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Accepted: 2 September 2019 Long-duration y-ray bursts (GREs) are the most luminous sources of electromagnetic

Published anline: 20 November 319 radiation known in the Universe, They arise from outflows of plasmawith velocities
near the speed of light that are ejected by newly formed neutron stars or black holes
(of stellar mass) at cosmological distances™. Prompt flashes of megaelectronvole-
energy y-rays are followed by a longer-lasting afterglow emission ina wide range of
energies (from radio waves to gigaelectronvolt y-rays), which originates from
synchrotron radiation generated by energetic electrons in the accompanying shock
waves™. Although emission of y-rays at even higher (teraelectronvolt) energies by
other radiation mechanisms has been theoretically predicted” ", it has not been
previously detected™. Here we report ohservations of teraelectronvolt emission from
the y-rayburst GRB 190114 C. y-rays were observed inthe energy range 0.2-1
teraelectronvolt from about one minute after the burst (at more than 50 standard
deviations in the first 20 minutes), revealing adistinct emission component of the
afterglow with power comparable to that of the synchrotron com ponent. The
ohserved similarity in the radiated power and temporal behaviourof the
teraelectronvolt and X-ray bands points to processes such as inverse Compton
upscattering as the mechanism of the teraelectronvolt emission® ™. By contrast,
processes such as synchrotron emission by ultrahigh-energy protons™ " are not
favoured because of their low radiative efficiency. These results are anticipated to be a
step towards a deeper understanding of the physics of GRAs and relativistic shock
Waves.
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LORENTZ INVARIANCE VIOLATION
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LORENTZ INVARIANCE VIOLATION
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'Loop Quantum Gravity

| Quantum Gravity in 3 dimensional space-time !

i Double Special Relativity {
| Heuristic arguments-

According to above mentioned QG models at the Planck scale (Ep = 1.2 101° GeV)
Lorentz symmetries are expected to be broken or deformed
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LORENTZ INVARIANCE VIOLATION
:

Phutun energy at the detector
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offset at the source between the time of 1 F4 (1 £ C)n
emission of the low-energy particles used as Dn ( ,.?:)

reference and the time of emission of the higher-

energy particle of interest

We should expect a LIV time delay At(E; nn) from the GRB19014C gammas:

At(E;m,z) = (1.7- 10_28/GeV) E-m
At(E, N2, 2,’) — (25 . 10_5 S/GeVz) E2 - 72

Where we have N = S4 - EPI/EQG i Assuming Nn = 1 a1 TeV gamma
: ’ should have a time delay of
defined the == | -
i ’ * 25 seconds (n=2)
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LORENTZ INVARIANCE VIOLATION

Intrinsic LC at the source Observed LC at the detector
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ASSUMPTION FOR THE INTRINSIC LIGHT CURVE AND SPECTRUM

®(t, E) = ©1(F) - Pa(t)

® | We are going to use the LC derived from theoretical model in the 0.3-1 TeV band
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B = 1.51 £ 0.04

Acciari, VA., Ansoldi, S., Antonelli, L.A. et al.
Teraelectronvolt emission from the y-ray
burst GRB 190114C.

Nature 575, 455-458 (2019)
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Observation of inverse Compton emission

from a long y-ray burst.
Nature 575, 459-463 (2019)
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PROBABILITY DISTRIBUTION FUNCTION

What'’s the probability to observe a gamma at a given time t and with
estimated energy Eest?

Intrinsic parameters for LC and

spectrum LIV delay
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PROBABILITY DISTRIBUTION FUNCTION - LINEAR CASE
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PROBABILITY DISTRIBUTION FUNCTION - QUADRATIC CASE
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Likelihood maximization analysis

Among the infinite set of two-dimensional pdf, which one better describes

our data? And how confident can we be on excluding some of them?

