmax > 10 km s�1, after excluding Magellanic Cloud analogs, in
each of the six Aquarius simulations (top row, from left to right: A, B, C; bottom row: D, E, F). Subhalos that are at least 2� denser
than every bright MW dwarf spheroidal are plotted with solid curves, while the remaining subhalos are plotted as dotted curves. Data
points with errors show measured Vcirc values for the bright MW dSphs. Not only does each halo have several subhalos that are too
dense to host any of the dSphs, each halo also has several massive subhalos (nominally capable of forming stars) with Vcirc comparable
to the MW dSphs that have no bright counterpart in the MW. In total, between 7 and 22 of these massive subhalos are unaccounted for
in each halo.

of Vcirc(r1/2) for the bright Milky Way dwarf spheroidals.
As in Fig. 2, we plot only halos with Vinfall > 30 km s�1

and Vmax(z = 0) > 10 km s�1. Subhalos that are at least 2�
more massive than every dwarf (at r1/2) are plotted as solid
curves; these are the “massive failures” discussed in BBK,
and each halo has at least four such subhalos. Fig. 3 shows
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Figure 3. Rotation curves for all subhalos with Vinfall > 30 km s�1 and Vmax > 10 km s�1, after excluding Magellanic Cloud analogs, in
each of the six Aquarius simulations (top row, from left to right: A, B, C; bottom row: D, E, F). Subhalos that are at least 2� denser
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points with errors show measured Vcirc values for the bright MW dSphs. Not only does each halo have several subhalos that are too
dense to host any of the dSphs, each halo also has several massive subhalos (nominally capable of forming stars) with Vcirc comparable
to the MW dSphs that have no bright counterpart in the MW. In total, between 7 and 22 of these massive subhalos are unaccounted for
in each halo.
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Figure 5. Rotation curves of four dwarf irregular galaxies of approximately the same maximum rotation speed (∼80–100 km s−1) and galaxy mass, chosen
to illustrate the diversity of rotation curve shape at given Vmax. As in previous figures, coloured solid curves and shaded areas correspond to the median (and
10th–90th percentile) circular velocity curve of simulated galaxies matching (within 10 per cent) the maximum circular velocity of each galaxy. Note that the
observed rotation curves exhibit a much wider diversity than seen in the EAGLE and LG simulations, from galaxies like UGC 5721, which are consistent with
our simulations, to galaxies like IC 2574, which show a much more slowly rising rotation curve compared with simulations, either hydrodynamical (coloured
lines) or DMO (black lines).

origin of the diversity at fixed Vmax, especially in dwarf galaxies,
which tend to be dark-matter-dominated. These are all galaxies that
form in similar haloes, have approximately the same baryonic mass,
and similar morphologies. Some diversity induced by differences in
the distribution of the baryonic component is expected, but clearly
the observed diversity is much greater than in our simulations.

The second, and more worrying, concern is the inner mass deficit
that some of these galaxies seem to exhibit relative to the !CDM
simulation predictions. Indeed, except for UGC 5721, all of the
galaxies shown in Fig. 5 have less mass in the inner 8 kpc than
expected not only from our hydro simulations (shaded coloured
regions) but also from a !CDM halo alone (solid black lines).
Systems like UGC 11707 seem marginally consistent, and could
perhaps be interpreted as outliers, but cases like IC 2574, or LSB
F583-1 are too extreme to be accommodated by our model without
significant change.

The mass deficit we highlight here has been noted before in
the context of the ‘cusp versus core’ debate (see e.g. McGaugh
et al. 2007, and references therein). Indeed, if constant density
‘cores’ were imposed on the dark matter it would be relatively
straightforward to reproduce the data shown in Fig. 5. Such cores,
however, would need to vary from galaxy to galaxy, even at fixed
halo mass and galaxy mass. Indeed, a core at least as large as
∼5 kpc would be needed to explain the fact that the rotation
curve of IC 2574 rises linearly out to ∼8 kpc, but ought to be
much smaller in LSB F583-1 and even smaller, if at all present, in
UGC 5721.

4.4 The challenge to baryon-induced core formation

The diversity of observed rotation curves presents a challenge not
only to our simulations, but also to the baryon-induced ‘core’ cre-
ation mechanism: why would baryons carve out cores so different
in galaxies that are so similar in terms of morphology, halo mass,
and galaxy mass? Further, we would expect the dark matter to be
most affected in systems where baryons play a more important role
in the potential, such as high surface brightness galaxies, whereas
observations seem to suggest the opposite trend.

A second challenge concerns the magnitude of the effect needed
to create a core as large as that inferred, for example, for IC 2574.
Published simulations where baryon effects create cores tend to
have overall a modest effect on the total inner mass profile of the
galaxy. One example is provided in Fig. 1; although baryons have
carved a ∼1 kpc core in the dark matter halo in the simulated galaxy
DG1, the total inner mass profile is actually quite similar to what
is expected for galaxies of that circular velocity in our simulations
(green-shaded region), which do not produce cores. This is because,
to first order, the baryons that displace the dark matter to create a
core take its place, leading to a modest net change in the total mass
profile.

In other words, ‘flattening the dark matter cusp’ is not enough
to explain galaxies like IC 2574. A net removal of large amounts
of mass from the inner regions is needed to reconcile such galaxies
with !CDM, at least if we equate the measured rotation curve
with the circular velocity curve. In the case of IC 2574, at least
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Disclaimer

ETHOS does not 
primarily attempt to 
address these issues! 

(Nor claims that this would be necessary)

But being able to do so serves as possible 
proof-of-principle that relevant observables 

connected to non-gravitational, 
‘dark’ interactions can been identified…
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Generic dark sector models

Standard 
Model

Dark 
Sector

SU(3)c ⇥ SU(2)L ⇥ U(1)Y
<latexit sha1_base64="xqO5xF91XkfgcNL1pA79dFQDdgk="></latexit>

e.g. U(1)X ⇥ ...
<latexit sha1_base64="KLvRV1lIfKJ9/ebLagwBbpaMcJU="></latexit>

Dark matter
Dark radiation                    
(‘sterile neutrinos’, ‘dark photons’, …)

SM particles

e.g. LHiggs � |�|2|⇥|2

A ‘portal’ typically still ensures 
thermalisation at high temperatures
Separate entropy conservation after decoupling  Tphoton 6= Tdark

<latexit sha1_base64="yhG7Lp2ufpVsC4ic4f1ybt8PBEg="></latexit>

L
<latexit sha1_base64="QJO0erEBJbOd1OMFzF5rKIRivAM=">AAACBnicbVDLSgMxFL1TX7W+Rl26CRbBVZnRgi4Lbly4qGAf0A4lk2ba0EwyJBmhDN37A271D9yJW3/DH/A7zLSz0NYDgcM59+YeTphwpo3nfTmltfWNza3ydmVnd2//wD08amuZKkJbRHKpuiHWlDNBW4YZTruJojgOOe2Ek5vc7zxSpZkUD2aa0CDGI8EiRrCxUq8fYzMmmGd3s4Fb9WreHGiV+AWpQoHmwP3uDyVJYyoM4Vjrnu8lJsiwMoxwOqv0U00TTCZ4RHuWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzXS1j+4dJ1E10HGRNJaqggi+NRypGRKO8EDZmixPCpJZgoZvMjMsYKE2Obq9hi/OUaVkn7ouZf1rz7erVRLyoqwwmcwjn4cAUNuIUmtICAhGd4gVfnyXlz3p2PxWjJKXaO4Q+czx8LLJnV</latexit>

L
<latexit sha1_base64="QJO0erEBJbOd1OMFzF5rKIRivAM=">AAACBnicbVDLSgMxFL1TX7W+Rl26CRbBVZnRgi4Lbly4qGAf0A4lk2ba0EwyJBmhDN37A271D9yJW3/DH/A7zLSz0NYDgcM59+YeTphwpo3nfTmltfWNza3ydmVnd2//wD08amuZKkJbRHKpuiHWlDNBW4YZTruJojgOOe2Ek5vc7zxSpZkUD2aa0CDGI8EiRrCxUq8fYzMmmGd3s4Fb9WreHGiV+AWpQoHmwP3uDyVJYyoM4Vjrnu8lJsiwMoxwOqv0U00TTCZ4RHuWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzXS1j+4dJ1E10HGRNJaqggi+NRypGRKO8EDZmixPCpJZgoZvMjMsYKE2Obq9hi/OUaVkn7ouZf1rz7erVRLyoqwwmcwjn4cAUNuIUmtICAhGd4gVfnyXlz3p2PxWjJKXaO4Q+czx8LLJnV</latexit>

P(k)
<latexit sha1_base64="28J188nYIv7iCV43Fe5943Y5yYA=">AAACCXicbVDLSgMxFL1TX7W+qi7dBItQN2VGBV0W3bisYB/QjiWTZtrQTDIkGaEM/QJ/wK3+gTtx61f4A36HmXYW2nogcDjn3tzDCWLOtHHdL6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Cbz249UaSbFvZnE1I/wULCQEWys9NCLsBkRzNPGtDo+7Zcrbs2dAS0TLycVyNHol797A0mSiApDONa667mx8VOsDCOcTku9RNMYkzEe0q6lAkdU++ks9RSdWGWAQqnsEwbN1N8bKY60nkSBncxS6kUvE//1YpZ9uHDdhFd+ykScGCrI/HiYcGQkympBA6YoMXxiCSaK2fyIjLDCxNjySrYYb7GGZdI6q3nnNffuolK/zisqwhEcQxU8uIQ63EIDmkBAwTO8wKvz5Lw5787HfLTg5DuH8AfO5w++1JrB</latexit>

imprints on linear
imprints on inner 
(sub-)halo structure

need to treat 
consistently!
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From theory to observations

input: 
masses, spins, 
coupling constants

particle model

Idea of ETHOS: identify effective parameters and provide 
maps for each of those steps (     no need to re-compute each model!) 

Cyr-Racine+, PRD’16;  Vogelsberger+, MNRAS ’16

The first task can be demanding,                                    
the second in addition computationally very expensive 

But expect large degeneracies, so very inefficient…
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Figure 1: Interaction processes that set the DM relic density
and may lead to observable neutrino annihilation products
today (left), change the inner velocity and density profile of
dwarf halos (middle) and induce a comparatively large cuto↵
in the spectrum of primordial density perturbations (right).

‘too big too fail problem’ [44], without being in conflict
with the strong constraints for models with constant �T .
We also note that �T drops with larger v such that for
galaxy clusters only the very central density profile at
r . O(1 � 10) kpc will be smoothed out, matching ob-
servational evidence (from improved lensing and stellar
kinematic data [51]) for a density cusp in A383 that is
slightly shallower than expected for standard CDM.

For our discussion, the astrophysically important
quantities are the velocity v

2
max = g

2
�mV /(2⇡2

m�) at
which �T v becomes maximal and �

max
T ⌘ �T (vmax) =

22.7m�2
V . In particular, vmax should not be too di↵er-

ent from the typical velocity dispersion �v ⇠ O(10) km/s
encountered in dwarf galaxies if one wants to make any
contact to potential problems with standard structure
formation at these scales. On the other hand, the value
of �max

T is constrained by various astrophysical measure-
ments, see Ref. [44] for a compilation of current bounds.

Fixing g� by the relic density requirement, there is a
one-to-one correspondence between the particle physics
input (m�,mV ) and the astrophysically relevant param-
eters (vmax,�

max
T ). As demonstrated in Fig. 2, a so-

lution to the aforementioned small-scale problems (2)
and (3) may then indeed be possible for DM masses
of m� & 600GeV and a mediator mass in the (sub-)
MeV range. We also display the strongest astrophysi-
cal bounds on large DM self-interaction rates [43]. For
m� . 4TeV, they arise from collisions with particles from
the dwarf parent halo, while at larger m� an imminent
gravothermal catastrophe is more constraining.

The small-scale cuto↵.— For small kinetic decou-
pling temperatures Tkd, acoustic oscillations [52] are
more e�cient than free streaming e↵ects to suppress the
power spectrum [4, 53]. The resulting exponential cuto↵
can be translated into a smallest protohalo mass of

Mcut ⇡
4⇡

3

⇢�

H3

���
T=Tkd

= 1.7⇥ 108
✓
Tkd

keV

◆�3

M� , (4)

where H is the Hubble rate and we assumed late kinetic
decoupling such that the e↵ective number of relativistic
degrees of freedom ge↵ = 3.37. For scattering with rela-
tivistic neutrinos, c.f. Eq. (3), the analytic treatment of
kinetic decoupling given in Ref. [54] is valid. Extending
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Figure 2: The white area corresponds to DM and mediator
masses that may solve the ‘cusp vs. core’ problem. The crosses
indicate two benchmark models for which detailed simulations
[44] have found a solution to the ‘too big to fail’ problem.
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Figure 3: This plane shows the mediator mass mV vs. the
coupling strength g⌫ . Large values of g⌫ and small values of
mV lead to late kinetic decoupling and thus a large mass Mcut

of the smallest protohalos. Mcut & 5 ⇥ 1010M� is excluded
by Ly-↵ data while Mcut & 109M� may solve the small-scale
abundance problems of ⇤CDM cosmology.

those expressions to allow for T⌫ 6= T , we find

Tkd =
0.062 keV

N

1
4
⌫ (g�g⌫)

1
2

✓
T

T⌫

◆ 1
2

kd

⇣
m�

TeV

⌘ 1
4
⇣
mV

MeV

⌘
, (5)

where N⌫ is the number of neutrino species coupling to
V . Combining this with Eq. (2) we therefore expect that
Tkd, and thus Mcut, is essentially independent of g� and
m�.

Using for definiteness N⌫ = 3 and T⌫ = (4/11)
1
3T� , we

show in Fig. 3 contours of constant Mcut in the (g⌫ ,mV )
plane. We find that the result of the full numerical
calculation [4, 5] is indeed extremely well described by
Eqs. (4,5) for g⌫ & 10�7 (assuming m� ⇠ 1TeV and
mV ⇠ 1MeV; this value is even lower for larger m� and

cosmological 
simulations

input: 
consistent initial 
conditions, non-
gravitational forces 
between “particles”

8 M. Vogelsberger et al.

Figure 7. DM density projections of the selected MW-like halo for the four different models. The suppression of substructure can clearly be seen for M1 to
M3 compared to the CDM model, which does include power down to small scales without a resolved cutoff, which is present in the ETSF models M1 to M3.
The projection has a side length and depth of 500 kpc.

true although the self-interaction cross-section is smallest for this
model. This trend continues up to MW masses. Those halo masses
are not so strongly affected by the damping so the self-interactions
take offer such that the reduction of the central density is following
the strength of the cross section.

4.2 Galactic halo

NOTE: All results are based on level-2. Level-1 is still running

(those are expensive and running around 1-2 months).

We will now consider the galactic scales by studying the
zoom-in simulation of the selected MW-sized halo. We start by
looking at the density distribution on these scales. Fig. 7 shows

density projections of the halo for CDM simulations and compares
to models M1-M3. At these scales, the suppression of small scale
structure is clearly visible, which is largely driven by the resolved
cutoff scale in the linear power spectra of M1-M3 compared to
CDM. This cutoff reduces the number of resolved subhaloes very
strongly for model M1, which has the largest damping scale. We
stress that self-interactions of the order discussed here largely af-
fect only the internal structure of haloes, but do not significantly
alter the number of subhaloes within MW-like haloes. This would
only happen for cross sections of the order of 10 cm2 g�1 on full
galactic scales, which is prevented in the the models discussed here
prevents due to the strong velocity-dependence. Fig. 7 also demon-

© 2015 RAS, MNRAS 000, 1–13
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Linear perturbations - setup
Fundamentally, have to solve coupled Boltzmann equations:
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mass scales. Taken together, these ETHOS parameters fully describe the dark matter physics required to simulate
cosmological structure formation and we have explicitly demonstrated this procedure by giving several examples of
well-motivated particle models that have been discussed in the literature.

