Suppressing astrophysical backgrounds for gamma ALP searches in extreme blazar spectra

by Emil Khalikov, Timur Dzhatdoev SINP MSU, Moscow

TeVPA 2019 Sydney

- 1. Once upon a time
- 2. The hero
- 3. The villain
- 4. The preparation
- 5. The fight
- 6. Happily ever after

- 1. Once upon a time intergalactic gamma-ray propagation models
- 2. The hero
- 3. The villain
- 4. The preparation
- 5. The fight
- 6. Happily ever after

Absorption-only model

12/5/2019 4

Beyond the absorption-only model

Korochkin, Rubtsov & Troitsky JCAP12(2019)002:

"we disfavour the absence of anomalous distance-dependent spectral features with the modest statistical significance of 1.9σ ."

cf. Horns & Meyer (2012); Rubtsov & Troitsky (2014) but see Biteau & Williams (2015); Dominguez & Ajello (2015) Note that e.g. the two-hump EBL SED structure is accounted for in all these studies!

Other anomalies: Chen et al. (2018) (2015); Furniss et al. (2015))

12/5/2019 5

- 1. Once upon a time intergalactic γ-ray propagation models
- 2. The hero $-\gamma$ -ALP oscillations
- 3. The villain
- 4. The preparation
- 5. The fight
- 6. Happily ever after

Reducing gamma-ray opacity with γ-ALP oscillations

Raffelt & Stodolsky, Phys. Rev. D, **37**, 1237 (1988); de Angelis et al., Phys. Rev. D, **76**, 121301 (2007); Kartavtsev et al., JCAP, 01, 024 (2017); Montanino et al., astro-ph/1703.07314 (2017).

ALP search in the CTA experiment

cherenkov telescope array

Exploring Frontiers in Physics

3.1 What is the nature of Dark Matter? How is it distributed?

Are there quantum gravitational effects on photon propagation?

3.3 Do Axion-like particles exist?

- 1. Once upon a time intergalactic γ-ray propagation models
- 2. The hero γ -ALP oscillations
- 3. The villain intergalactic hadronic cascade model (IHCM)
- 4. The preparation
- 5. The fight
- 6. Happily ever after

Intergalactic hadronic cascade model (IHCM)

Waxman & Coppi, ApJ, 464, L75 (1996); Uryson, JETP, 86, 213 (1998)

- 1. Part of observable spectrum from blazars is produced not inside the source, but as a result of EM cascade development in the intergalactic medium.
- 2. Primary particles are UHE CR and they continuously create secondary electrons and gamma through Bethe-Heitler pair production and photopion processes on EBL and CMB.

3. Primary protons cover more distance than primary gamma-rays and continue creating cascades even near the observer!

- 1. Once upon a time intergalactic γ-ray propagation models
- 2. The hero γ -ALP oscillations
- 3. The villain intergalactic hadronic cascade model (IHCM)
- 4. The preparation studying signatures of IHCM
- 5. The fight
- 6. Happily ever after

Intergalactic hadronic cascade model (IHCM)

Waxman & Coppi, ApJ, 464, L75 (1996); Uryson, JETP, 86, 213 (1998)

Structure of the EGMF

Inhomogeneous, with strong fields in clusters $B^{1-10} \mu G$, filaments $B^{1-100} nG$,

and comparatively weak fields B<1 nG in voids.

There might be 1 or more filaments every 50 Mpc of the way.

IHCM: Estimates

1 filament

2 filaments

n>>2 filaments

$$\delta \approx 1^{\circ} \frac{B}{1nG} \frac{40 EeV}{E_p/Z} \frac{\sqrt{L_B l_c}}{1 Mpc},$$
$$\sin(\theta_{obs}) = \sin(\delta) \frac{L_V}{L_S}.$$

$$\theta_{obs} \approx \frac{\delta L_{V_2}}{L_S - L_{V_1} - L_{V_2}}$$

$$\theta_{obs} \approx \frac{\delta L_{V_2}}{L_S - L_{V_1} - L_{V_2}}$$
 $\theta_{obs} \sim \delta_n \sqrt{\frac{L}{L_V}} \frac{L}{L_S} = \delta \left(\frac{L}{L_S}\right)^{3/2}$

Table 1. Estimates of the observable angle θ_{obs} [°] for models with different number of filaments.

