TeVPA 2019, Sydney, Australia

# Synchrotron and synchrotron-self-Compton mechanisms for VHE emission from GRBs

#### Soeb Razzaque

University of Johannesburg, South Africa

srazzaque@uj.ac.za

Centre for Astro-Particle Physics







With Jagdish Joshi Nanjing University, China

arXiv:1911.01558v1 [astro-ph.HE]

# **GRB** Afterglow

#### Blandford & McKee 1976



Classical afterglow from the forward shock Emission process: Synchrotron radiation

Meszaros & Rees 1997; Sari, Piran & Narayan 1998 Chevalier & Li 2000; Granot & Sari 2002 *Physical quantities depends on the injected energy and environment* 

## ISM Environment

 $n(R) = n_0$ 

Expected for NS-NS or BH-NS binaries far from the galactic plane

## Wind Environment





Expected for massive stars with substantial mass loss in stellar wind

## **Blastwave Evolution Scenarios**

#### Commonly used for modeling



Rarely or not used for modeling

## <u>Afterglow</u> <u>Synchrotron Spectra</u>

- Single power-law electron injection spectrum
- Cooling in the forward-shock magnetic field
- Cooling break in the electron spectrum
- Fast- and slow-cooling synchroton spectra
- Synchrotron self-absorption
- Time evolution of the break frequencies and flux normalization

Reasonably successful in modeling late-time afterglow



## Afterglow inverse-Compton Spectra

- Synchrotron-self-Compton emission from the same electrons
- Simple scaling in the Thomson regime

 $\nu^{\rm IC} = 2\gamma^2 \nu$ 

Chiang & Dermer 1999 Sari & Esin 2001 Zhang & Meszaros 2001

We are likely observing now in the VHE regime



## What is new in this work?

- Four different blastwave evolution scenarios
  - Blastwave evolution parameters
  - Synchrotron break frequencies
  - Inverse-Compton break frequencies
- Detailed calculation of the Compton Y-parameter in the slow-cooling spectra
  - Smooth transition from the fast- to slow-cooling spectra in all scenarios
- Detailed calculation of the synchrotron-self-absorption frequency in all blastwave evolution scenarios and for the fast- and slow-cooling spectra
- Flux closure relations for the synchrotron and inverse-Compton spectra
- Application to two bright GRBs

<u>GRB Afterglow</u> <u>Closure Relations</u> <u>for Synchrotron</u> <u>and inverse-</u> <u>Compton fluxes</u>

 $F_{
u} \propto t^{lpha} 
u^{eta}$ 

Table 1. The closure relations between the temporal index  $\alpha$  and spectral index  $\beta$  in various afterglow models for synchrotron emission.



Table 2. The closure relations between the temporal index  $\alpha$  and spectral index  $\beta$  in various afterglow models for SSC emission.