We note that as nonlinear evolution of small-scale structures is e↵ective at erasing the memory of small di↵erences
in the linear power spectrum our parametrization may be more broadly applicable to dark matter physics beyond the
types we discuss in detail here. For instance, while the current ETHOS implementation focuses on nonrelativistic
dark matter models interacting with a relativistic species it would be natural to extend this framework to include
models where dark matter is warm rather than cold. We note, however, that the current framework can already
approximately capture the physics of warm dark matter at the level of producing an equivalent suppression scale in
the linear power spectrum, and indeed when simulated leads to a nonlinear power spectrum nearly indistinguishable
from a warm dark matter case [75]. We leave extensions of the formalism to other dark matter physics and a precise
characterization of these nonlinear mappings to future work.
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Appendix A: The Collisional Boltzmann Equation for Dark Matter and Dark Radiation

In this Appendix, we present detailed derivations of the results given in Sec. IIA above. The structure of this
Appendix is as follows. We begin by studying in Sec. A 1 the structure of the Boltzmann equation dictating the
evolution of dark matter in the early epochs of the Universe. We then study in Secs. A 2 and A3 how the momentum
and angular dependence of the physics responsible for the new interactions determine the structure of the collision
integrals. In Secs. A 4 and A5, we use this latter structure to determine the final form of the cosmological perturbations
equations for DM that couples to a relativistic species.

1. Generalities and Setup

We consider a scenario in which a single species of dark matter (DM, denoted by �) can interact with a relativistic
component (denoted by �̃) which we will generally refer to as dark radiation (DR) Our goal is to determine the
evolution of the DM and DR distribution functions, denoted by f�(x,P, ⌧) and fDR(x,P, ⌧), respectively. Here, P is
the canonical conjugate variable to x. We consider the situation where the only relevant process for DM is its 2-to-2
scattering with DR, ��̃ $ ��̃, but allow for DR self-interactions through the process �̃�̃ $ �̃�̃. We assume that the
DM relic abundance is fixed at some high temperature (through e.g. thermal freeze-out) and we therefore neglect
the e↵ect of DM annihilation or decay on the evolution of f�(x,P, ⌧). The evolution of the distribution functions is
determined by the two coupled Boltzmann equations

df�

d�
= C��̃$��̃ [f�, fDR],

dfDR

d�
= C��̃$��̃ [fDR, f�] + C�̃�̃$�̃�̃ [fDR], (A1)

where � is an a�ne parameter that describes the trajectory of the observer and the right-hand sides of these equations
are the collision terms defined with respect to � . In the conformal Newtonian gauge, the space-time metric takes the
form

ds
2 = a

2(⌧)[�(1 + 2 )d⌧2 + (1 � 2�)d~x2], (A2)

Details: Cyr-Racine+, PRD ‘16

Take advantage of various simplifications
Neglect (subdominant) DR-DR iterations 
Assume DR close to EQ: 
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where a is the cosmological scale factor, ⌧ is the conformal time, and � and  are the two gravitational potentials.
We can choose to define the a�ne parameter in terms of the four-momentum P of an observer P

µ
⌘

dxµ

d� , where
x
µ = (⌧, ~x) is a four-vector parametrizing the trajectory of the observer. We note that this implicitly sets the a�ne

parameter to be the proper time ⌧ and selects a physically natural definition for the collision terms. Using Eq. (A2),
we can then write

d

d�
=

d⌧

d�

d

d⌧
= P

0 d

d⌧
=

E(1 �  )

a

d

d⌧
, (A3)

where we have used the dispersion relation gµ⌫P
µ
P

⌫ = �m
2 and we have defined E =

p
p2 +m2, p = |p|, and

p
2 = gijP

i
P

j . We note that Eq. (A3) is valid to first order in perturbation theory. The left-hand side of the
Boltzmann equation reads [100]

df

d⌧
=
@f

@⌧
+

p

E
p̂
i @f

@xi
+ p

@f

@p


�H +

@�

@⌧
�

E

p
p̂
i @ 

@xi

�
, (A4)

where in this work H = d ln a/d⌧ is the conformal Hubble expansion rate. For massless particles, it is generically
simpler to introduce the comoving momentum q ⌘ ap and comoving energy ✏ ⌘ aE. In this case, the left-hand side
of the Boltzmann equation can be written

df

d⌧
=
@f

@⌧
+

q

✏
q̂
i @f

@xi
+ q

@f

@q


@�

@⌧
�
✏

q
q̂
i @ 

@xi

�
. (A5)

Using Eq. (A3), the Boltzmann equations for DM and DR then take the form
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E
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hq
a

i
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hq
a

i⌘
. (A7)

We note that the only assumptions that went into deriving these equations is the perturbativity of the scalar grav-
itational potentials and that the mean distribution function is isotropic. In the following subsections, we further
simplify these equations by assuming that the phase space distribution functions of DM and DR are nearly spatially
homogenous and isotropic.

a. Dark Radiation

We assume that the distribution function of DR is close to its thermal equilibrium value and we parametrize the
deviation from perfect equilibrium as follows

fDR(x,q, ⌧) = f
(0)
DR(q, ⌧)[1 +⇥DR(x,q, ⌧)], (A8)

where f (0)
DR(q, ⌧) denotes the isotropic and homogeneous equilibrium DR distribution function which would be a Fermi-

Dirac (Bose-Einstein) distribution for fermionic (bosonic) DR. Keeping only the terms that do not contain perturbed
quantities in Eq. (A7), we obtain the zeroth-order Boltzmann equation for DR

@f
(0)
DR(q)
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a
2
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C

(0)
��̃$��̃ [f

(0)
DR, f

(0)
� ] + C

(0)
�̃�̃$�̃�̃ [f

(0)
DR]

⌘
, (A9)

where f
(0)
� and C

(0) denote the unperturbed (isotropic and homogeneous) DM distribution function and collision
term, respectively. This equation essentially controls the kinetic energy transfer between the DM and the DR which,
as long as it is e�cient, will result in setting T� = TDR (more details in the dark matter subsection below). The
first-order DR Boltzmann equation is

f
(0)
DR
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@⇥DR

@⌧
+ i

q
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i
, (A10)

Momentum transfer in DM-DR scatterings must be small!

Derive hierarchy of Boltzmann moments
Expand in Legendre polynomials: 
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where we have taken a Fourier transform with respect to the wave number k, and where we have used the zeroth-order
equation to simplify the above. It is understood that the perturbation variables are now evaluated in Fourier space
and µ ⌘ q̂ · k̂, k = |k|, and k̂ = k/k. C(1) stands for the first-order collision term. For notational convenience we have
suppressed the sum over the di↵erent scattering channels; it is understood that C

(0) and C
(1) are summed over the

di↵erent processes. Since we are focusing purely on (helicity) scalar fluctuations, we can expand the µ-dependence of
⇥ in Legendre polynomials as follows

⇥DR(k, q̂, q, ⌧) =
1X

l=0

(�i)l(2l + 1)Fl(k, q, ⌧)Pl(µ). (A11)

Substituting the above expansion in the first-order Boltzmann equation and integrating both sides with 1
2(�i)l

R 1
�1 dµPl(µ)

yields

f
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+ k
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3
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q
 �l1
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+ (A12)

a
2
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(0)[q/a]
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(Fl �  �l0) =

a
2
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1

2(�i)l

Z 1

�1
dµPl(µ)C

(1)
hq
a

i
,

where �ij is the Kronecker delta. The above equation represents an infinite hierarchy of equations for the di↵erent
multipole moments of the DR distribution. Omitting the collision terms, these equations are essentially those de-
scribing the cosmological evolution of, e.g., massive neutrinos, and have been extensively studied in the literature
(see e.g. [80]). The addition of the collision integrals can lead to frequent scattering between DM and DR (or DR
self-interaction) that prohibits DR free-streaming, hence suppressing all multipole moments with l � 2 and leaving
only the monopole (l = 0) and dipole (l = 1) to solve for. However, in models where DR eventually decouples from
DM (or itself) the higher multipole moments become important and must be included in the computation.

The hierarchy of equations given in Eq. (A12) is very general and can be used to describe the evolution of a large
variety of interacting massive and massless DR models. In the present work, we exclusively focus on massless DR
(✏ = q) since it allows a dramatic simplification to the above equations. We emphasize that the ETHOS framework does
not depend on this specific choice, and the formalism could easily be expanded to handle massive DR. We also neglect
the term proportional to the zeroth-order collision term in Eq. (A12). This is usually a very good approximation since
this term can only contribute when the DM-DR system significantly departs from thermal equilibrium8. With these
simplifications, we can rewrite Eq. (A12) as
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, (A13)

where

⌫l ⌘ �4
Fl

@ ln f(0)
DR

@ ln q

, (A14)

The variable ⌫l is usually referred to as a temperature fluctuation since it corresponds to a local redefinition of the
DR temperature. As we discuss below, expressing the DR hierarchy in terms of the ⌫l variables also simplifies the
structure of the collision term.

b. Nonrelativistic Dark Matter

We shall now deviate from the complete generality of Eq. (A6) and assume that DM is a stable particle that is
nonrelativistic at all epochs of interest for structure formation. This implies that the term involving p/E ⇠ p/m� ⌧ 1

8 There are some instances where this term could play a role, such as in models where DM never fully reaches thermal equilibrium with
DR, or in models where DM decays to DR.
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where we have taken a Fourier transform with respect to the wave number k, and where we have used the zeroth-order
equation to simplify the above. It is understood that the perturbation variables are now evaluated in Fourier space
and µ ⌘ q̂ · k̂, k = |k|, and k̂ = k/k. C(1) stands for the first-order collision term. For notational convenience we have
suppressed the sum over the di↵erent scattering channels; it is understood that C
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di↵erent processes. Since we are focusing purely on (helicity) scalar fluctuations, we can expand the µ-dependence of
⇥ in Legendre polynomials as follows
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Substituting the above expansion in the first-order Boltzmann equation and integrating both sides with 1
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where �ij is the Kronecker delta. The above equation represents an infinite hierarchy of equations for the di↵erent
multipole moments of the DR distribution. Omitting the collision terms, these equations are essentially those de-
scribing the cosmological evolution of, e.g., massive neutrinos, and have been extensively studied in the literature
(see e.g. [80]). The addition of the collision integrals can lead to frequent scattering between DM and DR (or DR
self-interaction) that prohibits DR free-streaming, hence suppressing all multipole moments with l � 2 and leaving
only the monopole (l = 0) and dipole (l = 1) to solve for. However, in models where DR eventually decouples from
DM (or itself) the higher multipole moments become important and must be included in the computation.

The hierarchy of equations given in Eq. (A12) is very general and can be used to describe the evolution of a large
variety of interacting massive and massless DR models. In the present work, we exclusively focus on massless DR
(✏ = q) since it allows a dramatic simplification to the above equations. We emphasize that the ETHOS framework does
not depend on this specific choice, and the formalism could easily be expanded to handle massive DR. We also neglect
the term proportional to the zeroth-order collision term in Eq. (A12). This is usually a very good approximation since
this term can only contribute when the DM-DR system significantly departs from thermal equilibrium8. With these
simplifications, we can rewrite Eq. (A12) as

@⌫l

@⌧
+ k

✓
l + 1

2l + 1
⌫l+1 �

l

2l + 1
⌫l�1

◆
� 4


@�

@⌧
�l0 +

k

3
 �l1

�
= �

a
2

q

2

(�i)l
1

@f(0)
DR

@ ln q

Z 1

�1
dµPl(µ)C

(1)
hq
a

i
, (A13)

where
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The variable ⌫l is usually referred to as a temperature fluctuation since it corresponds to a local redefinition of the
DR temperature. As we discuss below, expressing the DR hierarchy in terms of the ⌫l variables also simplifies the
structure of the collision term.

b. Nonrelativistic Dark Matter

We shall now deviate from the complete generality of Eq. (A6) and assume that DM is a stable particle that is
nonrelativistic at all epochs of interest for structure formation. This implies that the term involving p/E ⇠ p/m� ⌧ 1

8 There are some instances where this term could play a role, such as in models where DM never fully reaches thermal equilibrium with
DR, or in models where DM decays to DR.
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where we have taken a Fourier transform with respect to the wave number k, and where we have used the zeroth-order
equation to simplify the above. It is understood that the perturbation variables are now evaluated in Fourier space
and µ ⌘ q̂ · k̂, k = |k|, and k̂ = k/k. C(1) stands for the first-order collision term. For notational convenience we have
suppressed the sum over the di↵erent scattering channels; it is understood that C

(0) and C
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di↵erent processes. Since we are focusing purely on (helicity) scalar fluctuations, we can expand the µ-dependence of
⇥ in Legendre polynomials as follows
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where �ij is the Kronecker delta. The above equation represents an infinite hierarchy of equations for the di↵erent
multipole moments of the DR distribution. Omitting the collision terms, these equations are essentially those de-
scribing the cosmological evolution of, e.g., massive neutrinos, and have been extensively studied in the literature
(see e.g. [80]). The addition of the collision integrals can lead to frequent scattering between DM and DR (or DR
self-interaction) that prohibits DR free-streaming, hence suppressing all multipole moments with l � 2 and leaving
only the monopole (l = 0) and dipole (l = 1) to solve for. However, in models where DR eventually decouples from
DM (or itself) the higher multipole moments become important and must be included in the computation.

The hierarchy of equations given in Eq. (A12) is very general and can be used to describe the evolution of a large
variety of interacting massive and massless DR models. In the present work, we exclusively focus on massless DR
(✏ = q) since it allows a dramatic simplification to the above equations. We emphasize that the ETHOS framework does
not depend on this specific choice, and the formalism could easily be expanded to handle massive DR. We also neglect
the term proportional to the zeroth-order collision term in Eq. (A12). This is usually a very good approximation since
this term can only contribute when the DM-DR system significantly departs from thermal equilibrium8. With these
simplifications, we can rewrite Eq. (A12) as
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The variable ⌫l is usually referred to as a temperature fluctuation since it corresponds to a local redefinition of the
DR temperature. As we discuss below, expressing the DR hierarchy in terms of the ⌫l variables also simplifies the
structure of the collision term.

b. Nonrelativistic Dark Matter

We shall now deviate from the complete generality of Eq. (A6) and assume that DM is a stable particle that is
nonrelativistic at all epochs of interest for structure formation. This implies that the term involving p/E ⇠ p/m� ⌧ 1

8 There are some instances where this term could play a role, such as in models where DM never fully reaches thermal equilibrium with
DR, or in models where DM decays to DR.
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in Eq. (A28) stands for the DR momentum. We note that the above result was achieved by performing an expansion
in the small momentum transfer exchanged in a typical DR-DM collision. Its generalization to scattering with DR
particles that are not ultrarelativistic is tedious but straightforward [28]. Note that the same expression holds even if
the amplitude is not Taylor expandable around vanishing momentum transfer t = 0, but |M|

2 should then be averaged
over t rather than evaluated at t = 0 [103, 104].

b. First-order collision term

We now turn our attention to the part of the collision integrals that is first order in the small perturbation variables
⌫l and v�. The computation is somewhat similar to that usually performed for CMB photons scattering o↵ electrons,
but it is more general since we allow for more complex momentum and angular dependence of the DM-DR scattering
cross section. Keeping only the first order11 terms in the perturbation variable ⇥DR, we can rewrite the collision term
given in Eq. (A28) as:
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⌘⌘
.

We use the space part of the delta function to perform the p4 integral. The DM is assumed to be highly nonrelativistic
and we can thus write E� ⇡ m�+p

2
�/(2m�). We use the fact that little momentum is exchanged in a typical collision

to expand the delta function as
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where the derivative of the Dirac delta function is defined via integration by parts. The first term in Eq. (A38) yields
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Since p2 � p1, p3, it is a good approximation to write f�(p1+p2 �p3) ' f�(p2). We can now perform the p3 integral
and Eq. (A39) reduces to
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Here, we have computed the matrix element evaluated at momentum transfer t = 2p21(µ̃ � 1), where µ̃ = p̂1 · p̂3. To
make further progress in evaluating the remaining integrals, we need to examine the structure of the matrix element.
Writing the latter in terms of the Mandelstam variable t and s = m

2
� + 2p1m�(1� (p2/m�)p̂1 · p̂2), we note that the

dependence on the incoming scattering angle of the cross section always appears multiplied by the quantity p2/m� ⌧ 1
[81]. Since the squared matrix element in Eq. (A40) is multiplied by the small perturbations ⇥DR, we can neglect the
dependence of the matrix element on the angle between the incoming particles since they would lead to second-order
terms. A similar argument allows us to neglect the p2 dependence of the matrix element. In order to perform the
angular integration over d⌦3, we expand the µ̃ dependence of the matrix element in Legendre polynomials,
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11 We note that this expression seems to explicitly contain zeroth order terms, but these exactly cancel out and do not contribute to

C
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��̃$��̃ .

keep terms up to first order in perturbations
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in Eq. (A4) can be considered a small perturbation. Neglecting these small perturbations, the zeroth order Boltzmann
equation for DM can be written as
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In analogy with the thermal case for nonrelativistic particles, we define the DM temperature as [81, 101]
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where m� is the DM mass, n(0)
� is the homogeneous and isotropic DM number density, and where ⌘� is the number

of internal degrees of freedom of DM particles. We can multiply Eq. (A15) by ⌘�
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, and integrate over p

to obtain the evolution equation of the DM temperature [101]
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The second term on the left-hand side accounts for the adiabatic cooling of the DM due to the expansion of the
Universe, while the third term accounts for the DR heating. As long as the heating rate is much larger than the
Hubble expansion rate, the DM will be in thermal equilibrium with the DR and T� = TDR.