¢ é Likelihood definition: I
meters iables
auisance P o o

f:(nﬂ; o, B | GHEE S Nnn,anf) = N(B]1.51,0.04) - N(a|2.5,0.2) -

!i'ff/T_ fa.-(f(1 Eiq)t T, &, ﬁ) i Nﬂff fo (t(i) Eit)
( eat)

fbn:: dEest f e dt fs(t, Eest | mn, @, B) ™Non f Rin dEest ftf.::: dt fo
9 4

Normal distribution centered in 1.51 with s.d. of 0.04 for the index of the power-law LC decay

9 Normal Distribution centered in 2.5 with s.d. of 0.2 for the spectral index
0 Non and Nog are the numbers of observed event in the signal and background region respectively, while T is

the ratio of exposure time in background versus signal region

o Energy distribution from data collected with MAGIC when pointing under same conditions to regions of the
sky with no known gamma sources
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Likelihood maximization analysis

® [Likelihood definition:l

ers !
opserved variaPle2
n
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- f We define the following variable:l
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max{f}, = f(z,y) where y maximizes f for a given value of x
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MC SIMULATIONS

Is our LC and spectral model a good description of the observed data”?
We estimate biases arising from our model using MC simulations:

MC data sets is generated by reshuffling + bootstrapping the real data set, so that any LIV
effect, if presents, Is destroyed but temporal and energy distribution are preserved

Distribution of the LIV parameter n, that maximize the likelihood
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MC SIMULATIONS

We then calibrate lower (LLs) and upper (ULs) limits using MC simulations:

For each MC simulation we compute the LLs and ULs using a pair of thresholds

common to all the simulation. This pair of thresholds is chosen so that:

* only 2.5% of the simulated LLs is bigger than the bias previous computed
» only 2.5% of the simulated ULs is smaller than the bias previous computed

Distribution of lower (LLs) and upper (ULs) limits
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RESULTS FOR LINEAR AND QUADRATIC CASE

Linear case Quadratic case * The likelihood is slightly
- shifted toward negative

values (subluminal
scenario)

e Although the value that
maximizes the likelihood
is compatible with the
null hypothesis: no LIV
effect
n=1 —> p-value = 0.78
n=2 —> p-value = 0.59

m = -1.60*118 e = -1.321355

-1 0 1 [}:E _'5 -4 -I3 -2 -1 0 1
M 2

b —

e [Taking into account the bias and the calibrated thresholds for the 95% CI
previously obtained

Lower Limit | Upper Limit
1 -2.2 2.1
2 -4.8 Jaf
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RESULTS FOR LINEAR AND QUADRATIC CASE

Linear case Quadratic case * The likelihood is slightly
4 4 - shifted toward negative
ﬁ | e values (subluminal
| M = ~1.60%32 | M2 = =132 304 scenario)
3.

e Although the value that
maximizes the likelihood
is compatible with the
null hypothesis: no LIV
effect
n=1 —> p-value = 0.78

/ n=2 —> p-value = 0.59

T B A Tl 8wl =Y <48 =4 & 9
m . .

== e

From the definitions of the parameter nn

superluminal case

—16 2 5 — EQGJ > 0.45 - Epy
g = 10 * S84 - EPI/EQG,Q EQG,E % 5.6 1010 GeV

m = s+ - Ep1/Eqc
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RESULTS FOR LINEAR AND QUADRATIC CASE

Linear case Quadratic case * The likelihood is slightly
: - shifted toward negative

values (subluminal
scenario)

e Although the value that
maximizes the likelihood
is compatible with the
null hypothesis: no LIV
effect
n=1 —> p-value = 0.78
n=2 —> p-value = 0.59

m = -1.60*118 | e = -1.321355

-1 0 1 [}:E _'5 -4 -I3 -2 -1 0 1
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Most stringent limits:
EQG,l > 7.6 - Ep;
Egg2 > 1.3-10 GeV

initi V. Vasileiou at al. Phys. Rev. D 87, 122001 — 2013
From the definitions of the parameter nn o j5 Hev- R B 20T =20

| subluminal case

—16 2 5 [r—— EQGJ > 0.48 - Ep;
N2 — 10 *S4 EP]/EQG,2 EQG,Q > 63 ) 101{] GeV

m = s+ - Ep1/Eqc
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CONCLUSIONS

® :}We performed a likelihood maximization analysis making a set of
conservative assumptions:

* Intrinsic Light Curve derived from data and from theoretical models
* |ntrinsic smooth power-law spectrum independent from time

LIV effects described by a single parameter nn

® jThe values of n1 and nz2 obtained from the likelihood maximization are
| compatible at 1 sigma with the null hypothesis: no LIV effect

® JWe derived at 95% confidence level the following lower limits for the
| quantum-gravity energy scale:

| superluminal case subluminal case
n=1 Eog1 > 0.45- Epy Eoci1>0.48 - Epy
n=2 | Egg,2 > 5.6-10'"° GeV | Egg2 > 6.3-10'° GeV
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