

Energy dependent morphology of the PWN HESS J1825-137 in the GeV domain

G. Principe, **A. Mitchell**, S. Caroff, J. Hinton, R.D. Parsons, J. Hahn, S. Funk 03/12/19, TeVPA 2019

Introducing HESS J1825-137

HESS J1825-137 : a bright PWN with strongly energy-dependent morphology

Large intrinsic extension > 100 pc from pulsar as seen by H.E.S.S.

Previous Fermi-LAT Analyses

Grondin et al (2011):

- 20 months, 1-100 GeV
- Disk 0.67° radius, Gaussian 0.56°

2FHL: 80 months, 50 GeV – 2 TeV 3FHL: 7 years 10 GeV – 2 TeV

- 2D Gaussian 0.75°

FGES (2017):

- 6 years, E > 10 GeV
- Disk 1.05° radius, 2D Gaussian 0.79°

Motivation:

Energy-dependent extension and spectral analysis with 10 years, 1 GeV - 1 TeV

Fermi-LAT Analysis

Analysis using Fermipy (0.17.4) and Fermi Science Tools (11-07-00)

Diffuse models: standard LAT (Acero et al. 2016) and optimised Galactic plane (Malyshev 2017)

Catalogue FL8Y list and Extended_archive_v18 for other sources in FoV

Procedure:

- Spectral analysis and localisation with free background, free sources in 2° radius
- Extension analysis in energy resolved bands (free background)
- Spectral analysis using template from energy-resolved morphology

For energy dependent extension analysis:

- 5 energy bands used: 1-3 GeV, 3-10 GeV, 10-30 GeV, 30-100 GeV, 100 GeV 1 TeV
- Start using model from full range; re-fit localisation; extension analysis

Results from 3 GeV to 1 TeV

Extension R68 = $1.35^{\circ} \pm 0.09^{\circ}$ TS = 992

Energy Dependent Morphology – Excess Maps

A. Mitchell, HESS J1825-137 with Fermi-LAT, TeVPA 2019

Energy Dependent Morphology – Radial Profile

Radial profile method for consistency with H.E.S.S. coll. (2019)

Use the same semi-circular region to construct a 1D profile

Find radius from pulsar at which flux drops to 1/e of the peak

Energy Dependent Morphology – Comparison

Extent measurement approaches are compatible

2D Gaussian extent is 68% containment – convert to radius at 1/e

$$R\left(\frac{1}{e}\right) = \sqrt{2} \frac{R_{68\%}}{\sqrt{-2\log(1 - 0.68)}} = 0.937R_{68\%}$$

Correct for orientation: distance along major axis from pulsar position

Spectral Energy Distribution

$$\frac{dN}{dE} = N_0 \left(\frac{E}{E_b}\right)^{-(\alpha + \beta \log(E/E_b))}$$

Fermi-LAT spectrum extracted using energy-dependent morphology templates in different energy bins.

SED Modelling – single electron population

-0.13

Multi-zone Modelling SED and Morphology

GAMERA (Hahn 2016) multi-zone model

Treat as sum of 20 zones as spherically symmetric shells expanding and evolving with time up to system age (pulsar age)

Burst-like injection

Parameters constrained to reach present values at age

$$L(t) = (1 - \eta) \left(1 + \frac{t}{\tau_0} \right)^{-\frac{n+1}{n-1}}$$

12/3/19

Multi-zone Modelling SED and Morphology

Project sum of zones along line of sight to form 1D radial profile

Line of sight depth:

$$d_z = \begin{cases} 2\sqrt{R_z^2 - r^2} & (r < R_z) \\ 0 \end{cases}$$

Fit model profiles in different energy bands to obtain R(1/e) extension from model

Velocity profile assumed:

$$v(r,t) = v_0 \left(\frac{r}{r_{max}}\right)^{\beta} \left(\frac{t}{T}\right)^{-\beta}$$

Data bracketed by $\beta = [0.55, 0.72]$ (compatible with H.E.S.S.)

System Evolution

Shift in centre of gravity (white) with increasing energy

Similar direction to pulsar proper motion (red arrow)

Cooled electron population originating from earlier in the systems history?

Black: current pulsar position Blue: pulsar initial location for 21 kyr age Red: pulsar initial location assuming 60 kyr age

Conclusions

First study of energy-dependent morphology of HESS J1825-137 in the GeV regime

Spectral and morphological analysis using 10 years of Fermi-LAT data from 1 GeV – 1 TeV

Results compatible with H.E.S.S. in overlapping energy range

Independent methods of estimating extension (2D Gaussian and profile) agree

Multi-zone model can simultaneously describe SED and energy dependent morphology, B-field constrained to low values

Trend in emission compatible with proper motion of pulsar and system evolution

Paper will soon be submitted

12/3/19 A. Mitchell, HESS J1825-137 with Fermi-LAT, TeVPA 2019

Physik Institut

Thank you for your attention