We now turn our attention to the DM perturbations. For nonrelativistic DM, the exact form of the zeroth-order
distribution function is almost exactly Maxwellian until just before kinetic decoupling [81]. Just like for the zeroth
order [81, 101], the strategy to obtain the equation for the density and velocity fluctuations of DM is to take moments
of Eq. (A6), keeping only the leading order terms in the small quantity p/E ⌧ 1. We take the first moment of
Eq. (A6):
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Recalling the definition of DM bulk velocity and total number density9,
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We note that the collision term has to be zero here since scattering alone cannot change the number density of dark
matter (see Appendix B for details). Expanding the number density of dark matter as

n�(x, ⌧) ⌘ n
(0)
� (⌧)[1 + ��(x, ⌧)], (A21)

where n
(0)
� is defined in Eq. (A16), and where the above is used to define ��. Keeping only the first order pieces and

performing a Fourier transform yields the equation

�̇� + ✓� � 3�̇ = 0, (A22)

where an overhead dot denotes a derivative with respect to conformal time, ✓� ⌘ i~k · ~v� is the divergence of the DM
velocity, and where it is understood that the perturbation variables are evaluated in Fourier space. To close the dark
matter system of equations, we need an equation for its bulk velocity. We multiply both sides of Eq. (A6) by pp̂
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integrate over all p
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9 We emphasize that the DM number density defined in Eq. (A16) is di↵erent from that defined in Eq. (A19); the former is homogeneous
across space while the latter depends on spatial position.
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in Eq. (A4) can be considered a small perturbation. Neglecting these small perturbations, the zeroth order Boltzmann
equation for DM can be written as
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In analogy with the thermal case for nonrelativistic particles, we define the DM temperature as [81, 101]
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where m� is the DM mass, n(0)
� is the homogeneous and isotropic DM number density, and where ⌘� is the number

of internal degrees of freedom of DM particles. We can multiply Eq. (A15) by ⌘�
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The second term on the left-hand side accounts for the adiabatic cooling of the DM due to the expansion of the
Universe, while the third term accounts for the DR heating. As long as the heating rate is much larger than the
Hubble expansion rate, the DM will be in thermal equilibrium with the DR and T� = TDR.

We now turn our attention to the DM perturbations. For nonrelativistic DM, the exact form of the zeroth-order
distribution function is almost exactly Maxwellian until just before kinetic decoupling [81]. Just like for the zeroth
order [81, 101], the strategy to obtain the equation for the density and velocity fluctuations of DM is to take moments
of Eq. (A6), keeping only the leading order terms in the small quantity p/E ⌧ 1. We take the first moment of
Eq. (A6):
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We note that the collision term has to be zero here since scattering alone cannot change the number density of dark
matter (see Appendix B for details). Expanding the number density of dark matter as
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where n
(0)
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performing a Fourier transform yields the equation
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where an overhead dot denotes a derivative with respect to conformal time, ✓� ⌘ i~k · ~v� is the divergence of the DM
velocity, and where it is understood that the perturbation variables are evaluated in Fourier space. To close the dark
matter system of equations, we need an equation for its bulk velocity. We multiply both sides of Eq. (A6) by pp̂
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9 We emphasize that the DM number density defined in Eq. (A16) is di↵erent from that defined in Eq. (A19); the former is homogeneous
across space while the latter depends on spatial position.
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The second term on the left-hand side accounts for the adiabatic cooling of the DM due to the expansion of the
Universe, while the third term accounts for the DR heating. As long as the heating rate is much larger than the
Hubble expansion rate, the DM will be in thermal equilibrium with the DR and T� = TDR.

We now turn our attention to the DM perturbations. For nonrelativistic DM, the exact form of the zeroth-order
distribution function is almost exactly Maxwellian until just before kinetic decoupling [81]. Just like for the zeroth
order [81, 101], the strategy to obtain the equation for the density and velocity fluctuations of DM is to take moments
of Eq. (A6), keeping only the leading order terms in the small quantity p/E ⌧ 1. We take the first moment of
Eq. (A6):
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We note that the collision term has to be zero here since scattering alone cannot change the number density of dark
matter (see Appendix B for details). Expanding the number density of dark matter as
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where an overhead dot denotes a derivative with respect to conformal time, ✓� ⌘ i~k · ~v� is the divergence of the DM
velocity, and where it is understood that the perturbation variables are evaluated in Fourier space. To close the dark
matter system of equations, we need an equation for its bulk velocity. We multiply both sides of Eq. (A6) by pp̂
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9 We emphasize that the DM number density defined in Eq. (A16) is di↵erent from that defined in Eq. (A19); the former is homogeneous
across space while the latter depends on spatial position.
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[81]. For the special case where the heating rate has the same redshift dependence as the Hubble expansion rate
(�heat/H = constant), Eq. (A60) admits the solution,

T� =
�heat/H

1 + �heat/H
TDR. (A62)

This regime is interesting since it allows T� ⌧ TDR while retaining the scaling T� / a
�1. A concrete model realizing

this regime was recently proposed in Ref. [62]. The sound speed given in Eq. (A26) then takes the form
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We note that the above sound speed is generally very small for nonrelativistic DM (T� ⌧ m�) and thus has very
little impact on the evolution of DM density fluctuations, except on very small length scales. We also note that in
the limit �heat � H, the term in the bracket in Eq. (A63) approaches 4/3, leading to c

2
� ! (4T�/3m�).

b. Perturbation evolution

We now turn our attention to computing the right-hand side of Eq. (A27). It is important to notice that the
momentum appearing in the integrand is the incoming DM momentum, while that appearing in the collision term
given in Eq. (A48) is the incoming DR momentum. We can use conservation of momentum to write [100]
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where on the left-hand side, p2 is the incoming DM momentum, while on the right-hand side, p1 is the momentum
of the incoming DR. With the help of this identity, we can then use Eq. (A48) to compute the right-hand side of the
DM velocity equation:
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Since i~k · p̂1 = ikµ = ikP1(µ), the angular integration is straightforward and yields
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We thus define the DM drag opacity
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where we used the definition of the DR opacity given Eq. (A56) in the last equality.
In summary, the DM equations take the form

�̇� + ✓� � 3�̇ = 0, (A68)
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We observe that the details of the DM particle model only enter through the functions ̇� and c
2
�. It is thus clear that

two models predicting the same values for these functions will lead to a very similar structure formation scenarios.
This is the basic idea behind the ETHOS framework.

Appendix B: Impact of elastic dark matter self-interaction on the evolution of linear cosmological
perturbations

In this Appendix, we briefly consider the physical reasons why elastic DM self-interaction �� $ �� is irrelevant to
the cosmological evolution of linear perturbations for nonrelativistic DM. As we discuss below, this is essentially a
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the matter (both dark and baryonic) density and velocity.2 As matter perturbations grow, they eventually enter the
nonlinear regime and other methods (i.e. numerical simulations, see Ref. [75]) must be used to compute the power
spectrum. The linear matter power spectrum is nonetheless a very useful quantity since it provides approximate
guidelines about the smallest possible bound structures that can form within any dark matter scenario and is used to
set the initial conditions for numerical simulations.

In this first ETHOS paper, we focus on a scenario in which a single species of dark matter (DM, denoted by �)
can interact with a relativistic component (denoted by �̃) which we will generally refer to as “dark radiation” (DR)
but could also be made of Standard Model neutrinos or photons. We consider the situation where the only relevant
process3 for DM is its 2-to-2 scattering with DR, ��̃ $ ��̃, but allow for DR self-interactions through the process
�̃�̃ $ �̃�̃. We assume that the DM relic abundance is fixed at some high temperature (through e.g. thermal freeze-
out) and we therefore neglect here the e↵ect of DM annihilation or decay on the evolution of DM fluctuations. We
note however that these latter processes could be included in future versions of the ETHOS framework.

In this section, our goal is to describe how the nonstandard DM physics enters the computation of the linear matter
power spectrum. Since we are mainly interested in the impact of this nontrivial DM physics on structure formation,
we focus our attention exclusively on scalar cosmological fluctuations and leave the study of tensor fluctuations to
future work. We present in Appendix A a detailed derivation of the coupled equations describing the evolution of
DM and DR perturbations. In the following, we shall first summarize the key results from that Appendix before
describing a general procedure to compute the linear matter power spectrum within the ETHOS framework.

A. Dark Matter and Dark Radiation Perturbation Equations

In the following section, we summarize the key results from Appendix A. We invite the interested reader to consult
that Appendix for more details. Our goal here is to obtain the equations of motion for the DM and DR density
perturbations, denoted by �� and �DR, respectively. These equations must be solved together with those describing the
evolution of baryons, photons, and neutrinos in order to compute the linear matter power spectrum (see e.g. Ref. [80]).
In the following, we assume that DM is made of massive, highly nonrelativistic particles interacting with a massless DR
component. For these choices, the momentum transferred in a typical DM-DR collision is small, which dramatically
simplifies the computation of the collision integral (see Sec. A 2 b of Appendix A). We further assume the DR to have
a thermal spectrum. In conformal Newtonian gauge, the equations describing the evolution of DR perturbations are

�̇DR +
4

3
✓DR � 4�̇ = 0, (1)

✓̇DR + k
2(�DR �
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((l + 1)⇧DR,l+1 � l⇧DR,l�1) = (↵l̇DR�DM + �l̇DR�DR) ⇧DR,l, (3)

where ✓� ⌘ ik ·~v� is the divergence of the DM bulk velocity in Fourier space, ✓DR is the divergence of the DR velocity
in Fourier space, � and  are the two gravitational potentials in the conformal Newtonian gauge, �DR is the DR
shear stress, k = |k| is the comoving wave number of the perturbation, ⇧DR,l is the l

th moment of the DR multipole
hierarchy, ̇DR�DM is the DR opacity to DM scattering, which is given by
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where the homogeneous part of the DR energy density is ⇢DR = ⌘DR⇣⇡
2
T

4
DR/30 with ⇣ = 1 for bosonic DR and

⇣ = 7/8 for fermionic DR, a is the cosmological scale factor, p is the magnitude of the three-momentum, m� is the

DM mass, n(0)
� is the spatially homogeneous DM number density, TDR is the temperature of the DR, f (0)

DR is the
homogeneous part of the DR phase-space density, and where the Al coe�cients are the projection of the spin-summed
squared matrix element onto the l

th Legendre polynomial Pl(x)
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2 In the case of relativistic dark matter, the shear and higher moments of the dark matter Boltzmann equation must also be evolved.
3 We note that elastic DM self-interaction �� $ �� is irrelevant for the cosmological evolution of linear perturbations, unless the DM is
itself relativistic. See Appendix B for details.

Details: Cyr-Racine+, PRD ‘16
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In the above, ⌘� and ⌘DR are the DM and DR spin and color degeneracy factors, respectively, and |M|
2 is the square

of the matrix element for the ��̃ $ ��̃ process written in terms of the Mandelstam variables s and t. Throughout,
an overhead dot denotes a derivative with respect to conformal time. In Eq. (3), the coe�cients ↵l are l-dependent
factors that encompass information about the angular dependence of the DM-DR scattering cross section. They are
given by

↵l ⌘

R
dp p

4 @f(0)
DR(p)
@p [A0(p) � Al(p)]

R
dp p4

@f(0)
DR(p)
@p [A0(p) � A1(p)]

. (6)

In models where DR self-interaction is allowed, the function ̇DR�DR appearing in Eq. (3) is the opacity for that
process and �l are the corresponding angular coe�cients [see Eqs. (A58) and (A59) for more details].

The equations governing the DM perturbations are
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The adiabatic DM sound speed appearing in Eq. (8) is approximately given by
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where T� is the DM temperature. The evolution of the latter is controlled by
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Here, �heat stands for the DM heating rate, which can be written as [81]
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where the coe�cients cn are defined from the matrix element for the ��̃ $ ��̃ process
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where q = ap is the comoving momentum of the incoming DR, and where �n = (1 � 2�n�3) for fermionic DR and
�n = 1 for bosonic DR. In Eq. (12), ⇣(z) is the Riemann Zeta function. We observe that the particle physics details of
an interacting DM and DR model only enter through the opacity functions ̇�, ̇DR�DM and ̇DR�DR, and through
the coe�cients ↵l and �l which depends on the angular dependence of the DM-DR and DR-DR scattering amplitude,
respectively. There is also a small dependence on the DM sound speed c�, but since it is very small for highly
nonrelativistic DM, it plays only a minor role in determining the evolution of the DM density fluctuations unless the
wave number k is very large. We now have all the key ingredients necessary to compute the linear matter power
spectrum.

B. A general procedure for computing the linear matter power spectrum

In the previous section (see also Appendix A), we have presented the cosmological perturbation equations for a
model in which nonrelativistic DM couples to a relativistic component via the process ��̃ ! ��̃. While the calculation
can become tedious, it suggests a simple recipe to derive the required system of equations:
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where q = ap is the comoving momentum of the incoming DR, and where �n = (1 � 2�n�3) for fermionic DR and
�n = 1 for bosonic DR. In Eq. (12), ⇣(z) is the Riemann Zeta function. We observe that the particle physics details of
an interacting DM and DR model only enter through the opacity functions ̇�, ̇DR�DM and ̇DR�DR, and through
the coe�cients ↵l and �l which depends on the angular dependence of the DM-DR and DR-DR scattering amplitude,
respectively. There is also a small dependence on the DM sound speed c�, but since it is very small for highly
nonrelativistic DM, it plays only a minor role in determining the evolution of the DM density fluctuations unless the
wave number k is very large. We now have all the key ingredients necessary to compute the linear matter power
spectrum.

B. A general procedure for computing the linear matter power spectrum

In the previous section (see also Appendix A), we have presented the cosmological perturbation equations for a
model in which nonrelativistic DM couples to a relativistic component via the process ��̃ ! ��̃. While the calculation
can become tedious, it suggests a simple recipe to derive the required system of equations:
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the matter (both dark and baryonic) density and velocity.2 As matter perturbations grow, they eventually enter the
nonlinear regime and other methods (i.e. numerical simulations, see Ref. [75]) must be used to compute the power
spectrum. The linear matter power spectrum is nonetheless a very useful quantity since it provides approximate
guidelines about the smallest possible bound structures that can form within any dark matter scenario and is used to
set the initial conditions for numerical simulations.

In this first ETHOS paper, we focus on a scenario in which a single species of dark matter (DM, denoted by �)
can interact with a relativistic component (denoted by �̃) which we will generally refer to as “dark radiation” (DR)
but could also be made of Standard Model neutrinos or photons. We consider the situation where the only relevant
process3 for DM is its 2-to-2 scattering with DR, ��̃ $ ��̃, but allow for DR self-interactions through the process
�̃�̃ $ �̃�̃. We assume that the DM relic abundance is fixed at some high temperature (through e.g. thermal freeze-
out) and we therefore neglect here the e↵ect of DM annihilation or decay on the evolution of DM fluctuations. We
note however that these latter processes could be included in future versions of the ETHOS framework.

In this section, our goal is to describe how the nonstandard DM physics enters the computation of the linear matter
power spectrum. Since we are mainly interested in the impact of this nontrivial DM physics on structure formation,
we focus our attention exclusively on scalar cosmological fluctuations and leave the study of tensor fluctuations to
future work. We present in Appendix A a detailed derivation of the coupled equations describing the evolution of
DM and DR perturbations. In the following, we shall first summarize the key results from that Appendix before
describing a general procedure to compute the linear matter power spectrum within the ETHOS framework.

