

Collaborators: Huirong Yan, Heshou Zhang, Shao-Qiang Xi, Chong Ge, Xiao-Na Sun, Xiang-Yu Wang

Outline

- **◆**A Brief Introduction
 - 1) HAWC's Observation
 - 2) Previous Studies
- ◆X-ray Observation and its Implication
- ◆Anisotropic Diffusion Model
- **◆Summary**

HAWC's observation on Geminga

HAWC Collaboration 2017, Science, 2017, 358, 911

D₁₀₀ (Diffusion coefficient of 100TeV electrons from joint fit of two PWNe)

 $[x10^{27} \text{ cm}^2/\text{sec}]$ 4.5 ± 1.2

Two orders of magnitude smaller than the typical ISM diffusion coefficient

an inefficient diffusion zone embedded in normal diffusion zone in the ISM

$$D(E_e, r) = \begin{cases} D_1, & r < r_0 \\ D_2, & r \ge r_0. \end{cases}$$

e.g., Fang et al. 2018 ApJ, Profumo et al. 2018, PRD

Electron spectrum measurement disfavor a small diffusion coefficient

The generation of a very inefficient diffusion region

Small diffusion coefficient-> saturation of turbulence at small scale $(r_a=0.04pc~(E_e/100TeV)(B/3\mu G)^{-1})$

- CR self-generated waves: CR density is not sufficiently high for an efficient self-regulation

the mechanism of self-generated Alfven waves due to the streaming instability **cannot** work to produce such a low diffusion coefficient even in the most optimistic scenario where the energy loss of electrons and the dissipation of the Alfv en waves are neglected. The reason is simple as **Geminga is too weak to generate enough high energy electrons at the late age**. (Fang et al., 2019, MNRAS)

From background turbulence?
 Need a strong ΔB Or small injection scale (~1pc & 3µG, Lopez-Coto & Giacinti 2018)?

Very chaotic topology:

X-ray emission

X-ray observation on the TeV halo

RYL et al. 2019, ApJ

Calculation of Intensity Profile

$$\frac{\partial N(E_e,r,t)}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D(E_e,r) \frac{\partial N}{\partial r} \right) - \frac{\partial}{\partial E_e} \left(\dot{E_e} N \right) + Q(E_e,t) \delta(r)$$

$$D = \begin{cases} D_1, & r \le r_0, \\ D_2, & r > r_0 \end{cases} \qquad D = \begin{cases} D_1, & r < 20 \text{pc} \\ D_1 \left(\frac{D_2}{D_1}\right)^{(r-20)/30}, & 20 \text{pc} \le r < 50 \text{pc} \\ D_2 = D_{\text{ISM}}, & r \ge 50 \text{pc} \end{cases}$$

Line of sight integration

→ small diffusion coefficient → strong & chaoti field

X-ray Observation

→ weak B field

Hadronic origin?

$$n_{g} \sim 0.1 cm^{-3}$$

$$\frac{1}{E_p} \frac{dE_p}{dt} \simeq 0.17 \sigma_{pp} n_g c = 2 \times 10^{-17} \text{s}^{-1}$$

Inefficient hadronic radiation

$$\sim 10^{52} (n_g/0.1 \text{cm}^{-3})^{-1} \text{ergs}$$

A more realistic scenario

ISM turbulence: coherent length 50-100pc, mean B field 3-6µG

sub-Alfvenic ($M_A \sim \Delta B/B < 1$) turbulence, **anisotropic**

$$D_{zz} = D_{\parallel} = D_0 (E_e/1 \text{GeV})^q$$
$$D_{rr} = D_{\perp} = D_{zz} M_A^4$$

Diffusion coefficient -> Diffusion coefficient tensor

$$\frac{\partial N}{\partial t} = \nabla \cdot (\mathbf{D} \cdot \nabla N) - \frac{\partial}{\partial E_e} \left(\dot{E}_e N \right) + Q$$

Synchrotron radiation also becomes anisotropic

$$P = \frac{2q^4B^2\gamma^2\beta^2\sin^2\alpha}{3m^2c^3}$$

$$\omega_c = \frac{3\gamma^2 q B \sin \alpha}{2mc}$$

X-ray emission can be **reduced** significantly if the mean B field is roughly aligned with our line of sight

Rybicki & Lightman 1979

Horizontal: different viewing angle Vertical: different Alfvenic Mach Number

D_{//}=4x10²⁸ (E/1GeV)^{1/3}cm²/s B=3µG

Sub-alfvenic turbulence Mean B field well aligned with LOS

Mean B field in other TeV halos cannot be always aligned with LOS

RYL et al. 2019, PRL

A general picture for TeV halo

How many potential TeV halos in our Galaxy?

