TeVPA 2019 at the University of Sydney

Testing the EWPT of 2HDM at future lepton Colliders

Wei Su

Uni of Adelaide

1912.xxxxx (WS, M. White, A. Williams, M. Zhang)
1910.06269 (WS)
1909.09035 (WS, M. White, A. Williams, Y. Wu)

THE UNIVERSITY

outline

Precision measurements at lepton collider

*2HDM: Brief Introduction

Individual constraints: theory, EW, Higgs, flavour

Results and Conclusion

SM-like Higgs

Precision Measurements

Precision: Higgs mass

Precision: Higgs couplings

collider	CEPC	F	CC-ee								
\sqrt{S}	$240\mathrm{GeV}$	$240\mathrm{GeV}$	365	$\begin{array}{c c} 365 {\rm GeV} & 2 \\ 1.5 {\rm ab}^{-1} & \end{array}$		350	GeV	500	GeV		
$\int \mathcal{L} dt$	5.6 ab^{-1}	5 ab^{-1}	1.5 a			200	fb^{-1}	4 a	b^{-1}		
productio	on Zh	Zh	Zh	$ u \overline{ u} h $	Zh	Zh	$\nu \bar{\nu} h$	Zh	$ u \bar{\nu} h $		
$\Delta\sigma/\sigma$	0.5%	0.5%	0.9%	_	0.71%	2.0%		1.05	_		
decay				$\Delta(\sigma \cdot$	$(\sigma \cdot BR)/(\sigma \cdot D)$	^B 1608	3.06619) P. Hu	iang, A	long.	IT. Wang
$h \to b\bar{b}$	0.27%	0.3%	0.5%	0.9%	0.46%	1000					
$h \to c\bar{c}$	3.3%	2.2%	6.5%	10%	2.9%	12.3%	21.2%	4.5%	2.2%		
$h \rightarrow gg$	1.3%	1.9%	3.5%	4.5%	2.5%	9.4%	8.6%	3.8%	1.5%		
$h \to WW$	7* 1.0%	1.2%	2.6%	3.0%	1.6%	6.3%	6.4%	1.9%	0.85%		
$h \to \tau^+ \tau^+$	- 0.8%	0.9%	1.8%	8.0%	1.1%	4.5%	17.9%	1.5%	2.5%		
$h \to ZZ^*$	5.1%	4.4%	12%	10%	6.4%	28.0%	22.4%	8.8%	3.0%		
$h \to \gamma \gamma$	6.8%	9.0%	18%	22%	12.0%	43.6%	50.3%	12.0%	6.8%		
$h \to \mu^+ \mu$	- 17%	19%	40%	_	25.5%	97.3%	178.9%	30.0%	25.0%		
$(\nu\bar{\nu})h \rightarrow$	$b\bar{b}$ 2.8%	3.1%	_	_	3.7%	_		_	—		6

Precision: Higgs couplings

collider	CEPC	F	CC-ee											
\sqrt{s}	$240\mathrm{GeV}$	$240\mathrm{GeV}$	365	GeV	250 G HI	L-LHC:	1902.0							
$\int \mathcal{L} dt$	5.6 ab^{-1}	5 ab^{-1}	1.5 a	ab^{-1}	2 a		3000 fb ⁻¹ per experiment							
production	Zh	Zh	Zh	$ u \overline{ u} h $		[, , , , , , , , , , , , , , , , , , ,	· · · ·					
$\Delta \sigma / \sigma$	0.5%	0.5%	0.9%		0.7		Total		AT	ATLAS and CMS				
decay			<u> </u>	$\Delta(\sigma \cdot$	(BR)/		- Statistic	al	HL-L	LHC Projection				
$h o b \overline{b}$	0.27%	0.3%	0.5%	0.9%	0.4			lental						
$h \to c\bar{c}$	3.3%	2.2%	6.5%	10%	2		- Theory			Uncertainty [%]				
$h \rightarrow gg$	1.3%	1.9%	3.5%	4.5%	2	.2%	.4%			Tot Stat Exp Th				
$h \to WW^*$	1.0%	1.2%	2.6%	3.0%	1σ				2.5 1.3 1.7 1					
$h \to \tau^+ \tau^-$	0.8%	0.9%	1.8%	8.0%	1					-				
$h \rightarrow ZZ^*$	5.1%	4.4%	12%	10%	6.4%	28.0%	22.4%	8.8%	3.0%					
$h o \gamma \gamma$	6.8%	9.0%	18%	22%	12.0%	43.6%	50.3%	12.0%	6.8%					
$h \to \mu^+ \mu^-$	17%	19%	40%	—	25.5%	97.3%	178.9%	30.0%	25.0%					
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	_	—	3.7%	_	_	_	_	6				

