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ADD Large extra dimensions

2 24+n n
Mipy ~ MP_Z'_(4+n)R

PN T (1Tev>1+% -> Solution (ish) to the
Mew Hierarchy problem

N = 1: too large: mess up gravity on solar system scales

n > 1: still works



Hoop conjecture (Thorne)

If the impact parameter of two colliding particles is less than 2 times the gravitational radius, rn,
corresponding to their center-of-mass energy (Ecw), a black hole with a mass of the order of Ecm and
2 horizon radius, rn, will form.
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Black hole evaporation

These things do not live very long: 7, = d

'y

eV black hole has a ~ TeV Hawking Temperature

o1 i S g small BH

1) BEvaporates very fast

2) Evaporates to a few

| (~5-20) particles,
because they each carry
; | away an O(1) fraction of
03 ~ the BH mass.




Black hole evaporation

Evaporation spectrum is thermal: evaporation products
drawn from every degree of freedom in the SM
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Black hole evaporation

Evaporation spectrum is thermal: evaporation products
drawn from every degree of freedom in the SM

“2 (}))) Leptons
N g Neutrinos (invisible)
Gravitons (invisible, can escape into extra
it dimensions)
(é Photon, W, Z

3 generations, 3 colors, 2 polarizations:
strong particle emission very likely!

Quarks
Gluons

=118 d.o.f. + D(D — 3)/2 gravitons

Distinct signature at colliders: high-multiplicity state, with many
hadronic jets + some missing momentum



Collider searches

Method Reference n log,,(E«/eV) log,,(L/m)

Grav force |26] 2 12.5 —4.36
SN1987A  [27] 2 13.4 —6.18
3 12.4 —-9.10
NS cooling 28] 1 —4.35
2 —9.81
3 —11.6
4 —12.5
’ e Limited by CM energy
6 —13.4
CMS [20] 2 13.0
3 12.9
4 12.8
5) 12.8
6 12.7

Mack & McNees 1809.05089



Collider searches

Method Reference n log,,(E«/eV) log,,(L/m)

Grav force |26] 2 12.5 —4.36
SN1987A  [27] 2 13.4 —6.18
3 12.4 —-9.10
NS cooling 28] 1 —4.35
2 —9.81
3 —11.6
4 —12.5
’ e Limited by CM energy
6 —13.4
CMS [20] 2 13.0
3 12.9
4 12.8

S We could wait for a 100 TeV collider...
6 19.7 or let the cosmos do it for us!

Mack & McNees 1809.05089




. Black holes at IceCube (and beyond)



The main idea

52 v
\ \ ‘/
nucleus nucleus+stuff
Black hole evaporation: Electroweak event:

Mostly hadronic Mostly *not™ hadronic
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Pacific Ocean Neutrino Explorer (PONE)

OCEAN NETWOI

Discover the ocean. Understand

NEPTUNE Observatory

Clayoquot
Slope

Middle Valley

A40057000.m ‘
9

Endeavour

Al ~500 strings i
s S

V = ~50km3
. gl
Water/ properties o &é S
~ Antares AN
. L @
, & 4y @
volume available and (partly) cabled éj

RGSCOﬂi Il1lustration



“plum pudding” configuration:

PMTs inside the transparent detector

30 strings ¢
with 60 PMT
‘DOMS’ each

°
°

°
°

Cherenkov
light

IceCube Lab

50 m - _-_.__..__.._.__-:.-.;i ..... ———
:\ = _‘

' IceCube Array

|
)/AMANDA Il Array

L §
1450 m|______ i = / (precursor to IceCube)

} ' DeepCore

§
3
| ; /
; -
i ¥
¥

Eiffel Tower
8 |324m

2450 m
2820 m

lceCube Collaboration



“plum pudding” configuration:
PMTs inside the transparent detector

O
30 strings ® ¢

with 60 PMT @
‘DOMS’ each

Cherenkov
light

CONTINENTAL NEUTRINO OBSERVATORY

IceCube Lab

AMANDA Il Array
(precursor to IceCube)

IceCube Array

1450 m

DeepCore

qi e
s H T
i H
i : /
3
3 3=
H
> 3

Eiffel Tower
8 |324m

2450 m
2820 m

lceCube Collaboration

FROZENWATERHEXAGON



Black holes from neutrinos
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—vent rates

lceCube has seen ~120 HE events (30 TeV — 3 PeV) in 8 years
Flux decreases as E~2°. We need to go to higher energies
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Planned experiments that we have in mind:
lceCube Gen2: about 10x effective size of lceCube
Pacific Ocean Neutrino Experiment (o ONE? STRAW?): up to 50 kms3

Radio arrays (ARA, ARIANA) have the capacity to reach large effective volumes,
but events are harder to characterize



Travel to earth: flavour mixing

/ Source (056 - Q- aT)S




Standard neutrino-nucleus interactions

Neutral-current (NC)
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Standard neutrino-nucleus interactions