A. Dark Matter and Dark Radiation Perturbation Equations

In the following section, we summarize the key results from Appendix A. We invite the interested reader to consult
that Appendix for more details. Our goal here is to obtain the equations of motion for the DM and DR density
perturbations, denoted by �� and �DR, respectively. These equations must be solved together with those describing the
evolution of baryons, photons, and neutrinos in order to compute the linear matter power spectrum (see e.g. Ref. [80]).
In the following, we assume that DM is made of massive, highly nonrelativistic particles interacting with a massless DR
component. For these choices, the momentum transferred in a typical DM-DR collision is small, which dramatically
simplifies the computation of the collision integral (see Sec. A 2 b of Appendix A). We further assume the DR to have
a thermal spectrum. In conformal Newtonian gauge, the equations describing the evolution of DR perturbations are

�̇DR +
4

3
✓DR � 4�̇ = 0, (1)
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2(�DR �

1

4
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2
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((l + 1)⇧DR,l+1 � l⇧DR,l�1) = (↵l̇DR�DM + �l̇DR�DR) ⇧DR,l, (3)

where ✓� ⌘ ik ·~v� is the divergence of the DM bulk velocity in Fourier space, ✓DR is the divergence of the DR velocity
in Fourier space, � and  are the two gravitational potentials in the conformal Newtonian gauge, �DR is the DR
shear stress, k = |k| is the comoving wave number of the perturbation, ⇧DR,l is the l

th moment of the DR multipole
hierarchy, ̇DR�DM is the DR opacity to DM scattering, which is given by
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where the homogeneous part of the DR energy density is ⇢DR = ⌘DR⇣⇡
2
T

4
DR/30 with ⇣ = 1 for bosonic DR and

⇣ = 7/8 for fermionic DR, a is the cosmological scale factor, p is the magnitude of the three-momentum, m� is the

DM mass, n(0)
� is the spatially homogeneous DM number density, TDR is the temperature of the DR, f (0)

DR is the
homogeneous part of the DR phase-space density, and where the Al coe�cients are the projection of the spin-summed
squared matrix element onto the l

th Legendre polynomial Pl(x)
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2 In the case of relativistic dark matter, the shear and higher moments of the dark matter Boltzmann equation must also be evolved.
3 We note that elastic DM self-interaction �� $ �� is irrelevant for the cosmological evolution of linear perturbations, unless the DM is
itself relativistic. See Appendix B for details.
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the reader to Ref. [105] for a detailed exposure of the subtleties involved in accurately computing the self-interaction
collision term for massless DR. Since we are mainly interested here in computing the DM power spectrum and not
in the details of the DR spectrum, we adopt a simplified picture of DR-DR scattering in which we assume that the
DR perturbation variables ⌫l(p) are independent of the momentum p. This is equivalent to assuming that the DR
spectrum remains purely thermal throughout the evolution of the Universe, and it is consistent with the choice made
in Eq. (A34). We expand more on the validity of this assumption in Sec. A 4. In this thermal approximation, the
first-order DR-DR collision term admits the general form

C
(1)
�̃�̃$�̃�̃ [p1] = p1

@f
(0)
DR(p1)

@ ln p1
⇤�̃�̃$�̃�̃(p1)

1

4

1X

l=1

(�i)l(2l + 1)Pl(µ)⌫l (1 � Gl(p1)) , (A49)

where the functions ⇤�̃�̃$�̃�̃ and Gl encode the details of the DR self-interaction. We note that energy conservation
implies that the l = 0 mode exactly vanish in the above expansion. Similarly, momentum conservation within the
DR fluid immediately implies that G1(p1) = 1. Physically, the main e↵ect of DR self-interaction is to suppress its
free-streaming, which could in turn modify the di↵usion (Silk) damping that DR imparts on the DM matter power
spectrum.

4. Dark radiation equations

We can now substitute Eqs. (A48) and (A49) in Eq. (A13) and use the orthogonality of the Legendre polynomials
to perform the µ integral:
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As noted above, the right-hand side exactly vanishes for the monopole. In principle, one could solve this hierarchy
of di↵erential equations on a grid of q values to obtain the complete solution ⌫l(k, q, ⌧), which can then be used to
compute the physical quantities entering the perturbed Einstein equations. For massless DR, the energy perturbation
�DR, the divergence of the DR velocity ✓DR, and the higher moments of the DR Boltzmann hierarchy ⇧l(k, ⌧) are
related to the Fl(k, q, ⌧) variables12 as [80]
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respectively. We note that the DR shear perturbation is given by �DR(k, ⌧) = ⇧DR,2(k, ⌧)/2. In practice however, it
is much simpler to first integrate Eq. (A50) with respect to q before solving the di↵erential equations for the di↵erent
l-moments. Indeed, the left-hand side of Eq. (A50) can straightforwardly be expressed in terms of the physical DR

variables by multiplying it by
R
dq q

3
f
(0)
DR(q), performing the q integration, and dividing the result by

R
dq q

3
f
(0)
DR(q).

However, since the matrix element coe�cients Al appearing on the right-hand side of Eq. (A50) depend on momentum,
the collision term cannot in general be expressed directly in terms of the physical DR variables.13 In the present work,
we assume that the DR spectrum remains exactly thermal throughout the evolution of the Universe, which immediately
implies that the ⌫l variables must be independent of q. For models where DM is in kinetic equilibrium with the DR
at early times, this thermal approximation is extremely good since the large scattering rate appearing in Eq. (A50)
suppresses the q-dependence of the ⌫l variables. For instance, frequent scattering events set ⌫1(k, ⌧) = (4/3)iv� and
⌫l�2(k, ⌧) = 0 at early times, independently of q. As the scattering rate becomes comparable to the Hubble expansion
rate, the DR perturbation variables ⌫l can develop a small q-dependence of the order of the DM to DR entropy ratio.

12 We thank Manuel A. Buen-Abad for pointing out an inconsistency with these definitions in an earlier version of the manuscript.
13 In the CMB case, the Thomson scattering matrix element is independent of momentum and the collision term can exactly be expressed

in terms of physical variables.
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1. For the process ��̃ ! ��̃, compute the spin-summed matrix element squared and evaluate it at t = 2p2(1 � µ̃)
and s = m

2
� + 2pm�, where p is the momentum of the incoming DR and µ̃ is the cosine of the angle between

the incoming and outgoing DR particle.

2. Compute the Al coe�cients using the projection integral given in Eq. (5).

3. Compute ̇DR�DM and ̇� using Eqs. (4) and (9), respectively. Compute the angular coe�cients ↵l using Eq. (6).

4. If relevant for the model at hand, compute the opacity ̇DR�DR and the �l coe�cients using Eqs. (A58) and
(A59), respectively.

5. Solve Eq. (11) to obtain the DM temperature evolution. Compute the DM adiabatic sound speed c
2
� using

Eq. (10).

6. Solve Eqs. (1)-(3), (7), and (8) using a standard Boltzmann solver in order to obtain the matter power spectrum.

This procedure is straightforward but is not fully amenable to a simple numerical implementation since one would
need to code the specific functions ̇DR�DM, ̇DR�DR, �, and �heat for each model. While this is in principle possible,
one can further simplify the computation by noting that the opacities and heating rate are often power-law functions
of the temperature (or redshift). This behavior occurs because the matrix elements entering the collision integrals are
often themselves power laws of momentum (see e.g. Eq. (13)). We can then write
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where an, bn, and dn are constants with units of inverse length, h is the dimensionless Hubble constant h =
H0/(100 km/s/Mpc), ⌦� and ⌦DR are respectively the DM and DR densities in units of the critical density of
the Universe, and where we have introduced the dimensionless functions x�(z) and xDR�DR(z) to take into account
possible departures from a pure power-law behavior in some models4. In many instances, the physics responsible for
nontrivial values of x� and xDR�DR can be computed independently of the ��̃ ! ��̃ scattering process considered
here, and the above factorization is therefore physically motivated. We have also introduced the redshift zD which is
used to normalize the values of the coe�cients an, bn, and dn. The value of zD is arbitrary but choosing it to be the
redshift when the DM opacity becomes equal to the conformal Hubble rate H prevents artificially large or small values
for the coe�cients defining the opacity and heating expansions. In this work, we choose zD = 107, which corresponds
to a decoupling temperature close to TDR ⇠ 1 keV (assuming ⇠ = 0.5).

We note that we have written the DM opacity ̇� as an expansion in a term that goes as (1+z)n+1 since we typically
have ̇� / (1 + z)̇DR�DM. The factor 4/3 appearing in this expansion enforces momentum conservation in DM-DR
scattering. We also note that the coe�cients an, bn, and dn are independent of the standard ⇤CDM parameters and
thus only depend on the physics of the dark sector. In many models of interest, only a single term in the expansions
given in Eqs. (14) and (15) is nonvanishing. Furthermore, even in more complex cases with multiple nonzero terms or
nontrivial x�(z), we expect the opacity and heating rates to be well approximated by a single, though not necessarily
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temperatures defining a given DM particle physics model, and the e↵ective parameters controlling the shape of the
linear matter power spectrum. It is important to realize that our parametrization in terms of an and dn coe�cients
has a clear physical interpretation. Indeed, the presence of nonzero an and dn coe�cients directly corresponds to a
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FIG. 1. Left panel : Transfer function T (k) ⌘ PETHOS(k)/PCDM(k) for four di↵erent exponents n parametrizing the redshift
dependence of the DM drag opacity ̇� = �(⌦DRh

2)an(4/3)(1 + z)n+1/(1 + zD)
n. The values of an are chosen such that all

models have the same DM drag epoch zdrag, which we define via the criterion �̇�(zdrag) = H(zdrag). The actual values used
are {a1, a2, a3, a4} = {6.56, 3.5 ⇥ 101, 1.86 ⇥ 102, 9.95 ⇥ 102} Mpc�1. All models assume !DR = 1.35 ⇥ 10�6 , ↵l = 1, and
bn = 0. For completeness, we also used ⇠ = 0.5, m� = 10 GeV, and dn = an, but the results shown above are insensitive to
these specific choices. Right panel : Dark matter drag visibility function for the same models as the left panel. The DM drag
visibility function is essentially the probability distribution function for the time at which a DM particle last scatter o↵ DR.

regime ̇�/H � 1 to the decoupled regime ̇�/H ⌧ 1. In contrast, as n approaches 0, DM spends more time in the
weakly coupled regime and a broader range of k-modes can be a↵ected by the dark sector physics. This is particularly
apparent for the n = 1 model where a large range of k-modes are damped by DR di↵usion. A longer period spent in
the weak coupling regime also implies that the damping envelope significantly departs from the exponential relation
e
�(k/kdamp)

2

derived in the tight-coupling limit [84].

In Fig. 2, we study the impact of the angular coe�cients ↵2 on the matter transfer function. Here, we choose
models with a nonvanishing a4 (left panel) and a2 (right panel) coe�cient, and vary the value of ↵2 from 1/2 to
5/2 while keeping everything else fixed. While we realize that it might not be possible to find a physical DM model

FIG. 2. Left panel : Transfer function for three di↵erent values of ↵2 for a model characterized by a nonvanishing value of a4.
The model shown here assumes fermionic DR with a4 = 2.24⇥ 104 Mpc�1, ⇠ = 0.5, m� = 2 TeV, ⌘DR = ⌘� = 2, bn = 0, and
↵l�3 = 1. Right panel : Similar to the left panel but for a model with a2 = 3.5 ⇥ 101 Mpc�1. We assume fermionic DR with
⇠ = 0.5, m� = 10 GeV, ⌘DR = ⌘� = 2, bn = 0, and ↵l�3 = 1.
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visibility function is essentially the probability distribution function for the time at which a DM particle last scatter o↵ DR.
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models with a nonvanishing a4 (left panel) and a2 (right panel) coe�cient, and vary the value of ↵2 from 1/2 to
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FIG. 2. Left panel : Transfer function for three di↵erent values of ↵2 for a model characterized by a nonvanishing value of a4.
The model shown here assumes fermionic DR with a4 = 2.24⇥ 104 Mpc�1, ⇠ = 0.5, m� = 2 TeV, ⌘DR = ⌘� = 2, bn = 0, and
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FIG. 3. Left panel : Transfer function T (k) ⌘ PETHOS(k)/PCDM(k) for three di↵erent values of ↵3 for a model characterized by
a nonvanishing value of a4. The model shown here assumes fermionic DR with a4 = 2.24⇥ 104 Mpc�1, ⇠ = 0.5, m� = 2 TeV,
⌘DR = ⌘� = 2, bn = 0, ↵2 = 1, and ↵l�4 = 1. Right panel : Similar to the left panel but for a model with a2 = 3.5⇥ 101 Mpc�1

and m� = 10 GeV.

realizing these di↵erent values of ↵2, our goal here is to illustrate the sensitivity of the DM distribution to these
parameters. The left panel of Fig. 2 shows that ↵2 has a significant e↵ect on the damping tail of the matter transfer
function, with a smaller value of ↵2 associated with more damping. We can understand this result by noting that the
quantity ↵2̇DR�DM controls the growth of the DR quadrupole which is associated with DR di↵usion damping of DM
perturbations. At a fixed value of the opacity ̇DR�DM, a smaller ↵2 leads to a faster growth of the DR quadrupole,
which results in a stronger damping term. This can also be seen from the direct calculation of the Silk damping scale,
which in the tightly coupled regime takes the approximate form
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�◆1/2

. (39)

Thus, a larger value of ↵2 indeed corresponds to a smaller damping scale in the tightly coupled regime. One might
ask whether this result holds in models that spend a significant amount of time in the weakly coupled regime. We
illustrate this latter case in the right panel of Fig. 2 where we display a model with a nonvanishing a2 coe�cient.
There, we demonstrate that the matter transfer function is almost insensitive to ↵2. In these models, the broad DM
drag visibility function e↵ectively erases the memory of the specific value of ↵2, and the shape of the DM power
spectrum is almost entirely dictated by ̇�. This implies that a detailed calculation of the exact values of the angular
coe�cients is less important for models dominated by low-n an coe�cients.

In Fig. 3, we illustrate the impact of the next order angular coe�cient ↵3. Similarly to Fig. 2, the left panel displays
a model with a nonvanishing a4 coe�cient for three di↵erent choices of ↵3. We observe that this parameter does
a↵ect the shape of the damping envelope of the matter transfer function, but in a more intricate way than ↵2. Both
the amplitude and phase of the second and subsequent acoustic oscillation peaks are a↵ected by the value of ↵3, in
contrast to ↵2 which mostly a↵ected the amplitude of the damping envelope. In the right panel of Fig. 3, we illustrate
the impact of ↵3 for a model characterized a nonzero value of a2. As in the case of ↵2, the matter transfer function
for n = 2 displays little sensitivity to the angular coe�cient ↵3. The second acoustic oscillation peak is marginally
a↵ected, but it is very unlikely that such a tiny feature has any e↵ect on nonlinear structure formation. Again, the
width of the DM drag visibility function for a model with low n values tends to erase the memory of the angular
dependence of the DM-DR scattering cross section.

In summary, we have seen that for a fixed DM drag epoch, DM models characterized by opacities with weak redshift
(or temperature) dependence generally display a broader drag visibility function, which tends to wash out the details
of the angular dependence of the DM-DR scattering cross section. The wider visibility function also leads to a broader
power spectrum damping envelope which assumes a di↵erent shape than the standard e

�k2/k2
damp . On the other hand,

DM models that have an opacity with a steep redshift dependence near the drag epoch are more sensitive to the
details of the DM-DR scattering cross section encoded in the ↵l coe�cients. In general, as the redshift dependence of
the opacity steepens, we expect the matter transfer function to display an increasing number of essentially undamped

Linear perturbations - results

‘Dark acoustic oscillations’
(Physics very similar to CMB photons scattering on electrons around decoupling!)
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Self-interacting DM (SIDM)
DM-DM scatterings

do not affect linear perturbations (number densities!)

but isotropise DM distribution in inner parts of halo:  

Spergel & Steinhardt, PRL ‘99
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Figure 2. Density (left panels) and velocity dispersion profiles (right panels) of haloes of different masses. The top panels are for the case of a constant
cross section (�max

T /m� = 10 cm2 g�1) showing the profiles after 25 t0. Bottom panels are for the case of a velocity-dependent cross section (vmax =
30 km s�1, �max

T /m� = 10 cm2 g�1) after 1 Gyr. In scaled units, the constant cross section curves for all masses collapse to a single one. For the
velocity-dependent case, evolution progresses faster for lower mass systems, because (�T v) peaks at a velocity of 30 km/s.

and velocity distribution functions we can now calculate the num-
ber of expected scattering events and compare this to the N-body
/ Monte Carlo results obtained with the technique presented in the
paragraphs above.

