Paleo-detectors for Galactic SN Neutrinos

Patrick Stengel

Stockholm University

December 3, 2019

1906.05800 with S. Baum, T. Edwards, B. Kavanagh,A. Drukier, K. Freese, M. Górski and C. Weniger200?.maybe with S. Baum, J. Jordan, P. Sala and J. Spitz

Neutrinos from CC SNe

Galactic CC SN ν 's can induce recoils in paleo-detectors

Figure: Supernova simulation after CC

Only \sim 2 SN 1987A events/century

- Measure galactic CC SN rate
- Traces star formation history

Tracks in ancient minerals Solid state track detectors

Modern TEM allows for accurate characterization of tracks

Paleo-detectors look for damage from recoiling nuclei

Cosmogenic backgrounds suppressed in deep boreholes

Depth	Neutron Flux	
2 km	$10^6/cm^2/Gyr$	
5 km	$10^2/cm^2/Gyr$	
6 km	$10/cm^2/Gyr$	
50 m	70/cm²/yr	
100 m	30/cm²/yr	
500 m	$2/cm^2/yr$	

Need minerals with low ²³⁸U

- Marine evaporites with $C^{238}\gtrsim 0.01\,{\rm ppb}$
- Ultra-basic rocks from mantle, $C^{238}\gtrsim 0.1\,{\rm ppb}$

Figure: $\sim 2 \text{Gyr}$ old Halite cores from $\sim 3 \text{km},$ as discussed in Blättler+ '18

Tracks in ancient minerals Problematic backgrounds

Fast neutrons from SF and (α, n) interactions

SF yields \sim 2 neutrons with \sim MeV	$(lpha, {\it n})$ rate low, many decay $lpha$'s
Each neutron will scatter elastically 10-1000 times before moderating	Heavy targets better for (α, n) and bad for neutron moderation, need H

Tracks in ancient minerals Prol

Problematic backgrounds

Solar and atmospheric ν background recoils bracket signal

Track length spectra for detecting galactic CC SN ν 's

Backgrounds in hydrated MEs	Background systematics	
 Relatively flat n-bkg extends out to longer track lengths 	• Assume relative uncertainty 1% for normalization of n-bkg	
 Shorter track lengths dominated by solar ν's 	 Solar and atmospheric ν fluxes assume 100% uncertainty 	

Sensitivity to galactic CC SN rate depends on C^{238}

Epsomite $[Mg(SO_4) \cdot 7(H_2O)]$ Halite [NaCl]Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2 \cdot (H_2O)]$ Olivine $[Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)]$

Large ϵ probes rare events

- NOT background free
- Spectral information \Rightarrow reduction of systematics

Probe time averaged or localized star formation history

Searches for WIMPs and other ν 's

- Sensitivity to DM potentially competitive with next generation DD experiments
- Could measure evolution of solar/atmospheric ν flux and probe history of sun/cosmic rays

Feasability of paleo-detectors

- Need model of geological history
- Preliminary mass spec indicates MEs with $C^{238} \lesssim 0.1 \, {\rm ppb}$
- Determine efficiency of effective 3D recoil track reconstruction

Fission fragments can be seen by TEM/optical microscopes

Figure: Price+Walker '63

Semi-analytic range calculations and SRIM agree with data

Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different x_T

- HIBM+pulsed laser could read out 10 mg with nm resolution
- SAXs at a synchrotron could resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ '12, SAXs nanoporous glass Holler+ '14

Radiogenic backgrounds from ²³⁸U contamination

$\xrightarrow{238} U \xrightarrow{\alpha} \xrightarrow{226} $	34 Th $\xrightarrow{\beta^{-}} ^{234m}$ Pa Ra $\xrightarrow{\alpha} ^{222}$ Rn $\xrightarrow{\alpha}$	^{238U} ^{238U} ^{238U} ^{238U} ^{234Th}	
Nucleus	Decay mode	T _{1/2}	
23811	α	$4.468 imes10^9\mathrm{yr}$	
024	SF	$8.2 imes10^{15}\mathrm{yr}$	"1 α " events difficult to reject
²³⁴ Th	β^{-}	24.10 d	without additional decays
$^{234\mathrm{m}}Pa$	β^{-} (99.84%)	1.159 min	a Deiget 10 um a tracks
224 -	II (0.16%)		• Reject $\sim 10\mu{\rm m}~lpha$ tracks
²³⁴ Pa	β^{-}	6.70 d	• Without $lpha$ tracks, filter
2340	α	$2.455 \times 10^{5} \mathrm{yr}$	out monoenergetic ²³⁴ Th

Difficult to pick out time evolution of galactic CC SN rate

Coarse grained cumulative time bins	Determine σ rejecting constant rate
• 10 Epsomite paleo-detectors	Could only make discrimination at
• 100 g each, $\Delta t_{ m age} \simeq 100$ Myr	3σ for $\mathcal{O}(1)$ increase in star formation rate with $\mathcal{C}^{238} \leq 5$ ppt
	iornation rate with $C \sim 5 \text{ppt}$