

Study of the Cosmic Rays and Interstellar Medium in Local HI Clouds using Fermi-LAT Gamma-Ray Observations

Dec. 5, 2019 @ TeVPA 2019 in Sydney, Australia Tsunefumi Mizuno (Hiroshima Univ.)

S. Abdollahi, Y. Fukui, K. Hayashi, T. Koyama, A. Okumura, H. Tajima, and H. Yamamoto

On behalf of the Fermi-LAT collaboration

Motivation: Local Interstellar Spectra (LIS)

- LIS of galactic cosmic-rays (CRs) provide vital information about their origin and propagation
 - Special variation? Spectral break? (e.g., Ptsukin +06)
- In addition to direct measurements,
 <u>γ-ray observation</u> is unique and crucial to constrain the LIS

Caveat: Uncertainty of ISM & CR

- In principle, we can measure CR intensities by γ -ray obs. if we know interstellar medium (ISM) gas densities, since $I_{\gamma} \propto N_{\rm H} I_{\rm CR}$
- Uncertainty of local CR intensities <u>still large</u> (a factor of ~1.5) because of the uncertainty of N_H (mostly due to the uncertainty of spin temperature T_S)

Objectives of the Study

- Accurate estimate of ISM gas densities is crucial to constrain Galactic CR intensities
- Procedure to trace "dark gas" (gas not properly traced by HI and CO line surveys (Grenier+05)) not established yet => <u>detailed</u> study of nearby clouds

Procedure of the Analysis

 Uniform CR intensity (assumption testable by energy dependence) -> we can model γ-ray intensity as <u>a linear</u> combination of templates

Fermi Data (8 yrs, 0.1-25.6 GeV)

Planck dust, LAB H_I, W_{CO}, etc.

IC model (e.g., galprop)

 $q_{\gamma}(E)$ tells us CR spectrum Fit quality tells us which tracer is better

$$\begin{split} N_{\mathrm{H}} &= \Sigma_{i} \ a_{i} \cdot N(\mathrm{H}_{i}) \\ &(\mathrm{e.\,g.}\,, N(\mathrm{H}_{\mathrm{I}}) + 2X_{\mathrm{CO}} \cdot W_{\mathrm{CO}} + X_{\mathrm{DG}} \cdot N(\mathrm{H}_{\mathrm{DG}})) \end{split}$$

Coefficients (a_i) tell us gas properties

W_{HI}-Dust Relation (North)

- Correlation btw. W_{HI} and dust emission D_{em} (R or τ_{353})
 - Dust temperature (T_d) dependence seen in the W_{HI} - τ_{353} correlation
- Linear curves that follow trends in high T_d areas are used to construct initial N_H templates assuming $N_H \propto D_{em}$
- We will use γ -rays (robust tracer of ISM gas) to constrain N_H
 - R vs. τ_{353} , possible T_d-dependence/non-linearity

N_H Model Maps and Residuals (North)

• We prepared N_H model maps (\propto W_{HI} or D_{em}) and used them in the fit of γ -ray data -> R gives the best fit (same conclusion for the south region)

T_d Dependence (North)

- Fit with T_d -sorted N_H templates shows a significant T_d dependence for τ_{353} , implying an overestimate of N_H/τ_{353} in low T_d areas
- Fit improvement not significant for R; we adopt a single Rbased template as our best estimate of N_H (same conclusion for the south region)

Emissivity scale factor $(\propto (N_H/D_{em})^{-1})$, averaged over 0.2-12.8 GeV

Properties of ISM Gas

- W_{HI} vs. N_H (∝ R) with models for several values of T_S
 - In general, data agrees with T_s=125 K or higher
- (North) Large N_H/W_{HI} ratio in T_d=18-19 K corresponds to residuals at around (I, b)~(236°, 37.5°) for the W_{HI}-based model; likely <u>optically-thick HI</u>
- (South) Flat profile with W_{HI}~100 K km/s corresponds to residuals at (I, b)~(230°, -28.5°); likely CO-dark H₂

Properties of CRs

- (left) HI emissivity spectra of two regions and model curves (right) average compared with results of other areas
- (left) Two regions agree within uncertainty, supporting <u>uniform</u>
 <u>CR intensity</u>. Small deviation from a model implies <u>a possible</u>
 <u>spectral break</u> and should be investigated
- (right) Comparison with other studies shows pk-pk variation by a factor of ~2 due to the uncertainty of N_H models (this study does

We studied local HI clouds in detail to constrain LIS

- Use γ -ray data as a robust tracer of the ISM gas with an aid by HI4PI survey data and Planck dust emission model

Outcomes/Findings

- We developed/showed the analysis procedure without the assumption of uniform T_s
- While most of the gas can be interpreted as being HI of T_s =125 K or higher, possible optically-thick HI and CO-dark H_2 identified
- Uniform CR intensity confirmed. The emissivity roughly consistent with a model for the LIS based on direct measurements. <u>Possible spectral break</u> should be investigated