As an example of the number of scattering events expected in
a DM halo, we take a smooth spherical distribution of DM with a
Hernquist density profile (Hernquist 1990):

⇢(r) =
Ma
2⇡r

1
(r + a)3

, (7)

where M is the total mass of the halo and a its scale length. The
velocity dispersion profile for the Hernquist halo follows from the
Jeans equation, which for an isotropic velocity distribution and us-

ing Eq. (7) gives:
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It is then straightforward to compute the scattering rate using
Eq. (5). To compare these analytical expectations with N-body
simulations, it is necessary to take into account the mass resolu-
tion of the simulation. We therefore need to multiply Eq. (5) with
m�/mdm, where mdm is the DM particle mass of the simulation,
which yields the number of scatter events in the simulation volume.

The left panel of Figure 1 shows the analytically calcu-
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core formation once         scatters per dynamical time O(1)
Core Formation in Dwarf Halos with Self Interacting Dark Matter: No Fine-Tuning Necessary 5

Figure 3. Density profiles of Pippin (left) and Merry (right) in collisionless CDM and in SIDM (see legend) at z = 0. All SIDM runs with �/m �
0.5 cm2 g�1 produce central density profiles with well-resolved cores within ⇠ 500 pc. Core densities are the lowest (and core sizes the largest) for cross
sections in the range �/m = 5�10 cm2 g�1. The 50 cm2 g�1 run of Pippin has undergone a mild core collapse, with a resultant central density intermediate
between the 10 cm2 g�1 run and 1 cm2 g�1 run. For velocity dispersion profiles of these halos, see Appendix A. NFW fits to the CDM profiles of each halo
yield scale radii of ⇠ 2.7 kpc.

dense enough to reside in a CDM halo larger than 40 km s�1. The
rest appear to reside in halos that are significantly less dense than
expected for the ten most massive systems predicted in CDM sim-
ulations. These missing, or overdense, Vmax ' 40 km s�1 halos
are the systems of concern for the TBTF problem.

Figure 4 illustrates this problem explicitly by comparing the
circular velocities of nearby field dwarfs at their half-light radius
(data points) to the circular velocity profiles of our simulated ha-
los (lines), each of which has Vmax ' 40 km s�1 and is there-
fore nominally a TBTF halo. The data points indicate dwarf galax-
ies (M⇤ < 1.7 ⇥ 107) farther than 300 kpc from both the Milky
Way and Andromeda that are dark matter dominated within their
half-light radii ( r1/2), with estimates for their circular velocities
at r1/2 (V1/2). We have excluded Tucana, which has an implied
central density so high that it is hard to understand even in the
context of CDM (see Garrison-Kimmel et al., 2014b, for a discus-
sion). V1/2 for the purely dispersion galaxies are calculated using
the Wolf et al. (2010) formula, where measurements for stellar ve-
locity dispersion, �?, are taken from Hoffman et al. (1996), Simon
& Geha (2007), Epinat et al. (2008), Fraternali et al. (2009), Collins
et al. (2013), and Kirby et al. (2014). However, WLM and Pegasus
also display evidence of rotational support, indicating that they are
poorly described by the Wolf et al. (2010) formalism. For the for-
mer, we use the Leaman et al. (2012) estimate of the mass within
the half-light radius, obtained via a detailed dynamical model. The
data point for Pegasus is obtained via the method suggested by
Weiner et al. (2006), wherein �2

? is replaced with �2
? + 1

2 (v sin i)
2

in the Wolf et al. (2010) formula, where v sin i is the projected ro-
tation velocity (also see §5.2 of Kirby et al., 2014).

As expected, the data points all lie below the CDM curves
(black lines), demonstrating explicitly that both Merry and Pippin
are TBTF halos. The SIDM runs, however, provide a much better

match, and in fact all of the SIDM runs with �/m � 0.5 cm2 g�1

alleviate TBTF.

3.3 Expectations for the stellar-mass halo-mass relation

A problem related to TBTF, but in principle distinct from it, con-
cerns the relationship between the observed core densities of galax-
ies and their stellar masses. Specifically, there does not appear to be
any correlation between stellar mass and inner dark matter den-
sity inferred from dynamical estimates of dwarf galaxies in the
Local Group (Strigari et al., 2008; Boylan-Kolchin et al., 2012;
Garrison-Kimmel et al., 2014b). If dark matter halos behave as ex-
pected in dissipationless ⇤CDM simulations, then we would ex-
pect more massive galaxies to have higher dark matter densities at
fixed radius. This ultimately stems from the expectation, borne out
at higher halo masses, that more massive dark matter halos tend to
host more massive galaxies.

Consider, for example, the two galaxies Pegasus (r1/2 ' 1
kpc) and Leo A (r1/2 ' 500 pc) in Figure 4. Both of these
galaxies have about the same stellar mass M? ' 107M�. Ac-
cording to the expectations of abundance matching (Garrison-
Kimmel et al., 2014b), each of these galaxies should reside within
a Vmax ' 40 km s�1 halo. Instead, their central densities are such
that, if their dark matter structure follows the CDM-inspired NFW
form, they need to have drastically different potential well depths:
Vmax ' 30 and 12 km s�1 for Pegasus and Leo A, respectively
(see Figure 12 of Garrison-Kimmel et al., 2014b). However, if we
instead interpret their densities in the context of SIDM, the results
are much more in line with abundance matching expectations.

Abundance matching relations remain unchanged in SIDM
because halo mass functions in SIDM are identical to those in
CDM (Rocha et al., 2013). That is, in SIDM, just like CDM, we
would naively expect both Pegasus and Leo A to reside in ha-

c� 2014 RAS, MNRAS 000, 1–9
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Simple analytic models to predict core radius from σSIDM
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Velocity dependence
Massive mediators induce a Yukawa 
potential between DM particles.
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The case for dark matter scattering with sterile neutrinos
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It has recently been pointed out that TeV-scale dark matter with the characteristic velocity-
dependent self-interaction rate resulting from a light mediator particle can address all small-scale
problems of standard ⇤CDM cosmology simultaneously, provided that kinetic decoupling happens
su�ciently late. Here, we argue that dark matter scattering with sterile neutrinos charged under
a new U(1) gauge interaction is a particularly natural realization of this idea. Interestingly, those
sterile neutrinos may act as a – possibly rather small – dark radiation component at late times,
making the scenario a promising target for both current and upcoming observations of the cosmic
microwave background. We discuss various model-building avenues, current constraints as well as
prospects for a future experimental verification of such scenarios.

I. INTRODUCTION

We consider the scenario of [1], where the dark matter
scatters o↵ light particles (possibly contributing to dark
radiation), which solves all three small-scale problems of
structure formation.

• 1st par: CDM success + shortcomings (many refs)

• 2nd par: point out only existing ‘solution for ev-
erything’ + possible connection to dark radiation

• 3rd: motivations for sterile neutrinos

• connect everything, give a short outlook on the sce-
narios that are interesting

II. SELF-INTERACTING DARK MATTER AND
⇤CDM AT SMALL SCALES

Self-interacting DM (SIDM) has early been proposed
as a way to change the predictions of ⇤CDM at small
scales [2]. The original proposal of a constant cross sec-
tion for the scattering rate, however, faces severe phe-
nomenological problems deriving from the observed el-
lipticity of clusters [3], the survivability of large galaxies
in clusters or dwarf galaxies in the Local Group [4], as
well as the imminent relaxation of halo cores to even
denser states in a ‘gravothermal catastrophe’ [5]; also
the observation of cluster mergers places relevant con-
straints on the self-interaction rate [6]. More recently, it
was realized that the characteristic velocity-dependence
of the scattering rate expected for a Yukawa potential be-
tween the DM particles may not only alleviate the above

⇤Electronic address: Torsten.Bringmann@fys.uio.no
†Electronic address: Jasper.Hasenkamp@desy.de
‡Electronic address: Joern.Kersten@desy.de

mentioned problems [7] but indeed potentially address
all shortcomings of ⇤CDM mentioned in the introduc-
tion simultaneously [1].
The idea of SIDM with a Yukawa potential (YIDM)

corresponds to the existence of a light messenger particle
� that mediates this ’dark force’, which means that it is
much better motivated from a particle physics point of
view than SIDM with a constant interaction rate (or with
an ad-hoc velocity dependence as studied e.g. in Ref. [8]).
In this Section, we adopt a purely phenomenological ap-
proach and work out the general requirements to address
the ⇤CDM small-scale problems in this framework. In
the remainder of this article, we will then translate these
considerations to concrete particle physics models that
can realize this general idea.

A. DM self-scattering

Rather than the full di↵erential scattering cross sec-
tion, d�/d⌦, one typically only considers the transfer
cross section

�T ⌘

Z
d⌦(1� cos ✓)

d�

d⌦
(1)

in the context of DM scattering as this conveniently
regulates divergences appearing for forward scattering –
which anyway does not change the DM distribution (see
Ref. [9] for an extensive discussion).
Assuming a coupling constant g� in the interaction

term between the DM particles and the (vector or scalar)
messenger � in the Lagrangian, the resulting Yukawa po-
tential is given by

V (r) = ±
↵�

r
e
�m�r , (2)

where ↵� ⌘ g
2

�/(4⇡). For scalar � as well as self-
conjugate DM, like Majorana fermions, the potential is
always repulsive (+); otherwise it can be both attractive
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FIG. 2: Left: Numerical calculation of �T /mX , truncated at fixed `max, showing convergence with in-
creasing `max. The parameter point chosen corresponds to the classical regime with an attractive potential.
The convergence to the classical analytic result shown by dashed line. Right: Numerical calculation (solid
blue) of �T /mX versus m�, showing convergence to the classical analytical formula (dotted pink) and Born
approximation (dashed gold) in the classical and Born regimes.

of Ref. [26] requires integrating Eq. (13) to much larger x than in our method, and is therefore
much less efficient. Thus, Ref. [26] truncates at `max = 5 in their calculation, whereas we are
able to perform efficient calculations with `max ⇠ 1000. We demonstrate this point in Fig. 2,
showing how �T depends on `max for one parameter choice in the classical regime. Our numerical
calculation (solid line) converges for `max & 1000, in good agreement with the classical cross
section (dashed line).3

We can also see the convergence to classical and Born analytic formulae in the right panel of
Fig. 2. The dashed gold and dotted pink lines show the results for the Born and classical analytic
formulae, and we see that in the regime of validity, our numerical results (solid blue line) agree
well with the analytic formulae. In the quantum resonant regime, neither of the analytic formulae
reproduce the behavior of the resonant peaks and anti-resonant valleys. Also note that the Born
approximation over-estimates the cross section in the classical regime.

B. Velocity-dependence in dark matter scattering

The most important feature that emerges from our numerical study is the highly nontrivial
velocity-dependence of �T within the resonant regime. While previous studies have focused on
either constant �T or specific v-dependencies, a rich array of possibilities can arise in general, and
the velocity behavior can be rather complicated.

In Fig. 3, we show the cross section as a function of velocity for an attractive potential with
↵X = 10�2. Each curve corresponds to a different value for b (where b ⌘ ↵XmX/m�), as
indicated by the numerical values in the figures. The quantity �Tm2

X is a useful normalization
for the cross section since, for fixed ↵X , it depends on v and mX/m� only (as opposed to mX

and m� separately). Thus, to obtain the required level scattering in dwarf halos, each curve can

3 The reader should not be troubled by the fact that �T can be negative for certain values of `max. Due to the fact
that the momentum and orbital angular momentum operators do not commute, the transfer cross section, defined in
terms of momentum eigenstates, is a physical quantity only in the limit `max ! 1, not for a particular value of `.

10

see e.g. Tulin, Yu & Zurek, PRD ‘13 
[only for attractive potential]

Resulting scattering cross section

atom models. We label the models by their value of the
mass ratio R; the values of the other relevant parameters are
given in the figure caption. As before, the colored points
show the effective ETHOS values of the transfer cross
section over mass for the mapping given in Eq. (57). For the
three models shown here, we observe that the velocity
dependence is very mild over the range of velocities
relevant to a broad spectrum of astrophysical objects (note
for instance the difference of the y-axis between the left and
right panels of Fig. 4). However, the qualitative behavior
of dark atom scattering is similar to the nonperturbative
scattering limit (mχv ≲mϕ) of the Yukawa DM model
presented in the previous subsection.6 This reinforces the
idea that the ETHOS framework can encompass multiple
models using a simple parametrization.

IV. ETHOS: MAPPING PARTICLE MODELS TO
STRUCTURE FORMATION SCENARIOS

In the standard cold DM paradigm, DM is assumed to be
nonrelativistic and to interact primarily via the gravitational
force. These simple hypotheses have been extremely
successful at explaining the structure of the Universe on
large scales. However, we must keep in mind that this
success does not necessarily preclude the existence of
nontrivial DM microphysics that could affect structure

formation at smaller scales, where these hypotheses remain
untested. Indeed, causality dictates that new nongravita-
tional interactions in the DM sector can only modify the
matter distribution on small scales, leaving large scales
intact. Many models have been proposed that either allow
for DM self-interactions inside halos at late times, or for
interactions between DM and other particles in the early
Universe, or both (see Sec. I and references therein). An
immediate difficulty in exploring these models is that
structure formation on small scales is highly nonlinear,
requiring expensive high-resolution simulations in order to
make clear predictions that can be compared with obser-
vations. The cost of these simulations renders nearly
impossible the task of a systematic exploration of all
DM models that lead to modified small-scale structures.
To address this situation, we develop here an “effective
theory of structure formation” (ETHOS), in which the DM
microphysics is systematically mapped to effective param-
eters that directly control astrophysical structure formation.
These effective parameters fully describe the linear evolu-
tion of the growth of structures and provide a convenient
parametrization for DM self-interactions. These two ingre-
dients can then serve as the input for simulations to follow
the growth of structures in the nonlinear regime. The
advantage of developing ETHOS is clear: all DM particle
models that map to a given effective ETHOS model can be
constrained at the same time by comparing a single

FIG. 4. Left panel: Velocity dependence of the self-interaction cross section over mass for DM interacting via a Yukawa potential
mediated by a messenger particle ϕ [22,23,47,91]. The model shown with the thick red solid curve is an example of a symmetric DM
model that primarily scatters in the classical regime (mχv ≫ mϕ) with momentum-transfer cross sections given by the average of
Eqs. (60) and (61). The thin solid blue line is an example of asymmetric DM that primarily scatters in the classical regime with
momentum-transfer cross sections given by Eq. (61). The dashed cyan curve is an example of an asymmetric DM model similar to the
model put forward in Ref. [25]. This model primarily scatters in the nonperturbative regime (mχv ≲mϕ) and we refer the reader to the
Appendix of Ref. [23] for an explicit analytical formula that is valid in this regime. In all cases, the colored points show the average
values hσTivM=mχ [as defined in Eq. (56)] for the three typical velocity ranges shown here by the gray bands. Note that the width of the
gray bands is for illustration purposes only. Right panel: Similar to the left panel but for atomic DM models [12,43–46,49,56,57]. Here,
the models are labeled by the value of R, which is the mass ratio of the two particles forming the dark atom. We show the approximate
fitting formula for the momentum-transfer cross section given in Eq. (10) of Ref. [56] with a dark fine-structure constant value of
αD ¼ 0.05. For all the cases shown, the DM mass is determined from the relation mχ ¼ ðR=αDÞ2=3 GeV [57]. The colored points show
the values of hσTivM=mχ for each typical velocities vM.

6See the dashed cyan line of the left panel of Fig. 4.
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Phenomenologically important: 
characteristic velocity dependence
[not only for Yukawa potentials! 
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Implementation
Translate power spectrum to initial particle distribution

Probabilistic method to account for elastic scattering
use MUSIC code Hahn & Abel, MNRAS ‘11    [see also Dolag+, ’08]

Vogelsberger, Zavala & Loeb, MNRAS ‘12
isotropic scattering of 
macroscopic ‘particles’ 
with mass

3742 M. Vogelsberger, J. Zavala and A. Loeb

Table 1. Reference points and their particle physics parameters ex-
plored in our simulations. RefP1 serves only as a benchmark point for
tests, since it is well known that such a large constant cross-section
violates various astrophysical constraints. RefP2 and RefP3 do not vi-
olate any constraints and potentially have a significant effect on the
density profiles of low-mass subhaloes. The latter two reference points
are therefore the ones we will mainly focus on.