| Adiabatic(ISM)                                                                                                                                                                           | $\beta$<br>slow cooling                                                | α                                                                                                 | $\alpha(\beta)$                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{l} \nu < \nu_{a,ic} \\ \nu_{a,ic} \leqslant \nu \leqslant \nu_{m,ic} \\ \nu_{m,ic} < \nu < \nu_{c,ic} \\ \nu \geqslant \nu_{c,ic} \end{array} $                          | 2<br>$\frac{1}{3}$<br>$\frac{-(p-1)}{2}$<br>$\frac{-p}{2}$             | $\frac{\frac{3}{4}}{\frac{-9(p-1)}{-(9p-8)}}$                                                     | $\beta \\ \frac{95}{4} \\ \frac{95}{4} \\ \frac{95}{4} \\ \frac{(95+4)}{4} $                                        |
| $\begin{array}{l} \text{Adiabatic(ISM)} \\ \nu < \nu_{a,ic} \\ \nu_{a,ic} \leqslant \nu \leqslant \nu_{c,ic} \\ \nu_{c,ic} < \nu < \nu_{m,ic} \\ \nu \geqslant \nu_{m,ic} \end{array}$   | fast cooling<br>2<br>$\frac{1}{3}$<br>$\frac{-1}{2}$<br>$\frac{-p}{2}$ | 2<br>$\frac{1}{12}$<br>$\frac{-1}{8}$<br>$\frac{-(9p-8)}{8}$                                      | $\beta$ $\frac{\beta}{4}$ $\frac{\beta}{4}$ $\frac{(9\beta+4)}{4}$                                                  |
| Adiabatic (wind)                                                                                                                                                                         | slow cooling                                                           |                                                                                                   |                                                                                                                     |
| $\begin{array}{l} \nu < \nu_{a,ic} \\ \nu_{a,ic} \leqslant \nu \leqslant \nu_{m,ic} \\ \nu_{m,ic} < \nu < \nu_{c,ic} \\ \nu \geqslant \nu_{c,ic} \end{array}$                            | $\frac{\frac{1}{3}}{\frac{-(p-1)}{2}}$                                 | 5/2<br>$\frac{2}{3}$<br>-(p-1)<br>-(p-2)                                                          | $\frac{5}{4}\beta$<br>$2\beta$<br>$2\beta$<br>$(2\beta + 2)$                                                        |
| $\begin{array}{l} \text{Adiabatic (wind)} \\ \nu < \nu_{a,ic} \\ \nu_{a,ic} \leqslant \nu \leqslant \nu_{c,ic} \\ \nu_{c,ic} < \nu < \nu_{m,ic} \\ \nu \geqslant \nu_{m,ic} \end{array}$ | fast cooling<br>2<br>$\frac{1}{3}$<br>$\frac{-1}{2}$<br>$\frac{-p}{2}$ | $     \begin{array}{c}       0 \\       \frac{-1}{6} \\       1 \\       -(p-2)     \end{array} $ | $\frac{\beta - 2}{\frac{-\beta}{2}}$ $\frac{\frac{-\beta}{2}}{(2\beta + 2)}$                                        |
| Radiative (ISM)                                                                                                                                                                          | slow cooling                                                           |                                                                                                   |                                                                                                                     |
| $ \begin{array}{l} \nu < \nu_{a,ic} \\ \nu_{a,ic} \leqslant \nu \leqslant \nu_{m,ic} \\ \nu_{m,ic} < \nu < \nu_{c,ic} \\ \nu \geqslant \nu_{c,ic} \end{array} $                          | $\frac{\frac{1}{3}}{\frac{-(p-1)}{2}}$                                 | $\frac{\frac{17}{7}}{\frac{6}{7}}$<br>$\frac{-9(p-1)}{\frac{7}{7}}$<br>$\frac{(-9p+10)}{7}$       | $\frac{\frac{17\beta}{14}}{\frac{18\beta}{7}}$<br>$\frac{18\beta}{7}$<br>$\frac{18\beta}{7}$<br>$(18\beta+10)$<br>7 |
| $\begin{array}{l} \text{Radiative (ISM)} \\ \nu < \nu_{a,ic} \\ \nu_{a,ic} \leqslant \nu \leqslant \nu_{c,ic} \\ \nu_{c,ic} < \nu < \nu_{m,ic} \\ \nu \geqslant \nu_{m,ic} \end{array}$  | fast cooling<br>2<br>$\frac{1}{3}$<br>$\frac{-1}{2}$<br>$\frac{-p}{2}$ | $\frac{\frac{10}{7}}{\frac{2}{7}}$<br>$\frac{-1}{\frac{7}{7}}$<br>$\frac{-(6p-5)}{7}$             | $\frac{\frac{5\beta}{7\beta}}{\frac{2\beta}{(12\beta+5)}}$                                                          |
| Radiative (wind)                                                                                                                                                                         | slow cooling                                                           |                                                                                                   |                                                                                                                     |
| $ \begin{array}{l} \nu < \nu_{a,ic} \\ \nu_{a,ic} \leqslant \nu \leqslant \nu_{m,ic} \\ \nu_{m,ic} < \nu < \nu_{c,ic} \\ \nu \geqslant \nu_{c,ic} \end{array} $                          | $2 \\ \frac{1}{3} \\ \frac{-(p-1)}{-p^2} \\ \frac{-p^2}{2}$            | $\frac{\frac{8}{3}}{\frac{7}{7}}$<br>$\frac{7(p-1)}{\frac{6}{-(7p-12)}}$                          | $\frac{4\beta}{\frac{7\beta}{\frac{3}{3}}}$<br>$\frac{7\beta}{\frac{3}{\frac{3}{3}}}$<br>$\frac{(7\beta+6)}{3}$     |
| $\begin{array}{l} \text{Radiative (wind)} \\ \nu < \nu_{a,ic} \\ \nu_{a,ic} \leqslant \nu \leqslant \nu_{c,ic} \\ \nu_{c,ic} < \nu < \nu_{m,ic} \\ \nu \geqslant \nu_{m,ic} \end{array}$ | fast cooling<br>2<br>$\frac{1}{3}$<br>$\frac{-1}{2}$<br>$\frac{-p}{2}$ | $\frac{-1}{\frac{3}{-5}}$<br>$\frac{-5}{9}$<br>$\frac{5}{6}$<br>-(7p-12)<br>6                     | $\frac{-\frac{\beta}{6}}{-\frac{5\beta}{2}}$                                                                        |