$L_V/L_{V_2}/L$	50 Mpc	100 Mpc	200 Mpc	500 Mpc
one filament	0.064	0.13	0.25	0.64
two filaments	0.073	0.16	0.37	2.1
n>>2 filaments	0.016	0.045	0.13	0.51

EM cascade spectral features

- Black line denotes the interval 0.0 < z0 < 0.03, red 0.03 < z0 < 0.06, green 0.06 < z0 < 0.09, blue 0.09 < z0 < 0.12, magenta 0.12 < z0 < 0.15, cyan 0.15 < z0 < 0.18.
- The observable spectrum becomes harder with the falling redshift of the source, but at the same time the angular distribution becomes broader.

- 1. Once upon a time intergalactic γ-ray propagation models
- 2. The hero γ -ALP oscillations
- 3. The villain intergalactic hadronic cascade model (IHCM)
- 4. The preparation studying signatures of IHCM
- 5. The fight observable energy and angular spectra in IHCM
- 6. Happily ever after

Simulation of proton propagation

For our simulation we used the following codes and models:

- CRPropa3 code (Alves Batista, et al., JCAP, 2016, 038) to calculate deflections of protons in the Dolag (Dolag, et al., JCAP, 2005, 009) model of EGMF;
- ELMAG 2.03 code (Kachelrieß, et al., Comput. Phys. Commun.,183, 1036 (2012)) to calculate cascade spectra;
- our own hybrid code to propagate protons through photon fields accounting for adiabatic and interaction losses;
- Gilmore model of EBL (Gilmore, st al., MNRAS, 422, 3189 (2012)).

The source

IHCM Spectral energy distribution

Primary energy of protons = 30 EeV.

Black curve denotes integral SED,

blue – observable spectrum inside a PSF of 0.1 degree,

red – universal spectrum of the source in ECM.

IHCM containment angle (in degrees)

20

- 1. Once upon a time intergalactic γ-ray propagation models
- 2. The hero γ -ALP oscillations
- 3. The villain intergalactic hadronic cascade model (IHCM)
- 4. The preparation studying signatures of IHCM
- 5. The fight observable energy and angular spectra in IHCM
- 6. Happily ever after observational prospects

Observational prospects

Conclusions

- Emission from primary UHECR of extreme TeV blazars has recognizable features in the form of a high-energy cutoff in the observable SEDs and a broad angular distribution.
- Broad angular distribution of these blazars in the IHCM (with 68% containment angle value at about 1-2 degrees) make them identifiable not as point sources but rather as extended ones.
- The account of IHCM spectral signatures could facilitate future gamma→ALP oscillation searches in the optically thick region of blazar spectra with existing and future gamma-ray instruments such as Fermi-LAT, H.E.S.S., MAGIC, VERITAS, CTA, HAWC, and LHAASO.
- There is still background from electromagnetic cascade models that needs to be studied further (see Dzhatdoev, et al., A&A, 603, A59, 2017).

backup

Active/passive losses ratio vs redshift

Fig. 4. w(z)/w(0) dependence. Black line – $E_{p0} = 10$ EeV, red – 30 EeV, green – 50 EeV, blue – 100 EeV.

High-energy anomaly: Horns & Meyer, JCAP, 033 (2012)

12/5/2019 28

Modification factor

The ratio of best-fit model spectra for electromagnetic cascade model and the absorption-only model.

Prospects for CTA (1000 h): stat. uncertainty 10 % at 3 TeV, 40 % at 6 TeV

IHCM SEDs for other sources

IHCM SEDs for other primary spectra

Simulation of proton propagation

"Intermediate" HCM: proton beam is terminated at z_c Observable SEDs are for $z_c = 0, 0.02, 0.05, 0.10, 0.15, 0.18$

Electromagnetic cascade model (z= 0.188). SED shape at low energy is concealed by the cascade component ("EM cascade masquerade").