Name Type σmax
T /mχ (cm2 g−1) vmax (km s−1)

RefP0 CDM – –

RefP1 SIDM (ruled out) 10 –

RefP2 vdSIDM (allowed) 3.5 30

RefP3 vdSIDM (allowed) 35 10

et al. 2001) and (iii) avoidance of the destruction of subhaloes
through collisions with high-velocity particles from a larger par-
ent halo (Gnedin & Ostriker 2001). There is a summary of these
and other constrains in table I of Buckley & Fox (2010) and in
fig. 2 of Loeb & Weiner (2011): on the scales of dwarf galaxies,
σ vel ∼ 10 km s−1, the allowed values for the transfer cross-section
are roughly constrained from above by σ max

T /mχ ! 35 cm2 g−1,
and are much lower at σ vel ∼ 100 km s−1, where the constraints
are stronger by approximately two orders of magnitude. Since we
are interested in the possibility of producing cored density profiles
for the haloes associated with the MW dSphs, we will take two
benchmark points in the (σ max

T /mχ , vmax) parameter space close to
the aforementioned constraints that maximize the self-interaction at
the typical velocity dispersion of these dwarfs (see Table 1).

In this work we only consider elastic scattering leaving the cases
of excited states and their associated exo- and endothermic interac-
tions for a future analysis.

2.2 Numerical technique

To account for DM self-interactions we follow a standard Monte
Carlo approach similar to previous implementations (Burkert 2000;
Kochanek & White 2000; Yoshida et al. 2000a,b; Craig & Davis
2001; Davé et al. 2001; Colı́n et al. 2002; D’Onghia, Firmani &
Chincarini 2003; Koda & Shapiro 2011), but different from fluid
smoothed particle hydrodynamics approaches as in Moore et al.
(2000) and Yoshida et al. (2000a).

We determine the scattering probability for every particle i with
each of its k = 38 ± 5 nearest neighbours1 j in a time step #ti by

Pij = mi

mχ

W (rij , hi) σT(vij )vij #ti , (2)

where mi is the simulation particle mass, vij is the relative velocity
between particles i and j, σ T/mχ is the scattering cross-section
per unit mass described in Section 2.1, hi the smoothing length
enclosing the k nearest neighbours of particle i and W(rij, hi) =
w(rij/hi) is the cubic spline Kernel function in 3D normalization:

w(q) = 8
π

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − 6q2 + 6q3, 0 ≤ q ≤ 1
2
,

2 (1 − q)3 ,
1
2

< q ≤ 1,

0, q > 1.

(3)

1 This choice is to speed up the neighbour search, but we checked that it
does not affect any results.

The time step #ti is chosen small enough to avoid mul-
tiple scatterings during a time step by requiring that #ti <

κ(ρ i σ T(σ vel,i)/mχ σ vel,i)−1, where σ vel,i is the local velocity dis-
persion at the position of particle i calculated based on its k neigh-
bours, and we set κ = 10−2, which is sufficiently small to avoid
multiple scatterings during a step and usually smaller than the time
step inferred from the dynamical time-scale. The total probability
of a particle to interact with any of its neighbours is given by Pi =∑

jPij/2, where the subscript j is limited to the k neighbours. The
factor 1/2 accounts for the fact that a scatter event always involves
two particles, and we therefore need to divide by 2 to reproduce
the correct scatter rate. We say that a collision takes place between
particle i and one of its k nearest neighbours j if x ≤ Pi, where
x is a uniformly distributed random number in the interval (0, 1).
To select the neighbour j that is chosen for collision we sort them
according to their distance to particle i and select the first neighbour
l that satisfies x ≤

∑l
i Pij . In the following we assume that the

self-interaction is isotropic.
In the case of elastic scattering once a pair is tagged for collision

we assign to each particle a new velocity given by

vi = vcm + (vij /2) ê,

vj = vcm − (vij /2) ê,
(4)

where vcm is the centre-of-mass velocity of the pair and ê is a unit
vector that we randomly draw from the unit sphere. This procedure
conserves energy and linear momentum, but not angular momen-
tum. We have implemented this numerical scheme in GADGET-3
(last described in Springel 2005).

To test our implementation we apply it first to isolated haloes.
For a region of volume V , the total number of scattering events is
given by

&tot =
∫

V

ρ(x)2

2m2
χ

⟨σTv⟩(x) dV , (5)

where ρ(x) is the local DM density and ⟨σTv⟩(x) is the local thermal
average of the transfer cross-section times the relative velocity. In
the non-relativistic limit this is given by an average over a Maxwell–
Boltzmann distribution function:

⟨σTv⟩(x) = 1
2σ 3

vel(x)
√

π

∫
(σTv)v2 e−v2/4σ 2

vel(x) dv, (6)

where σvel(x) is the local velocity dispersion. For given density and
velocity distribution functions we can now calculate the number of
expected scattering events and compare this to the N-body/Monte
Carlo results obtained with the technique presented in the para-
graphs above.

As an example of the number of scattering events expected in
a DM halo, we take a smooth spherical distribution of DM with a
Hernquist density profile (Hernquist 1990):

ρ(r) = Ma

2πr

1
(r + a)3

,
(7)

where M is the total mass of the halo and a its scale length. The
velocity dispersion profile for the Hernquist halo follows from the
Jeans equation, which for an isotropic velocity distribution and
using equation (7) gives

σ 2
vel(r) = GM

12a

[
12r(r + a)3

a4
ln

(
r + a

r

)

− r

r+a

(
25+52

( r

a

)
+ 42

( r

a

)2
+12

( r

a

)3
)]

. (8)

It is then straightforward to compute the scattering rate using equa-
tion (5). To compare these analytical expectations with N-body
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in the following. ETHOS provides a mapping between the intrinsic
parameters (couplings, masses, etc.) defining a given DM particle
physics model, and (i) the effective parameters controlling the shape
of the linear matter power spectrum, and (ii) the effective DM
transfer cross-section (⟨σ T⟩/mχ ); both at the relevant scales for
structure formation. Schematically:
{
mχ , {gi}, {hi}, ξ

}
→

{
ωDR, {an, αl}, {bn, βl}, {dn, mχ , ξ}

}

→ Plin,matter(k)

{
mχ , {hi}, {gi}

}
→

{ ⟨σT ⟩30

mχ

,
⟨σT ⟩220

mχ

,
⟨σT ⟩1000

mχ

}
, (1)

where the parameters on the left are the intrinsic parameters of the
DM model: mχ is the mass of the DM particle, {gi}represents the
set of coupling constants, {hi}is a set of other internal parameters
such as mediator mass and number of degrees of freedom, and
ξ = (TDR/TCMB)|z = 0 is the present-day DR to CMB temperature
ratio.

The effective parameters of the framework are on the right of
equation (1), which in all generality include the cosmological den-
sity of DR ωDR ≡'DRh2, the set {an, αl}characterizing the DM-
DR interaction, the {bn, β l}set characterizing the presence of DR
self-interaction (relevant, for instance, to non-abelian DR), and the
parameter set {dn, mχ , ξ}determining the evolution of the DM
temperature and adiabatic sound speed. This latter quantity is very
small for non-relativistic DM, and it has thus little impact on the
evolution of linear DM perturbations (except on very small scales,
irrelevant for galaxy formation/evolution). In this work, we focus
our attention on the effect of DM-DR interaction on the evolution
of DM perturbations. The physics of these effects are captured by
the parameters {an, αl}, where the set of l-dependent coefficients αl

encompasses information about the angular dependence of the DM-
DR scattering cross-section, whereas the an are the coefficients of
the power-law expansion in temperature (redshift) of the DM drag
opacity caused by the DM-DR interaction (see section II E of Cyr-
Racine et al. 2015). Physically, a single non-vanishing an implies
that the squared matrix element for the DM-DR scattering process
scales as |M|2 ∝ (pDR/mχ )n−2, where pDR is the DR momentum.
We leave the impact of DR self-interactions on the matter power
spectrum to a future study. We note that DR self-interaction as
parametrized by {bn, β l}can actually have a non-negligible effect
on the linear matter power spectrum through its influence on the
gravitational shear stress. However, this latter effect is generally
subdominant compared to the DM-DR interactions studied in this
work.

The other set of effective parameters in ETHOS are related to
DM self-scattering. Although each particle physics model would
have a specific transfer cross-section, in ETHOS we classify (char-
acterize) a given model based on the values of its cross-section
at three relative velocities, those characteristic of dwarf galaxies
(∼30 km s−1), the MW-size galaxies (∼220 km s−1) and galaxy
clusters (∼1000 km s−1).1 The choice of these three characteristic
velocities is arbitrary but it allows us at a glance to (i) check whether
a given model is compatible with observations, and (ii) have a re-
liable estimate at what the outcome of the simulation of a given
model would be based on the results of models already simulated,
which have similar values of the transfer cross-section. For instance,
if two models have the same values of ⟨σ T⟩30/mχ , full simulations

1 Note that in some cases one needs to go beyond the transfer cross-section
to describe the effect of self-interactions, see e.g. Kahlhoefer et al. (2014).

of isolated dwarfs in each model are likely to yield similar results,
even though they might have very different values of ⟨σ T⟩1000/mχ .
Furthermore, these characteristic velocities mark also three rele-
vant regimes for any model containing DM self-interactions: (i)
the dwarf-scale regime where the CDM model is being challenged,
and where the transfer cross-section is largely unconstrained, (ii) the
intermediate-scale regime where a large cross-section can lead to the
evaporation of subhaloes in MW-size galaxies, and (iii) the cluster-
scale regime where observations put the strongest constraints to the
cross-section.

The ETHOS framework described above is general, but for the
purpose of this work we restrict ourselves to an underlying parti-
cle physics model which assumes, like in Van den Aarssen et al.
(2012), a massive fermionic DM particle (χ ) interacting with a
massless neutrino-like fermion (ν) via a massive vector mediator
(φ). This model is characterized by an interaction between DM and
DR and DM-DM self-interactions (see section II F.1 of Cyr-Racine
et al. 2015, for details). The former gives rise to the features in the
power spectrum, which are absent in ordinary CDM transfer func-
tions, while the latter alters the evolution of DM haloes across time.
This model is characterized by a squared matrix element scaling as
(pDR/mχ )2, which immediately implies that the impact of DM-DR
scattering on the linear matter power spectrum is entirely captured
by a non-vanishing a4 coefficient. For DM-DR interactions leading
to late kinetic decoupling, this is indeed a very commonly encoun-
tered situation according to a recent comprehensive classification
of such scenarios Bringmann et al. (2016); note, however, that in
the presence of scalar mediators it is sometimes rather a2 that is
the only non-vanishing coefficient an (depending on the spin of DM
and DR).

In our case, the ETHOS mapping is reduced to
{
mχ , mφ, gχ , gν, ηχ , ην, ξ

}

−→
{

ωDR, a4,αl≥2 = 3
2
,
⟨σT ⟩30

mχ

,
⟨σT ⟩220

mχ

,
⟨σT ⟩1000

mχ

}
. (2)

The model is characterized by six intrinsic particle physics parame-
ters: the mass of the DM particle (mχ ), the mediator mass (mφ), the
coupling between the mediator and DM (gχ ), the coupling between
the mediator and neutrino-like fermions (gν), the number of DM
spin states (ηχ ), and the number of spin states of the neutrino-like
fermion (ην). In principle, the ratio of neutrino-like fermion and
photon temperature ξ constitutes another parameter that follows
from the underlying particle physics framework; for definiteness,
we will set it throughout to 0.5 in this work. The effective ETHOS
parameters that fully characterize the linear power spectrum are then
reduced to three: the abundance of DR ωDR, the opacity parameter
a4 (an ̸= 4 = 0), and a set of constant αl ≥ 2 values. It is possible to
calculate these parameters analytically (Cyr-Racine et al. 2015)

a4 = (1 + zD)4 πg2
χg2

ν

m4
φ

ρ̃crit

mχ

(
310
441

)
ξ 2T 2

CMB,0,

αl≥2 = 3
2
, (3)

where ρ̃crit ≡ρcrit/h
2 with ρcrit the critical density of the Universe,

and TCMB, 0 is the temperature of the CMB today. The normaliza-
tion redshift zD is arbitrary, but choosing it to be the redshift of
DM kinetic decoupling ensures that the an coefficients are gener-
ally of order unity. For models that modify the linear matter power
spectrum on subgalactic scales, we usually have zD ! 107. The
generic form of the a4 coefficient is easy to understand: the com-
bination g2

χg2
ν/m

4
φ is the leading factor in the squared scattering
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Table 3. Basic characteristics of the MW-size halo formed in the different
DM models. We list the mass (M200, crit), radius (R200, crit), maximum circular
velocity (Vmax), radius where the maximum circular velocity is reached
(Rmax), and the number of resolved subhaloes within 300 kpc (Nsub).

Name M200, crit R200, crit Vmax Rmax Nsub
(1010 M⊙) (kpc) (km s−1) (kpc)

CDM 161.28 244.05 176.82 68.29 16 108
ETHOS-1 160.47 243.64 178.12 62.58 590
ETHOS-2 164.70 245.75 181.49 63.72 971
ETHOS-3 163.36 245.09 180.60 64.37 1080
ETHOS-4 163.76 245.30 178.78 69.18 1366

2014). It was also used to find that self-interactions can leave im-
prints in the stellar distribution of dwarf galaxies by performing the
first SIDM simulation with baryons presented in Vogelsberger et al.
(2014a).

4 R ESULTS

In the following, we first discuss some features of the large-scale
(100 h−1 Mpc) parent simulations, followed by the main focus of
our work, the resimulated galactic halo. We show here only the
results for CDM, and ETHOS-1 to ETHOS-3 since ETHOS-4 has
the same initial power spectrum as ETHOS-3 and a significantly
smaller self-interaction cross-section. The impact of SIDM effects
on large scales is thus much smaller for ETHOS-4 compared to
ETHOS-1 to ETHOS-3. We have therefore not performed a uniform
box simulation for ETHOS-4.

4.1 Large-scale structure

We first quantify the large-scale distribution of matter in Fig. 2,
where we present the dimensionless power spectra, !(k)2 =
k3P (k)/(2π2), at redshifts z = 10, 6, 4, 2, 0 for our parent simula-
tions. The dashed grey line shows the shot-noise power spectrum
caused by the finite particle number of the simulation, it gives an
indication of the resolution limit in this plot at low redshifts. The
DAO features of the ETHOS-1 to ETHOS-3 models, clearly visible
on the primordial power spectrum (see left-hand panel of Fig. 1),
are only preserved down to z ∼ 10 (where the first oscillation is
marginally resolved for model ETHOS-1). At lower redshifts, the
imprint of these features is significantly reduced and is essentially
erased at z = 0. At this time, although the power spectra of the
non-CDM simulations are relatively close to the CDM case, there is
a slight suppression of power in the ETHOS-1 to ETHOS-3 models
for scales smaller than k ! 102 h Mpc−1. This suppression is largest
for ETHOS-1 and smallest for ETHOS-3, which reflects the fact
that the initial power spectrum damping is largest for ETHOS-1
and smallest for ETHOS-3. Our results therefore confirm the previ-
ous finding of Buckley et al. (2014), namely that in the weak DAO
regime, the non-linear evolution makes the differences with CDM
in the power spectra relatively small at low redshifts. We note that
we do not present images of the large-scale density field since the
different models are indistinguishable on these scales.

Although the power spectra are similar at z = 0 between the
different DM models, there are significant differences in the halo
mass function today due to the delay in the formation of low mass
haloes at high redshift. This is shown in Fig. 3 where we plot the
differential FoF mass function at z = 0. Here we see a clear suppres-
sion of low-mass haloes in ETHOS-1 to ETHOS-3 compared to the
CDM case (below a few times ∼1011 M⊙ for model ETHOS-1).

Figure 2. Non-linear dimensionless power spectra, !(k)2 =
k3P (k)/(2π2), of the parent simulations for the different DM mod-
els at the indicated redshifts (z = 10, 6, 4, 2, 0). The dashed grey line
denotes the shot-noise limit expected if the simulation particles are a
Poisson sampling from a smooth underlying density field. The sampling
is significantly sub-Poisson at high redshifts and in low-density regions,
but approaches the Poisson limit in non-linear structures. The non-CDM
models deviate significantly from CDM at high redshifts, but this difference
essentially vanishes towards z = 0.

Figure 3. Differential FoF halo mass function (multiplied by FoF mass
squared) for the different DM models at z = 0. Approximating the first DAO
feature in the linear power spectrum with a sharp power-law cutoff, we show
the resulting analytic estimates for the differential halo mass function of the
different DM models (yellow dashed). The lower panel shows the ratios
between the different simulation models relative to CDM.

