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The Einstein-Hilbert Action

The Einstein-Hilbert Action gives us the Einstein Field Equations

S =

∫
d4x

√
−g

[
R
2κ + LM

]
ELE⇒ Rµν −

1
2Rgµν = κTµν

Expanded⇒ □hµν = 2κτµν

• κ = 8πG = 8π/M2
p

• R is the only independent scalar which we can construct (up to
second derivatives) of the metric

• The metric is split up as gµν = ηµν + hµν to find the wave
equation
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Why Modify General Relativity?

General Relativity is the simplest theory coupling spacetime
curvature to matter

Good reason to look at modified theories

• Interaction with quantum matter, should be a limit from any
quantum theory of gravity

We can consider modified theories by adding terms to the Hilbert
action, as long as they

• Are diffeomorphism invariant, scalar, etc
• Limit correctly to GR, and Newtonian gravity

What effect do these modifications have?

• Must look at strong gravity
• ⇒ Binary Systems are an ideal testing ground
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The Post-Newtonian Formalism

The Post-Newtonian (PN) formalism is an iterative expansion scheme
in v/c, for arbitrarily precise solutions to the Einstein field equations

• Requires slow moving, weakly stressed sources (valid for
inspiralling binary black holes up to v/c = 0.5)

• Naturally includes non-linearity and higher multipole
characteristics

• Convention is to just track 1/cn, and call those terms ”n2PN order”

0PN order is called the ”Newtonian” order, and GR only affects
dynamics at higher orders

hµν = h(0)µν +
1
ch

(1)
µν +

1
c2h

(2)
µν + . . .
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Project Aim

To investigate gravitational waves from binary systems in the early
inspiral phase, given by an effective field theory applicable only in
the low energy/curvature regime

Figure 1: The orange section illustrates the early inspiral phase [1]
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Modified Action

We can modify GR by adding in all independent terms up to 4th
derivatives of the metric [2]

S =

∫
d4x

√
−g

[
R
2κ + βR2 + γRµνRµν

]

• These are unavoidable from one-loop renormalisation of matter
with semi-classical gravity

We can interpret the extra degrees of freedom from the quadratic
terms as a massive spin-0, and a massive spin-2 field
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Modelling The Binary Inspiral

We model a binary system of two point particles with masses ma,
and 4-velocities vµa

S =

∫
d4x

√
−g̃

[
R̃
2κ − 1

2
(
∂µπ

αβ∂µπαβ +m2
ππ

αβπαβ
)

− 1
2
(
∂µϕ∂

µϕ+m2
ϕϕ

2)]+
2∑
a=1

ma

∫
dt
√
−g̃µνvµa vνa

where ϕ is a massive spin-0 field, παβ is a massive spin-2 field, and
the metric is conformally constructed as

g̃µν = gµν +
√
2κηµνϕ+

√
4κπµν
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Linearised Equations Of Motion

We can find the linearised field equations for ϕ, and πµν , also cutting
off the source terms at lowest PN order. This gives Yukawa-like
solutions

ϕ(x) =
√

G
4π

2∑
a=1

ma
e−mϕ |⃗x−⃗ya(tr)|∣∣⃗x− y⃗a(tr)

∣∣
πµν(x) = −

√
G
2π

2∑
a=1

ma

(
vµavνa +

1
4ηµν

)
e−mπ |⃗x−⃗ya(tr)|∣∣⃗x− y⃗a(tr)

∣∣
The solutions look just like the regular GR potential, expect they
have a exponential mass suppression. Also, note the signs, where
the spin-0 field is attractive, while the spin-2 field is repulsive
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The Conservation Equation

In order to calculate the waveform we can invoke the conservation
equation

∇̃µT̃µν = 0

This provides us with the modified geodesic equation, this
modification is due to the extra forces from the massive spin-0 and
spin-2 fields. Then the relative acceleration to Newtonian order is

a⃗ = −GMr2 n̂
(
1+ 2e−mϕr (mϕr+ 1)− 3e−mπr (mπr+ 1)

)
where r =

∣∣⃗y1 − y⃗2
∣∣, and n̂ = (⃗y1 − y⃗2)/r
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Energy Balance Equation

Using the acceleration, we can find an effective Lagrangian for the
binary, and therefore the energy

E = −Gm1m2
r

(
1
2 + 2e−mϕr − 3e−mπr

)

We assume the balance equation that takes into account the energy
loss due to the waves with the flux seen by an observer far away

dE
dt = −F

Note that the far-field flux will be highly suppressed for the massive
fields, and so we can use the usual GR flux
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The Inspiral Waveform

Using the energy balance equation the leading corrections to the GR
waveform phase of the binary inspiral is given as

φ = −x
−5/2

32ν

[
1+ e−mϕ

GM
x

(
5
2 − 5

3mϕ
GM
x

)
− e−mπ

GM
x

(
15
4 − 5

2mπ
GM
x

)]
where x ≡ (GMΩ)