Selection Criteria:

$$F = \eta_v L_s / 4\pi d^2 > F_{lim}$$

 η_{γ} : Ratio of 100TeV luminosity to spindown luminosity

 η_v ~0.07% (for Geminga)

300 pulsars with estimate flux above 5yr sensitivity of LHAASO

Summary

- No significant diffuse X-ray emission around Geminga PWN has been detected by Chandra and XMM-Newton
- In the framework of isotropic diffusion, a highly turbulent region with very weak magnetic field is required.
 - hard to find physical interpretation
 - difficult to explain positron flux (unless with energy-independent diffusion coefficient)
- ➤ In the framework of anisotropic diffusion (more natural)
 - both diffuse X-ray and TeV emission can be explained with the typical ISM parameters
 - requirement: mean B field aligned with LOS
- Test the model with future observation of LHAASO and HAWC

Backup slides

#	NAME		PSRJ		DIST (kpc)	DIST_DM (kpc)		AGE (Yr)	EDOT (ergs/s)	C1
1	B1055-52	vl72	J1057-5226	vl72	0.09	0.09	ymw17	5.35e+05	3.0e+34	3.0964e-08
	J0633+1746	hh92	J0633+1746	hh92	0.19	0.14	ymw17	3.42e+05	3.2e+34	7.4107e-09
2	B0906-49	dmd+88	J0908-4913	dmd+88	1.00	1.02	ymw17	1.12e+05	4.9e+35	4.0965e-09
4	B0656+14	mlt+78	J0659+1414	mlt+78	0.29	0.16	ymw17	1.11e+05	3.8e+34	3.7775e-09
5	B1951+32	kcb+88	J1952+3252	kcb+88	3.00	3.22	ymw17	1.07e+05	3.7e+36	3.4370e-09
6	J1732-3131	<u>aaa+09c</u>	J1732-3131	<u>aaa+09c</u>	0.64	0.64	ymw17	1.11e+05		3.0616e-09
7	<u>B1742 - 30</u>	<u>kac+73</u>	J1745-3040	<u>kac+73</u>	0.20	2.34	ymw17	5.46e+05		1.7766e-09
8	J1740+1000	mca00	J1740+1000	<u>mca00</u>	1.23	1.23	ymw17	1.14e+05	2.3e+35	1.2710e-09
9	J1913+1011	<u>mhl+02</u>	J1913+1011	<u>mhl+02</u>	4.61	4.61	ymw17	1.69e+05	2.9e+36	1.1408e-09
10	B1259-63	<u>jlm+92</u>	J1302-6350	<u>jlm+92</u>	2.63	2.21	ymw17	3.32e+05	8.3e+35	1.0032e-09
11	J1741-2054	<u>aaa+09c</u>	J1741-2054	<u>aaa+09c</u>	0.30	0.27	ymw17	3.86e+05		8.8247e-10
12	<u> J0954 - 5430</u>	<u>mlc+01</u>	J0954-5430	<u>mlc+01</u>	0.43	0.43	ymw17	1.71e+05		7.2344e-10
13	<u>J2032+4127</u>	<u>aaa+09c</u>	J2032+4127	<u>aaa+09c</u>	1.33	4.62	ymw17	2.01e+05	1.5e+35	7.0894e-10
14	<u>J1831-0952</u>	<u>lfl+06</u>	J1831-0952	<u>lfl+06</u>	3.68	3.68	ymw17	1.28e+05		6.7907e-10
15	J1151-6108	<u>ncb+15</u>	J1151-6108	<u>ncb+15</u>	2.22	2.22	<u>ymw17</u>	1.57e+05	3.9e+35	6.6157e-10
16	B0114+58	stwd85	J0117+5914	stwd85	1.77	1.77	ymw17	2.75e+05		5.8708e-10
17	<u>B1822 - 09</u>	<u>dls72</u>	J1825-0935	<u>dls72</u>	0.30	0.26	ymw17	2.33e+05		4.1801e-10
18	<u>B0355+54</u>	<u>mth72</u>	J0358+5413	<u>mth72</u>	1.00	1.59	ymw17	5.64e+05		3.7621e-10
19	<u>J1509-5850</u>	<u>kbm+03</u>	J1509-5850	<u>kbm+03</u>	3.37	3.37	<u>ymw17</u>	1.54e+05		3.7543e-10
20	J1925+1720	<u>lbh+15</u>	J1925+1720	<u>lbh+15</u>	5.06	5.06	ymw17	1.15e+05	9.5e+35	3.1020e-10
21	<u>B0740-28</u>	<u>fss73</u>	J0742-2822	<u>fss73</u>	2.00	3.11	ymw17	1.57e+05		2.9261e-10
22	<u> J0855 - 4644</u>	<u>kbm+03</u>	J0855 - 4644	<u>kbm+03</u>	5.64	5.64	ymw17	1.41e+05		2.8910e-10
23	<u> B0940 - 55</u>	<u>wvl69</u>	J0942-5552	<u>wvl69</u>	0.30	0.41	ymw17	4.61e+05		2.8796e-10
24	<u>J1739-3023</u>	<u>mhl+02</u>	J1739-3023	<u>mhl+02</u>	3.07	3.07	ymw17	1.59e+05		2.6611e-10
25	J0538+2817	<u>fcwa95</u>	J0538+2817	<u>fcwa95</u>	1.30	0.95	<u>ymw17</u>	6.18e+05	4.9e+34	2.4240e-10
136	<u>J1853</u>	<u>-0004</u>	<u>hfs+04</u>		J1853 <i>-</i>	0004	hfs+	04	5.34	5.34
137	J1701	-3006E	cha03		11701-	3006E	cha0	3	7.05	4.76