The strongest suppression is seen for ETHOS-1 and the weakest for
ETHOS-3. This is again expected given the initial power spectra
of the different models. The lower panel of Fig. 3 shows that the
suppression factor for haloes around ∼1010 h−1 M⊙ is more than
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Figure 1. Characteristics of effective models. Left: Linear initial matter power spectra ( (�linear(k)2 = k3Plinear(k)/(2⇡2))) for the different models
(CDM and ETSF models M1 to M3) as a function of comoving wavenumber k. The ETSF models M1 to M3 differ in the strength of the damping and the dark
acoustic oscillations present at large k. Right: Velocity dependence of the cross-section for the different models. All ETSF models M1 to M3 have velocity
dependent cross sections which decrease as v�4

rel
for large relative velocities. For low velocities the cross sections can reach up to 100 cm2 g�1

.

els discussed above can be mapped to the same effective lin-
ear power spectrum and effective velocity-dependent DM self-
interaction cross section (see Cyr-Racine et al. 2015, for details).
The models discussed in this study are benchmark cases of such
a mapping, which result in specific combinations of linear power
spectra and interaction cross-sections. Various particle models can
therefore be described by an effective theory specified by an ini-
tial power spectrum and a self-interaction cross section. We call
the resulting framework “effective theory for structure formation”
(ETSF), which aims at generalising the theory of DM structure for-
mation to include a wide range of allowed DM phenomenology.

This paper has the following structure. We present the models
discussed in this work in Section 2. Section 3 then discusses the
different simulations carried out to explore these models. Results
are then presented in Section 4. In this section we will also try to
construct a model which solves some of the outstanding small-scale
problems of the MW satellites. Finally, we present our summary
and conclusions in Section 5.

2 EFFECTIVE MODELS

The different DM models that we investigate in this paper are
are summarised in 1. For all simulations we use the following
cosmological parameters: ⌦m = 0.301712, ⌦⇤ = 0.698288,
⌦b = 0.046026, h = 0.6909, �8 = 0.839 and ns = 0.9671,
which are consistent with Planck (Planck Collaboration et al. 2014;
Spergel et al. 2013). We study four different DM models, which
we label CDM and M1 to M3 for the ETSF models. M1 to M3
are models that in our effective structure formation theory space
can be represented by a specific transfer function (see left panel
of Fig. 1 for the resulting linear non-dimensional power spectra),
and a specific velocity-dependent cross-section for DM (see right

Name ↵� ↵⌫ m� m� rDAO rSD
[MeV c�2] [GeV c�2] [h�1Mpc] [h�1Mpc]

CDM – – – – – –
M1 0.071 0.041 0.723 2000 0.362 0.225
M2 0.016 0.01 0.83 500 0.217 0.113
M3 0.006 0.006 1.15 178 0.141 0.063

Table 1. Parameters of the effective models considered in this paper. We
study in total four different scenarios (CDM and ETSF models M1 to M3).
CDM corresponds to the vanilla CDM case. We also provide two character-
istic comoving length scales: the DM sound horizon (rDAO), and the Silk
damping scale (rSD). The ETSF models are characterised by their linear
power spectra (transfer function) and the DM-DM cross sections, which we
present in Fig. 1.

panel of Fig. 1 for the resulting cross-sections). The underlying
particle physics model for those assumes a massive DM particle
(�) interacting with a massless “neutrino” (⌫) via a massive vector
mediator (�). These models are characterised by an interaction be-
tween DM and dark radiation (DR) and DM-DM self-interactions.
The DM-DR interaction give rise to the features in the power spec-
trum, which are absent in ordinary CDM transfer functions. Ta-
ble 1 specifies the relevant scales in the initial power spectrum:
the comoving diffusion (Silk) damping scale (rSD) and the DM
comoving sound horizon rDAO). These are generic scales which
occur in many models where DM is coupled to relativistic parti-
cles until relatively late times. There are two interesting regimes:
rSD ⌧ rDAO and rSD ⇠ rDAO. For the first case, the power
spectrum shows significant oscillations on small scales since dif-
fusion is ineffective around the sound horizon. The other case, on
the other hand, only shows a few oscillations since the damping is

© 2015 RAS, MNRAS 000, 1–13
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Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

times, where the density is high enough to cause at least some par-
ticle collisions during a Hubble time. We can try to quantify this
already at the resolution level that our parent simulation allows. To
do this, we measure the central or core density for all resolved main
haloes in the uniform box simulations, similar to the analysis pre-
sented in Buckley et al. (2014). The mass resolution of our uniform
box is slightly better than that of Buckley et al. (2014), and we
probe at the same time a volume which is about 3.8 times larger.
We can therefore sample a larger range of halo masses and with bet-
ter statistics. We define the central (core) density within three times
the softening length (8.7 kpc). The upper panel of Fig. 4 shows
the actual core density, while the lower panel shows the ratio with
respect to the CDM case. We take the median value of the distri-

bution within each mass bin. The plot shows the familiar scale of
density with mass at a fixed radius, with core densities that vary
from ⇠ 106 h2M�kpc

�3 for halo masses around ⇠ 1010 h�1 M�
to ⇠ 108 h2M�kpc

�3 for halo masses around ⇠ 1014 h�1 M�.
Models ETHOS-1 (red) and ETHOS-2 (blue) have a significantly
reduced core density compared to the CDM case for low mass
haloes. We note that the effect is strongest in the former than in
the latter, which points to the primordial power spectrum suppres-
sion as the main culprit since the cross section is lower for model
ETHOS-1 than for model ETHOS-2. Low-mass haloes in ETHOS-
1 are therefore less dense than in CDM, mainly because they form
later (analogous to the WDM case). Interestingly, ETHOS-3 shows
a different behaviour. Here the core density is most reduced for
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model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.
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ticle collisions during a Hubble time. We can try to quantify this
already at the resolution level that our parent simulation allows. To
do this, we measure the central or core density for all resolved main
haloes in the uniform box simulations, similar to the analysis pre-
sented in Buckley et al. (2014). The mass resolution of our uniform
box is slightly better than that of Buckley et al. (2014), and we
probe at the same time a volume which is about 3.8 times larger.
We can therefore sample a larger range of halo masses and with bet-
ter statistics. We define the central (core) density within three times
the softening length (8.7 kpc). The upper panel of Fig. 4 shows
the actual core density, while the lower panel shows the ratio with
respect to the CDM case. We take the median value of the distri-
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Models ETHOS-1 (red) and ETHOS-2 (blue) have a significantly
reduced core density compared to the CDM case for low mass
haloes. We note that the effect is strongest in the former than in
the latter, which points to the primordial power spectrum suppres-
sion as the main culprit since the cross section is lower for model
ETHOS-1 than for model ETHOS-2. Low-mass haloes in ETHOS-
1 are therefore less dense than in CDM, mainly because they form
later (analogous to the WDM case). Interestingly, ETHOS-3 shows
a different behaviour. Here the core density is most reduced for
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Inner halo structure

1408 M. Vogelsberger et al.

Figure 5. Stacked density profiles for different halo mass ranges (M200, crit) as indicated in each panel for our different DM models. We show the profiles
starting at 2 kpc out to the virial radius. One can clearly see that the different non-CDM models affect the profiles in rather different ways depending on the
mass scale.
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Closer look: can indeed address CDM abundance and structural 
‘problems’ simultaneously, in a consistent particle framework:  

1408 M. Vogelsberger et al.

Figure 5. Stacked density profiles for different halo mass ranges (M200, crit) as indicated in each panel for our different DM models. We show the profiles
starting at 2 kpc out to the virial radius. One can clearly see that the different non-CDM models affect the profiles in rather different ways depending on the
mass scale.
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Dark matter physics and the small-scale CDM problems 1413

Table 4. Overview of reduced DM models. These models are similar
to ETHOS-1 to ETHOS-3, but they only include self-interactions with-
out the damping of the power spectrum (‘sidm’), or they do not include
self-interactions, but have the damping of the primordial power spectrum
(‘power’). The reduced models help us to disentangle these two effects
present in our full models.

Name Reduced model

ETHOS-1-sidm ETHOS-1, only self-int. w/CDM transfer fct.
ETHOS-1-power ETHOS-1, no self-int.

ETHOS-2-sidm ETHOS-2, only self-int. w/CDM transfer fct.
ETHOS-2-power ETHOS-2, no self-int.

ETHOS-3-sidm ETHOS-3, only self-int. w/CDM transfer fct.
ETHOS-3-power ETHOS-3, no self-int.

of ETHOS-4 compared to ETHOS-3. We note that despite hav-
ing considerably lower cross-sections than the other models we
explored, self-interactions are still relevant in ETHOS-4. We have
verified that the central densities in subhaloes are lower (albeit the
effect is relatively small) in ETHOS-4 than in a setting with the
same features but with the self-interactions turned off.

We note that ETHOS-4 alleviates the tension between theory and
observations for the TBTF and MS problems, but our MW-size sim-
ulations cannot be used to study directly if such a model could also
produce the large cores seemingly inferred in low surface brightness
galaxies (e.g. Kuzio de Naray, McGaugh & de Blok 2008), which
might require large cross-sections in an interpretation based on DM
collisions (see fig. 1 of Kaplinghat et al. 2016). However, besides
pure DM self-interactions, ETHOS-4 also includes a relevant effect
due to the damping of the power spectrum. Both effects could com-
bine to reduce densities sufficiently to be consistent with observation
of LSB galaxies. Furthermore, the character of this interplay could

Figure 12. DM density projections of the zoom MW-like halo simulations
for the tuned model ETHOS-4. The projection has a side length and depth of
500 kpc. The initial power spectrum is essentially the same as in ETHOS-3.
The amount of substructure and the general DM density distribution looks
very similar to ETHOS-3. Remaining differences are driven by the very
different self-scattering cross-section between ETHOS-3 and ETHOS-4.

be adjusted relative to ETHOS-4 parameters by increasing the nor-
malization of the cross-section and increasing slightly the scale for
the power spectrum cut off. This would enhance the SIDM-driven
core creation, while retaining significant deviations from CDM in

Figure 11. Subhalo population for the tuned model ETHOS-4. This model was specifically set up to address the MS and TBTF problems. Left-hand panel:
the number of satellite galaxies as a function of their maximal circular velocity for the four different models with a comparison to observed satellites of the
MW including a sky coverage correction (Polisensky & Ricotti 2011). We show all subhaloes with a halocentric distance less than 300 kpc. Right-hand panel:
circular velocity profiles of the same haloes. The data points show MW dSphs taken from Wolf et al. (2010). The ETHOS-4 model provides a reasonable fit to
the subhalo population of the MW.
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Vogelsberger+, MNRAS’16

central (sub)halo densities reduced 
(→ core/cusp)

most massive subhalos less dense
(→ too-big-to-fail)

Details more complicated than the usual ‘need ~1cm2/g’ !

NB: Non-trivial interplay between modified power 
spectrum and self-interactions

Also, this is still without baryonic physics…
[though dSphs highly DM dominated]
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Adding Baryons
Simplest picture: two competing effects

Baugh, RPP ’06

Adiabatic contraction due to 
disk assembly

A) B)

gas and DM heating due to 
supernova feedback

Pontzen & Governato, Nature ’14

increase 
of inner DM density

decrease 
of inner DM density

SIDM + A) may lead to core collapse Elbert+,  ApJ ’18
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Re-ionization history

Follow-up: halo collapse comparison on individual basis
Virial masses of ETHOS halos are suppressed, but not stellar mass
Promising way to test/constrain ETHOS: large populations of very old stars 

Lovell, Vogelsberger & Zavala, MNRAS ‘19
(z > 17)
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Lack of small halos should delay onset of structure formation 
CDM ETHOS-4

Predictions for the high-redshift Universe in ETHOS 5

<−1.0 −0.5 0.0 0.5 1.0<
log(TETHOS/TCDM)

 

 

     
 

 

Figure 2. Maps of IGM gas temperature in CDM (left panels) and ETHOS (middle panels). The image intensity shows squared gas density (with arbitrary
normalisation), and the colour shows the temperature: 6 104 K gas is shown in purple, 105 K in green and > 106 K in red. The top panels show the entire
box at z = 11, the middle two panels a zoom-in of the region highlighted with a white box in the top middle panel at the same redshift, and the bottom panels
show the same zoomed region at z = 6. Each image slice is 400 kpc thick; all lengths scales quoted are comoving. In the right-hand panels we show the
difference map between the temperature of the CDM and ETHOS maps. Lighter regions are hotter in ETHOS and darker regions are hotter in CDM (colour
bar in the bottom right panel).

galaxy. If the proportion of haloes that host galaxies – the so-called
luminous fraction – is different between CDM and ETHOS, then
this effect will be relevant for the production rate of ionizing pho-
tons in galaxies.

We therefore plot, in the top panel of Fig. 4, the ratio of
ETHOS and CDM luminous fractions as a function of halo mass,
where the luminous fraction is defined as the fraction of haloes that
contain a stellar mass larger than 3⇥ 106 M�. We choose this stel-

lar mass threshold to avoid spurious effects due to limited resolu-
tion, and also restrict our plot to haloes of mass M200 > 109 M�
as the galaxies hosted in M200 < 109 M� haloes rarely meet the
stellar mass threshold, and are therefore subject to shot noise; note
that we therefore resolve the haloes of all galaxies with this stel-
lar mass. The plot demonstrates that below the halo mass where
the halo mass function in ETHOS starts to deviate from CDM, the
luminous fraction is actually higher in ETHOS than in CDM. The

MNRAS 000, 1–14 (2017)

Hydrodynamical simulations: Indeed — but effect on 
reionisation history is surprisingly small 
Suppression of high-z, low-mass galaxies: maybe visible with JWST
Brighter starbursts in these galaxies compensate effect on optical depth

Lovell+, MNRAS ‘18

IGM gas 
temperature

[similar to WDM!]
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Imprint on Lyman alpha spectra ?
Bose+, MNRAS ‘19

4 S. Bose et al.
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Figure 1. Dimensionless power spectra
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⇤

for the CDM
(black) and �DAO (red) models used in this work. For comparison, we
also show the power spectra for the less extreme E����-4 model (blue; see
Vogelsberger et al. 2016) which exhibits a deviation from CDM at a scale
comparable to that of a 3.3 keV thermal relic WDM particle (in yellow).
On the other hand, the cuto� scale for the �DAO model is closer to that
of a 1.6 keV thermal relic (green). Furthermore, the amplitude of the dark
acoustic oscillations (DAOs) in the �DAO model is considerably larger than
in E����-4.

3 NUMERICAL SETUP

3.1 Simulations and initial conditions

The simulations we present in this work make use of the cosmo-
logical simulation code, A���� (Springel 2010). A���� employs a
hybrid tree/particle-mesh scheme to solve for gravitational interac-
tions of DM particles, and a moving, unstructured Voronoi mesh to
solve equations of hydrodynamics. The moving mesh is adaptive in
nature, resolving fluids in regions of high density with many more
cells of a smaller size than in low density environments. A���� has
been augmented with a comprehensive model for galaxy formation
(Weinberger et al. 2017; Pillepich et al. 2018a) which we use here.
In addition, Vogelsberger et al. (2016) presents an updated version
of A���� which, in addition to the galaxy formation models men-
tioned above, also incorporates elastic, isotropic self-interactions of
DM particles, while allowing for arbitrary velocity-dependent inter-
action cross-sections (using an algorithm adapted from the original
described in detail in Vogelsberger et al. 2012). While the self-
scatterings of DM particles have a pronounced impact on the inter-
nal structure of haloes at late-times, their influence on the IGM at
high redshifts will be sub-dominant to that induced by the cuto� in
the power spectrum; we have therefore turned o� self-interactions
in the simulations.

Our high resolution simulations follow the evolution of 2⇥5123

DM and gas particles from z = 127 to z = 0 in a periodic box of
(comoving) size 29.6 cMpc (20 h

�1cMpc), resulting in an e�ective
DM particle mass of 6.41 ⇥ 106 M� . An individual gas cell has a
target mass of 1.01⇥106 M� . This target gas mass also corresponds
to the typical mass of a stellar macro-particle representing a stellar
population. We enforce that the mass of all cells is within a factor
of two of the target mass by explicitly refining and de-refining the
mesh cells. The comoving softening length for DM particles is set
to 1.19 kpc, while the (adaptive) softening applied to a gas cell is set
to a comoving minimum value of 185 pc. To check for convergence,

we also run a second set of simulations a factor of two lower in
resolution.