Precision: EW

	CEPC	ILC	FCC-ee
$\alpha_s(M_Z^2)$	$\pm 1.0 \times 10^{-4}$	$\pm 1.0 \times 10^{-4}$	$\pm 1.0 imes 10^{-4}$
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	$\pm 4.7 \times 10^{-5}$	$\pm 4.7 \times 10^{-5}$	$\pm 4.7 \times 10^{-5}$
$m_Z [\text{GeV}]$	± 0.0005	± 0.0021	$\pm 0.0001_{\rm exp}$
$m_t \; [\text{GeV}] \; (\text{pole})$	$\pm 0.6_{\rm exp} \pm 0.25_{\rm th}$	$\pm 0.03_{\mathrm{exp}} \pm 0.1_{\mathrm{th}}$	$\pm 0.6_{ m exp}\pm 0.25_{ m th}$
$m_h \; [\text{GeV}]$	$<\pm0.1$	$<\pm0.1$	$< \pm 0.1$
$m_W \; [\text{GeV}]$	$(\pm 3_{\mathrm{exp}} \pm 1_{\mathrm{th}}) \times 10^{-3}$	$(\pm 5_{\mathrm{exp}} \pm 1_{\mathrm{th}}) \times 10^{-3}$	$(\pm 8_{\mathrm{exp}} \pm 1_{\mathrm{th}}) \times 10^{-3}$
$\sin^2 heta_{ m eff}^\ell$	$(\pm 4.6_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$	$(\pm 1.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$	$(\pm 0.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$
$\Gamma_Z \; [\text{GeV}]$	$(\pm 5_{\mathrm{exp}} \pm 0.8_{\mathrm{th}}) \times 10^{-4}$	± 0.001	$(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4}$

Precision: EW

		CEPC								ILC FCC-ee							
	$\alpha (M^2) + 1.0 \times 10^{-4}$						0^{-4}		$+1.0 \times 10^{-4}$				+1	0×10^{-1}			
		Current $(1.7 \times 10^7 \ Z's)$ CEPC $(10^{10} Z')$							"s)	FCC	FCC-ee $(7 \times 10^{11} Z's)$ ILC $(10^9$					$(10^9 Z's)$)
		correlation				σ	correlation			σ	correlation			σ	correl		tion
		0	S	Т	U	(10^{-2})	S	T	U	(10^{-2})	S		U	(10^{-2})	S	Т	U
S	0.0	04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879
T	0.0	09 ± 0.14	_	1	-0.87	2.55	—	1	-0.735	0.53	_	1	-0.097	4.89	_	1	-0.909
U	-0.	$.02 \pm 0.11$	-	—	1	2.08	—	_	1	2.40	-	_	1	3.76	_	—	1
	$\Gamma_Z [\text{GeV}] \qquad (\pm 5_{\text{exp}} \pm 0.8_{\text{th}}) \times 10^{-4}$						(0.11	± 0.001	.)		$(\pm 1_{\rm exp} \pm$	$= 0.8_{\rm th})$	$\times 10$	-4			

Precision: EW

	CEPC	ILC	FCC-ee
α (M ²)	$+1.0 \times 10^{-4}$	$+1.0 \times 10^{-4}$	$+1.0 \times 10^{-4}$

	Current (CEPC $(10^{10}Z's)$				FCC-ee $(7 \times 10^{11} Z's)$				ILC $(10^9 Z's)$						
	7	correlation		σ	correlation		σ	correlation			σ		correla	tion		
	0	S	T		(10^{-2})	S		U	(10^{-2})	S			(10^{-2})	S		U
S	0.04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879
T	0.09 ± 0.14	-	1	-0.87	2.55	_	1	-0.735	0.53	-	1	-0.097	4.89	-	1	-0.909
U	-0.02 ± 0.11			1	0.00			1	0.40			1	9.70			1

 $\Gamma_{Z} \Delta S = \pm 0.0246, \quad \Delta T = \pm 0.0255, \quad \Delta U = \pm 0.0208$

2HDM: Brief Introduction

• Parameters (CP-conserving, Z_2 Symmetry)

Constraints: theory

- Perturbativity
- Stability of the potential
- Unitarity of the scattering matrix

$$\cos (\beta - \alpha) = 0,$$

 $m_{\Phi} \equiv m_H = m_A = m_{H^{\pm}}$

$$\lambda v^2 \equiv m_{\Phi}^2 - m_{12}^2/s_{\beta}c_{\beta}$$

$$-125^2 \text{GeV}^2 < \lambda v^2 < 600^2 \text{GeV}^2$$

Constraints: EW+Higgs (indirect)

Constraints: heavy Higgs (direct)

Results: Strong First Order Phase Transition

Results: Strong First Order Phase Transition

Conclusion

Thanks!