J1530-5327

J2017+0603

J0024-7204F

mlc+01

cqj+11

mlr+91

138

139

140

J1530-5327

J2017+0603

B0021-72F

LHAASO 1-yr diff. flux sensitivity of point source @ 100TeV = 4e-14ergcm⁻²s⁻¹

ymw17 ymw17	2.88e+05 1.65e+08		6.1568e-11 6.0554e-11
ymw17	9.44e+05	8.5e+33	5.6650e-11
<u>ymw17</u>	5.74e+09	1.3e+34	5.5451e-11
<u>ymw17</u>	6.44e+08	1.4e+35	5.3211e-11

137 pulsars with "spindown flux > 5.7e-11 erg/cm^2/s (1yr sensitivity)

mlc+01

cqj+11

mlr+91

296	B0953-52	mlt+78	J0955-5304	<u>mlt+78</u>	0.40	0.40	ymw17	3.87e+06 2.2e+32	1.1495e-11
297	J1756-2225	<u>hfs+04</u>	J1756-2225	<u>hfs+04</u>	4.78	4.78	ymw17	1.22e+05 3.1e+34	1.1343e-11
298	J1544+4937	<u>brr+13</u>	J1544+4937	<u>brr+13</u>	2.99	2.99	ymw17	1.17e+10 1.2e+34	1.1222e-11
299	J1616-5017	<u>ncb+15</u>	J1616-5017	<u>ncb+15</u>	3.48	3.48	<u>ymw17</u>	1.67e+05 1.6e+34	1.1045e-11
300	<u>B1143-60</u>	<u>mlt+78</u>	J1146-6030	<u>mlt+78</u>	1.63	1.63	ymw17	2.42e+06 3.5e+33	1.1013e-11

1.12

1.40

4.69

1.12

1.40

2.54

Gamma-ray pulsar : 230+

Radio pulsar: 2600+

outer gap solid angle : 1 sr (gamma-ray) Polar cap solid angle : 0.1 sr (radio)

But emission of the TeV halo is not beamed!

total pulsar with detectable TeV halo:

10- 100 x observed number ~ 3000 - 30000

Gamma-ray flux + morphology + X-ray/radio flux

=> study mean B field direction and M_A

Credit: Jen Christiansen, Scientific American.

ermi-LAT observation on the TeV halo

D(100GeV)~ $2x10^{26}$ cm²/s, (Dt_{gem})^{1/2}~30pc ~ 7°

40°x40° ROI, 10-500GeV

Count map

Residual map

Produce spatial templates (on the premise of fitting HAWC's observation

$$\frac{\partial N(E_e,r,t)}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D(E_e,r) \frac{\partial N}{\partial r} \right) - \frac{\partial}{\partial E_e} \left(\dot{E_e} N \right) + Q(E_e,t) \delta(r)$$

Line of sight integration

$$f_{IC} \propto N_e P_{IC} = C E_e^{2-s} t_{\rm IC}^{-1}$$

$$P_{IC} = \frac{E_e}{t_{IC}}$$

$$N_e \approx E_e \frac{dN_e}{d\gamma_e} = CE_e^{1-s}$$

$$\begin{split} \frac{f_{IR}}{f_{CMB}} &= \left(\frac{E_{e,IR}}{E_{e,CMB}}\right)^{2-s} \frac{t_{IC,CMB}}{t_{IC,IR}} \\ E_{\gamma} &\simeq \frac{(E_e/m_ec^2)^2\epsilon}{1+\epsilon E_e/m_e^2c^4} \quad \begin{array}{c} \text{Considering} \\ \text{KN effect} \\ \text{(recoil)} \\ \end{split}$$

$$E_{e,IR}(20TeV) = 50TeV$$

 $E_{e,CMB}(20TeV) = 100TeV$

Distribution of 100GeV positron density in anisotropic diffusion scenario, assuming the global mean B field between Geminga and Earth is aligned with LOS (most optimistic case)

作

Energy-independent diffusion

10

100

energy (GeV)

1000

B=0.9µG