Neutral-current (NC) Charged-current (CC)
1% 1% I/f KI
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Final-state lepton:
electron: deposits E
muon: can travel ~ km
tau : It HE enough, can
travel then decay
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“vent topology y

OJ\’
Shower
or hadronic)

M/ Double bang:

~ when tau lepton travels far enough

Q/ and decays to e* or hadrons
(first db events reported 1908.05500)



Slack hole simulations

PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Highlights Recent Accepted Authors Referees Search Press About N

BlackMax: A black-hole event generator with rotation, recaoil, split
branes, and brane tension

De-Chang Dai, Glenn Starkman, Dejan Stojkovic, Cigdem Issever, Eram Rizvi, and Jeff Tseng
Phys. Rev. D 77, 076007 — Published 15 April 2008

ﬂ HTML Export Citation

Article References Citing Articles (44)

ANRCTDACT -

We modify BlackMax (aimed at collider searches) to handle
neutrino-nucleon collisions
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SH vs SM
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SH vs SM
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When BHs start being
produced, they will dominate

What does the reconstructed flavor composition look like
if ’m seeing black holes instead of electroweak events?



Reconstructed flavor composition (IC-Gen2 exposure)
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f SM Black hole x

Lepton carries away most
of the momentum Lepton only carries ~ 1/N
do of the total energy, where N
— peaks at . .
dy s the number of emitted
E, particles
high (1 —y) = —
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Muon track energy ratio
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Muon track energy ratio

SM events
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Double bang energy ratio
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Energy of Second bang
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Caveat: we only see this band:
Lower limit: tau decays too close to first
shower, and they are not distinguishable

Upper limit: Tau escapes the detector: no
second bang




Other crazy topologies that don’t occur in the SM

5 0w Multitrack events, when multiple muons are produced.
\Q/Y Because these events are highly collimated, angular
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see at best 0.1°)
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5 0w Multitrack events, when multiple muons are produced.
\Q/Y Because these events are highly collimated, angular
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separation is too small to see & (less that 0.01° — IC can
see at best 0.1°)
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Other crazy topologies that don’t occur in the SM

2
\Qf:

¢

5

Multitrack events, when multiple muons are produced.
Because these events are highly collimated, angular

separation is too small to see & (less that 0.01° — IC can
see at best 0.1°)

n-bang: multiple tau leptons decay hadronically, leaving a

string of cascades separated by d = cAt. These occur in
about 0.2% of black hole events.

Kebab: At least one high energy muon and tau are
produced, yielding several bangs and a track. This occurs in
about 3% of cases.

\b‘ﬁi Double black hole bang: If one of the decay products is 1)
s energetic enough and 2) can travel far enough, it can collide

and form a second black hole, again separated by d = cAt

These are rare, but If we see even one
we can suspect LEDs are involved!!



SM Black hole
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Cherenkov light echoes

First interaction of neutrinos in ice produces a large prompt Cherenkov
burst that lasts ~ 107’ S, proportional to the total event energy.
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First interaction of neutrinos in ice produces a large prompt Cherenkov
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Cherenkov light echoes

First interaction of neutrinos in ice produces a large prompt Cherenkov
burst that lasts ~ 107’ S, proportional to the total event energy.
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Muons produced during
hadronization and propagation
are low-energy, and theretore

ive ~ 107 %, leading to a
second muon echo as they
decay

Neutrons can live for up to .1 ms
before being captured, leading to
a third neutron capture echo



Analysis

BlackMax: SM:
predict electroweak cross
decay products sections

\ \
Pythia 8:

Decay heavy stuff,
hadronize

FLUKA:
inject products

INto ice, count
Cerenkov Photons




Cherenkov light echos

dL/dlog,,t

p—t
-
w

Cherenkov light generation for specific particles injected in the ice

Peaks 2 and 3 are
exactly correlated, so we
can use the peak ratio

E;/E, to determine how

hadronic/electronic a
shower IS




Light echos seen with an astrophysical neutrino
Spectrum
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Detection prospects (6 Large Extra Dimensions)

Combining muon energy ratios, (very few) double bang
energy ratios and light echos
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—xclusion prospects (6 Large Extra Dimensions)

Combining muon energy ratios, (very few) double bang
energy ratios and light echos
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Stability of the Universe

Higgs

f the Higgs potential
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Stability of the Universe

Higgs

f the Higgs potential

potential : actually puts us in a

near a MiCroscop
hole can make tu

Discovery of a MBH at neutrino telescopes,

IcC b

ne

combined with the fact that we are all not dead

—> the Higgs vacuum is likely stable

metastable vacuum, the

extremely high curvature

ack
ing

to true vacuum much
more probable.



Summary

- The next generation of large neutrino telescopes has the
capacity to probe large extra dimensions.

- There are unigue, interesting signatures in neutrino telescopes
that have never been explored!

- Only tens to hundreds of events above ~5 PeV required

- Radio detectors (IC radio array, GRAND, etc) have potential
for very large exposures, but it’s trickier to extract information

- |f we see a MBH, we can infer some information about the
Higgs vacuum at high energies
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