We use the fiducial IllustrisTNG galaxy formation model
(Weinberger et al. 2017; Pillepich et al. 2018a) with one change.
Namely, we have turned o� the magnetohydrodynamics solver as
it is not relevant for the analysis presented here. As in the fiducial
TNG model, each of our simulations is set up with a time-dependent,
spatially uniform ionising background as described in the model by
Faucher-Giguère et al. (2009). The TNG model is built upon the
original Illustris galaxy formation model described in Vogelsberger
et al. (2013).

Initial conditions for all simulations were generated using the
����� code (Hahn & Abel 2011), assuming cosmological parame-
ters derived from Planck Collaboration et al. (2016): ⌦0 = 0.311
(total matter density), ⌦b = 0.049 (baryon density), ⌦⇤ = 0.689
(dark energy density), H0 = 67.5 kms�1Mpc�1 (Hubble parame-
ter) and �8 = 0.815 (linear rms density fluctuation in a sphere of
radius 8 h

�1 Mpc at z = 0). The dimensionless linear power spectra
used to generate initial conditions are shown in Fig. 1. While the
CDM power spectrum exhibits power on all scales, the two E����
models cuto� at log[k/hcMpc�1

] ⇡ 1. In this paper we will be con-
cerned with the �DAO model, in which the model parameters have
been adjusted to amplify the e�ect of DAOs, as explained in the
previous section. Our goal is to investigate the extent to which the
characteristics of DAOs in the E���� models can be probed using
the Lyman-↵ forest. To put our results in context, we have also run
simulations of the E����-4 and 1.6 keV WDM models at our default
resolution. The choice of a 1.6 keV thermal relic is motivated by the
fact that the free-streaming scale in this model is identical to the cut-
o� in �DAO; this helps disentangle small-scale di�erences induced
by the acoustic oscillations from those that are caused by a primor-
dial cuto�. The simulations are analysed to perform mock Lyman-↵
observations using the procedure that we describe in the follow-
ing subsection. Finally, we note that simulations that resolve the
primordial power spectrum cuto� are plagued with artificial frag-
mentation of filaments that condense into ‘spurious’ haloes (e.g.
Wang & White 2007; Lovell et al. 2014). These objects are seeded
by discreteness of the particle set rather than a true gravitational
instability, and must hence be excluded from the analysis. This is
a well-known problem in WDM simulations, but is less severe in
the E���� models which have added small-scale power in the form
of DAOs (Buckley et al. 2014, see also Fig. A1). This is especially
true at high redshift, which is the regime of interest in this paper.
As such, we do not perform any extra steps to classify these objects
in the simulations we have run.

3.2 Creating Lyman-↵ mock absorption spectra

From the outputs of each simulation, we generate synthetic absorp-
tion spectra using the methodology outlined in Altay & Theuns
(2013). In short, at each output time, we select 1024 randomly-
selected skewers3 oriented parallel to a coordinate axis of the box.
Gas cell properties are interpolated onto locations along each skewer
using a smoothing kernel; we follow Altay & Theuns (2013) and
employ a truncated Gaussian kernel, Gt (r,�), which is defined as:

Gt (r,�) = N

(
exp (�A

2
r

2
) , for r 6 hsml

0 , otherwise
(2)

3 We have checked explicitly that our results are converged for this choice
for the number of sightlines (see Fig. A2).

MNRAS 000, 1–15 (2018)

Need strong features in linear 
to survive in non-linear regime

use atomic DM benchmark (sDAO)

�2(k)
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In principle, this allows to disentangle WDM from sDAO!

12 S. Bose et al.
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Figure 10. Left panel: As Fig. 8, but now comparing the �DAO model with the 1.6 keV WDM and E����-4 models at z = 5.4. The qualitative behaviour of
each model is similar on scales larger than k = 0.1 s/km, in that power is suppressed relative to CDM. On smaller scales, the �DAO model exhibits a prominent
bump induced by the first DAO peak. This feature is not observed in E����-4, which also exhibits DAOs in the linear power spectrum, but of smaller amplitude
than in the �DAO case. Each model has been run at the same resolution and each curve therefore exhibits the same numerical ‘bump’ at k = 0.4 s/km. Right
panel: The evolution of the flux spectrum ratio from z = 5.4 to z = 4.2 for the �DAO (solid lines) and 1.6 keV WDM models (dotted lines). The z = 5.4 flux
spectrum ratio in the low-resolution (LR) �DAO simulation is shown in grey. As time progresses, the overall increase of power causes adjacent modes to couple
non-linearly, thus erasing any sharp (DAO) features in the power spectrum, until z = 4.2 where the behaviour of the �DAO and 1.6 keV WDM models is very
similar.

curves, respectively). At the lower resolution, the numerical bump is
shifted to larger scales by a factor of two (as expected, since the low-
resolution simulation retains the same number of particles in a box
that is twice as big as the high-resolution simulation). Moreover, the
DAO bump, which just starts to develop, blends with the numerical
bump and is therefore unresolved in the low-resolution simulation.
With increased resolution (i.e., in our default simulations), the DAO
is resolved before the noise becomes dominant. Thus, this figure
reassures us that our physical interpretation of the first peak in the
z = 5.4 flux spectrum for the �DAO model is not a�ected strongly
by numerical systematics. As in the case of the cuto� in the small-
scale flux spectrum, it may be that quantitative details in Fig. 10
are a�ected by assumptions made for the thermal history of the
IGM. While varying these assumptions may certainly smear the
prominence of the DAO feature, it is not clear that such bumps
could be replicated by baryonic mechanisms. In particular, the scale
at which these features are manifest, if induced by the nature of
the DM, will be set by processes intrinsic to the DM model. We
leave the detailed investigation of degeneracies between DAOs and
thermal histories to future work.

5 CONCLUSIONS

We have performed detailed hydrodynamical simulations of non-
standard dark matter (DM) species in which the DM is coupled to a
relativistic component in the early universe. These interactions alter
the primordial linear power spectrum predicted by the concordance
cosmological model in a distinctive way: by generating a cuto� at
the scale of dwarf galaxies through collisional damping, followed
subsequently by a series of ‘dark acoustic oscillations’ (DAOs) to-
wards smaller scales (see Fig. 1). Early structure formation in these
models is therefore modified considerably from standard cold dark
matter (CDM), principally in the form of a delay in the formation
of the first stars, and a suppression in the abundance of low-mass

galaxies (e.g. Lovell et al. 2018). The structure of DM haloes may be
modified as well through strong DM self-interactions at late-times
that reshape the phase-space density profiles of galactic haloes (e.g.
Vogelsberger et al. 2016). The extent to which these processes im-
pact galaxy formation are, of course, sensitive to parameters specific
to the DM theory, such as the duration of DM-radiation coupling,
or the self-interaction cross-section.

While it is impossible to explore this parameter space fully,
various permutations of these model parameters will predict largely
similar galactic populations. The E���� framework (Cyr-Racine
et al. 2016) provides a formalism for mapping these DM proper-
ties to ‘e�ective’ parameters that shape structure formation, thereby
providing a flexible way to explore the implications of a vast range
of theories on galaxy formation. In this paper, we focus our attention
on an atomic DM model (which we refer to as �DAO) in which DM
is composed of two massive fermions that are oppositely charged
under a new unbroken U(1) dark gauge force (see Section 2). The
linear matter power spectrum of this model has a cuto� relative to
CDM at k ⇠ 10 hcMpc�1, identical to a warm dark matter (WDM)
thermal relic with mass 1.6 keV, but di�ers from WDM on smaller
scales where it is composed of a significant number of undamped
DAOs. While models as extreme as these may already be strongly
constrained, our goal in this paper was to investigate if DAOs may
be, in principle, detectable in the Lyman-alpha forest, rather than
to present a model that matches the available data. A priori, it
is not obvious that DAOs would persist in the Lyman-alpha flux
spectrum. In particular, we sought to identify observational proxies
that are able to distinguish between the di�erent small-scale be-
haviour of these DAO models from WDM. For this purpose, we
have investigated the statistics of the Lyman-↵ forest extracted from
hydrodynamical simulations performed with these models using the
A���� code (Springel 2010) coupled with a sophisticated galaxy
formation model used as part of the IllustrisTNG project (Marinacci
et al. 2018; Naiman et al. 2018; Nelson et al. 2018; Pillepich et al.
2018b; Springel et al. 2018).

MNRAS 000, 1–15 (2018)
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Figure 8. Ratio of the mean flux power spectra
⇥
�2

sDAO(k)/�
2
CDM(k)

⇤
. For

clarity, we do not show the observational data in this figure. The signature
of DAOs (at k = 0.4 s/km) can be noticed in the high redshift spectra,
particularly at z = 6 and z = 5.4. Any evidence of DAOs is completely
washed out by z = 2. Note that the ‘bump’ at k ⇠ 0.4 s/km is numerical,
and is set by the finite resolution of our simulation setup. This secondary
feature is not sourced by DAOs.

Figure 9. Comparison of the cumulative halo mass functions at z = 5.4
for the CDM, �DAO and 1.6 keV thermal relic models. While both the
�DAO and WDM models begin to deviate from CDM at a similar mass
scale, there is more small-scale power in �DAO. The noticeable upturn at
M200 ⇠ 3 ⇥ 108 M� in the WDM mass function is the tell-tale signature of
artificial fragmentation (Wang & White 2007); this is largely absent in the
�DAO model.

density field (e.g. Jennings et al. 2012; Bose et al. 2015). We leave
a full understanding of the comparison between 1D and 3D power
spectra for future work.

It is illuminating to consider the di�erence in structure in the
�DAO and WDM models at these early times in greater detail. Fig. 9
compares the (cumulative) halo mass function in CDM, �DAO and
1.6 keV cosmologies at z = 5.4. In this calculation, halo mass is
defined by M200, which is the mass contained within r200, the radius
interior to which the mean density is equal to 200 times the critical
density of the universe at that redshift. As expected, all three models

agree on the abundance of the most massive haloes in the volume at
these times (M200 > 1010 M�). Both the �DAO and WDM models
then peel-away from the CDM curve at an identical mass scale; this
is a direct consequence of the fact that the linear power spectra of
these two models also deviate from CDM at identical scales. There
is, however, a clear excess (of around a factor of 3) of haloes with
M200 < 3 ⇥ 109 M� in �DAO compared to the 1.6 keV simulation.
This excess of power is sourced by the DAO, whereas the initial
density fluctuations are suppressed indefinitely in the case of WDM.
It is also interesting to note that while the e�ects of artificial halo
formation is clear in the WDM case (as evidenced by the unnatural
‘upturn’ in the mass function at M200 ⇠ 3⇥108 M�; Wang & White
2007), the manifestation of these spurious haloes seems largely
reduced in the �DAO model, in which any spurious halo formation is
outnumbered by haloes that have collapsed out of true gravitational
instability.

The left panel of Fig. 10 compares the relative di�erence of
the flux spectra to CDM in the two models at z = 5.4. Power on
scales larger than k ⇠ 0.05 s/km is suppressed by an almost identical
amount, but the behaviour of the two models is di�erent on smaller
scales. In particular, while power continues to be suppressed in the
case of the 1.6 keV thermal relic, the cuto� in the power is halted
by the development of the DAO bump around k ⇠ 0.13 s km�1,
which is only present in the sDAO model and not in the WDM
model. In practice, this may prove to be di�cult to observe since the
largest signal is expected to be present at the highest redshift, where
the UV background starts to be inhomogeneous due to incomplete
reionisation.

We also show predictions for the E����-4 model in which the
cuto� is on a smaller scale than in the �DAO case, and where the
first DAO peak is of lower amplitude than in �DAO and is pushed
to smaller scales (see Fig. 1). The DAO feature in E����-4 is thus
unresolved by our simulation (the numerical setup was selected to
just resolve the first �DAO peak). Regardless, this comparison high-
lights the potential of 1D flux spectrum measurements to distinguish
not only non-CDM models from CDM, but also di�erent non-CDM
models from each other. The major constraining power comes from
scales smaller than k ⇠ 0.08 s/km, where there is only limited data
available at the moment (but see Boera et al. 2018, for newer data
reaching to somewhat smaller scales).

One may be concerned that the DAO features we have identified
in the z = 5.4 flux power spectrum may be a�ected by the small-
scale noise manifest as the artificial peak at k ⇠ 0.4 s/km. To
diagnose this, in the right panel of Fig. 10 we show the evolution of
the flux power spectrum ratio from z = 5.4 to z = 4.2 for the �DAO
and 1.6 keV WDM models. At z = 5.4, the DAO is very prominently
present in the �DAO case while it is of course absent for the 1.6 keV
model; on the other hand, the behaviour of the two models is almost
identical by z = 4.2. This is consistent with the picture in Fig. 8:
the second DAO, which was visible at z = 6, is smoothed away by
z = 5.4 due to non-linear mode coupling; similarly, the first DAO
bump, which is visible at z = 5.4, is smeared away by z = 4.2.
This is because the overall power across all scales increases towards
lower redshift, giving the illusion of the DAO peaks being smeared
with the numerical “noise peak” as time progresses. The e�ects of
noise in the flux power spectrum are manifest more strongly in the
1.6 keV WDM case as there is a lack of “real” power on small-scales,
in contrast to the �DAO model where the acoustic oscillation adds
physical power on a level larger than the noise at k > 0.1 s/km.

How the noise level shifts as a function of resolution (see also
Viel et al. 2013) may be evaluated by comparing the z = 5.4 flux
spectra for the sDAO model at low and high resolution (grey and red
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Figure 9. Division of structure formation models in the parameter space h and kpeak of eq. 3 based on the power spectra at z = 5 for
kprobe = 500 hMpc�1. The contour lines correspond to the ratio of the power spectrum with respect to CDM at kprobe. The color scale
shows the re-scaled I (kprobe), where a value of 1 corresponds to areas that are degenerate with WDM. The black dashed line shows the
area where DAO features survive until z = 5. To the right of the blue dashed line, the models can be considered as CDM up to kprobe.
The green dashed line encloses the area of models that are degenerate with WDM of mass <3.5keV , which is ruled out by Lyman-↵ data
(Iršič et al. 2017).

6 CONCLUSIONS
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APPENDIX A: DERIVING LINEAR POWER
SPECTRUM

The goal is to connect the parameters that we are currently
using to characterise the structure formation space: h, kpeak

and h2, to the parameters used in the ETHOS I paper to de-
scribe the linear power spectrum, essentially an, n and ↵l .
The former can be used more directly to quantify the dif-
ferences between di↵erent structure formation models, while
the latter can be connected to the particle physics param-
eters of a given model. The connection between these two
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expensive simulations!
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Conclusions
Cosmological observations are a fascinating, and 
unique, tool to test ‘invisible’ dark sector interactions

8 M. Vogelsberger et al.

Figure 7. DM density projections of the selected MW-like halo for the four different models. The suppression of substructure can clearly be seen for M1 to
M3 compared to the CDM model, which does include power down to small scales without a resolved cutoff, which is present in the ETSF models M1 to M3.
The projection has a side length and depth of 500 kpc.

true although the self-interaction cross-section is smallest for this
model. This trend continues up to MW masses. Those halo masses
are not so strongly affected by the damping so the self-interactions
take offer such that the reduction of the central density is following
the strength of the cross section.

4.2 Galactic halo

NOTE: All results are based on level-2. Level-1 is still running

(those are expensive and running around 1-2 months).

We will now consider the galactic scales by studying the
zoom-in simulation of the selected MW-sized halo. We start by
looking at the density distribution on these scales. Fig. 7 shows

density projections of the halo for CDM simulations and compares
to models M1-M3. At these scales, the suppression of small scale
structure is clearly visible, which is largely driven by the resolved
cutoff scale in the linear power spectra of M1-M3 compared to
CDM. This cutoff reduces the number of resolved subhaloes very
strongly for model M1, which has the largest damping scale. We
stress that self-interactions of the order discussed here largely af-
fect only the internal structure of haloes, but do not significantly
alter the number of subhaloes within MW-like haloes. This would
only happen for cross sections of the order of 10 cm2 g�1 on full
galactic scales, which is prevented in the the models discussed here
prevents due to the strong velocity-dependence. Fig. 7 also demon-
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Goal of ETHOS: provide a consistent framework for this

3
[for generic models with DM-DM 
& DM-DR interactions]

3[  ]
first (promising) steps: stay tuned !

Thanks for your attention!