Thank you for your Attention

Gamma-ray Space Telescope Reference

- Abdo +09, ApJ 703, 1249
- Brown +95, A&A 300, 903
- Grenier +05, Science 307, 1292
- Grenier +15, ARAA 53, 199
- Hayashi, TM +19, ApJ 884, 130
- HI4PI Collaboration 2016, A&A 594, 116
- Karberla +05, A&A 440, 775
- Ochsendorf +15, ApJ 808, 111
- Planck Collaboration 2014, A&A 571, 13 (Planck 2013 Results XIII)
- Ptsukin +06, ApJ 642, 902
- Mizuno +16, ApJ 833, 278
- Mori 09, Astropart. Phys. 31, 341

Backup Slides

Atomic Gas

- Main component of ISM, scale height ~ 200 pc
- Traced by 21 cm line (W_{HI})
 - True N_{HI} is uncertain due to the uncertainty of the spin temperature $T_{\rm S}$

Region Mask: Velocity-Sorted HI Map

• A white polygon is defined to exclude Orion-Eridanus superbubble traced by outer $H\alpha$ filaments and the expanding HI shell

Hα Filaments (in Ref.)

- (upper right) Several $H\alpha$ filaments in the Orion-Eridanus superbubble
- (lower right) Outer parts of Hα
 filaments on the south and west are
 traced by a solid blue line to guide the
 eye. Toward the southwest, they are
 surrounded by a shell of neutral gas
 (traced by a red line).

Ochsendorf +15

Neutral Gas (in Ref.)

• Velocity-sorted HI maps reveal an expanding HI shell -> Use HI maps (and also $H\alpha$) to define the bubble area

Initial N_H Template Maps (North)

We prepared N_H template maps (∝ W_{HI}, R, or τ₃₅₃) and used them in a fit of γ-ray data (different contrast in 3 models)

Initial N_H Template Maps (South)

• We prepared N_H template maps (\propto W_{HI}, R, or τ_{353}) and used them in a fit of γ -ray data (different contrast in 3 models)

W_{HI}-Dust Relation (North)

- Correlation btw. W_{HI} and dust emission D_{em} (R or τ_{353})
 - Dust temperature (T_d) dependence seen in the W_{HI} - τ_{353} correlation
- Linear curves that follow trends in high T_d areas are used to construct initial N_H templates assuming $N_H \propto D_{em}$
- We will use γ -rays (robust tracer of ISM gas) to constrain N_H
 - R vs. τ_{353} , possible T_d-dependence/non-linearity

W_{HI}-Dust Relation (South)

- Correlation between W_{HI} and D_{em}
 - Weak T_d dependence, non-linear W_{HI}-D_{em} relations
- Linear curves that follow trends in high T_d areas are used to construct initial N_H templates assuming $N_H \propto D_{em}$
- We will use γ -rays (robust tracer of ISM gas) to constrain N_H
 - R vs. τ_{353} , possible T_d-dependence/non-linearity

N_H Model Maps and Residuals (North)

• We prepared N_H model maps (\propto W_{HI} or D_{em}) and used them in the fit of γ -ray data -> R gives the best fit (same conclusion for the south region)

N_H Model Maps and Residuals (South)

 We prepared N_H model maps (∝ W_{HI} or D_{em}) and used them in the fit of γ-ray data -> R gives the best fit.

T_d Dependence (North)

- Fit with T_d -sorted N_H templates shows a significant T_d dependence for τ_{353} , implying an overestimate of N_H/τ_{353} in low T_d areas
- Fit improvement not significant for R; we adopt a single Rbased template as our best estimate of N_H (same conclusion for the south region)

Emissivity scale factor (\propto (N_H/D_{em})⁻¹), averaged over 0.2-12.8 GeV

D_{em} Dependence (South)

- Examine a possible non-linear N_H - D_{em} relation through a fit with R(or τ_{353})-sorted N_H templates (cf. Hayashi +19)
- Large (~25%) negative τ_{353} dependence, implying an overestimate of N_H/ τ_{353} in high density areas
- R dependence not significant (1.2σ) and small (~10%); we adopt a single R-based N_H template as our best estimate of N_H

Emissivity scale factor (\propto (N_H/D_{em})⁻¹), averaged over 0.2-12.8 GeV

Spectrum of Each Component

- In both North and South regions we conclude that <u>single N_H</u> template based on R reproduces the data well and fit the data with finer energy bins
- Spectrum of each component summarized below

Properties of ISM gas

- Excess gas densities (N_H-N_{HI}^{thin}) in 10²⁰ cm⁻²
- (North) Large N_H/W_{HI} ratio in T_d=18-19 K corresponds to residuals at around (I, b)~(236°, 37.5°) for the W_{HI}-based model; likely <u>optically-thick HI</u>
- (South) Flat profile with W_{HI}~100 K km/s corresponds to residuals at (I, b)~(230°, -28.5°); likely CO-dark H₂

Assumed LIS Model

- Assumed proton LIS model (solid blue) has marginal break in momentum (cf. LIS model by Shikaze +07; dotted blue)
- Both models can reproduce CR spectrum directly measured (with different φ); γ-ray data is crucial to constrain the LIS