2
3 is a frequency-related parameter, and ν = m1m2

M2 is
the symmetric mass ratio

Inside the bracket, the terms with x0 are associated with the
Newtonian (quadrupole) order, and the x−1 are associated with the
dipole order
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The Stationary Phase Approximation

We can assume a GW signal with amplitude A(t), and phase Φ(t)
takes the form [5]

h(t) = 2A(t) cosΦ(t)

In the Stationary Phase Approximation (SPA), the frequency domain
signal is given by the following

h̃(f) =
√
2πA(tf)√
Φ̈(tf)

eiψ(f)

ψ(f) = 2πftf − π/4− Φ(tf)

where the parameter tf is given by the time when dΦ(t)/dt = 2πf.
Generically 2φ = Φ
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The Fourier Coefficients

Following the SPA prescription we obtain the relation for ψ(f)

ψ(f) = 2πftc − ϕc − π/4+ 3
128ν

0∑
i=−4

φi(GMπf)(i−5)/3

where tc, and ϕc are the time, and phase at coalescence respectively.
The relevant non zero coefficients φi for our analysis are given as

−1PN φ−2 =
451928
27 mϕGMe−mϕδ − 225964

9 mπGMe−mπδ

where δ = 4GM (8πGMf)−2/3
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Parameters of Quadratic Gravity

The absolute deviation of the -1PN phase has been constrained from
gravitational wave data to be |δφ−1PN| < 10−2∣∣∣∣45192827 mϕGMe−mϕδ − 225964

9 mπGMe−mπδ

∣∣∣∣ ≲ 10−2

Taking the typical values f = 75Hz, and M = 30M⊙, the masses should
satisfy the inequalities separately

mϕ,π ≳ 7.1 · 10−12eV

Rewritten as limits on the original dimensionless parameters of
quadratic gravity

0 ≤ γ ≲ 1.5 · 1078

−γ4 ≤ β ≲ −1.1 · 1077
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Summary

We were able to recast the quadratic gravity degrees of freedom as a
massive spin-0 and spin-2 field alongside the usual massless spin-2
graviton, and derived linear, lowest order field equations

To Newtonian order, they respectively act as attractive, and repulsive
Yukawa potentials modifying gravity

Found the -1PN correction to the GW phase of an inspiralling binary
system in quadratic gravity

Placed constraints on quadratic gravity from real GW observations
from the LIGO, and Virgo Collaborations
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Definition Of Terms

The mass terms are

m2
ϕ =

1
3κ(4β + γ)

m2
π =

1
2κγ

The Θ term is defined as

Θ ≡ ν

5GM (tc − t)

The symmetric mass ratio terms are

M = m1 +m2

µ =
m1m2
M

ν =
µ

M
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Quadratic Gravity As An Effective Field Theory

We cutoff our Lagrangian at quadratic order to avoid non
renormalisability at the 2-loop level

Stelle [2] noted the negative norm states of the massive spin-2 field

• We must interpret this as an effective field theory

Quick calculation to show realm of validity

M2
pR > αRquad ⇒ M2

pp2 > αp4(In momentum space)
⇒ M2

p/r2 > α/r4

mϕ,π ≈ M2
p/α⇒ mϕ,πr > 1

We can then see that far-field plane waves e−i(ωt−k⃗⃗x) are suppressed

v2 ≈ GM/r < 1 < mϕ,πr⇒ mϕ,π > Ω2 ≈ ω2

⇒ k2 = ω2 −m2
ϕ,π < 0
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Recasting The Lagrangian

S =

∫
d4x

√
−g

[
R
2κ + βR2 + γRµνRµν

]
Setting Sµν = Rµν − 1

4gµνR, and α = β + γ
4

S =

∫
d4x

√
−g

[
R
2κ + αR2 + γSµνSµν

]
Using Lagrange multipliers, and the following conformal
transformation

g̃µν = Ω2gµν Ω2 = (1+
√
2κϕ)

S =

∫
d4x

√
−g

[
R̃
2κ + πµν S̃µν −

1
4γ π

µνπµν −
1
2
(
∂µϕ∂

µϕ+m2
ϕϕ

2)]

Separating πµν from h̃µν we obtain the final result
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Details On The Waveform Calculations

We start from the balance equation

dE
dt = −F

Using the chain rule our energy balance equation becomes

dE
dx

dx
dφ

dφ
dΘ

dΘ
dt = −F

We can calculate the third term by

dφ
dt = Ω ⇒ dφ

dΘ = − 5
ν
x3/2

The usual GR flux in terms of x

F =
32
5Gν

2x5
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Details On The Fourier Calculations

To get φ as a function of time t from x, we rewrite x as a function of
time

x(t) = f(Θ(t))
⇒ φ(t) = g(Θ(t))

To find tf we take derivatives

dΦ(t)
dt = 2πf

⇒ dφ(t)
dt = πf

⇒ tf = ...

Insert everything back into ψ(f) to obtain the Fourier coefficients
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