### Jet-inside-Jet / Two Blastwave Model



Zheng & Deng 2010; Corsi+2010; Filgas+2011; Holland+2012, etc.

### <u>GRB 090510 – SED and Light Curves</u>

Short GRB at z = 0.9, T90 = 0.3 s

CTA sensitivity for 10s integration

https://www.cta-

observatory.org/science/cta-performance





### GRB 130427A – SED and Light Curves

Long GRB at z = 0.34, T90 = 276 s



CTA sensitivity for 10s integration

#### https://www.cta-

observatory.org/science/cta-performance



## Model Parameters from Afterglow Fits

Table 3. The afterglow model parameters from our fitting. In GRB 130427A the progenitor star wind medium has  $A_{\star} = 0.007$  and the GRB 090510 has a circumburst medium of constant density  $n_0 = 10^{-5} \text{ cm}^{-3}$ .

|                         | GRB 090510         |           | GRB 130427A         |           |
|-------------------------|--------------------|-----------|---------------------|-----------|
| Parameter               | Inner jet          | Outer jet | Inner jet           | Outer jet |
| $E_k(\text{erg})$       | $4 \times 10^{53}$ | $10^{53}$ | $5.3 	imes 10^{54}$ | $10^{54}$ |
| $\Gamma_0$              | 1200               | 1000      | 1000                | 500       |
| $t_{ m dec}({ m s})$    | 28.0               | 29.5      | 1.5                 | 4.6       |
| $t_0(\mathbf{s})$       | 0.0006             | 0.36      | 51.8                | 31.42     |
| $t_{\rm jbrk}({\rm s})$ | 5000               | 5000      | -                   | -         |
| p                       | 2.1                | 2.1       | 2.13                | 2.01      |
| $\epsilon_e$            | 0.1                | 0.2       | 0.35                | 0.3       |
| $\epsilon_B$            | 0.001              | 0.1       | 0.011               | 0.3       |
| $\phi$                  | 1.0                | 1.0       | 1.0                 | 1.0       |
|                         |                    |           |                     |           |

### Klein-Nishina and Gamma-Gamma

#### KN Cutoff fruequency

$$\nu_{m/c,\,{\rm KN}}^{\rm IC} = \frac{2m^2c^4}{h^2\nu_{m/c}}\frac{\Gamma^2}{(1+z)^2} \ \ > 1 \, {\rm TeV}$$

 $\gamma\gamma$  pair production horizon of the universe



#### $\gamma\gamma$ pair production opacities in the blastwaves



EBL attenuation dominates

## **Conclusions**

- A synchro-Compton model for GRB afterglow emission has been developed
  - Some limitations:
    - Klein-Nishina regime has not been included yet
    - Very simple evolution of the electron spectrum
    - No cascade from gamma-gamma pair production
- A numerical code has been developed to fit simultaneously the broadband
   SEDs and multiwavelength light curves
- Applications to two bright GRBs give reasonable fits and parameter values

#### GRB 190114C- SED and Light Curves

Long GRB at z = 0.42, T90 ~ 25 s

 $E_k = 4 \times 10^{53} \text{ erg}, \Gamma_0 = 350, n_0 = 0.5 \text{ cm}^{-3}$  $p = 2.5, \epsilon_e = 0.4, \epsilon_B = 0.01$ 

