

#### Probing Large Extra Dimensions with Large Neutrino Telescopes

**Aaron C. Vincent** — TeVPA 2019, Sydney NSW — December 5 2019





#### **Based on work with**



Ningqiang Song





Katie Mack



1912.XXXX (Mack, Song & ACV)

See also 1907.08628 (Song & ACV) 1. Large Extra Dimensions

#### Large Extra Dimensions (LEDs)

#### Arkani-Hamed, Dimopoulos, Dvali



If the SM (us) is confined to a 3-dimensional brane

#### Large Extra Dimensions (LEDs)

#### Arkani-Hamed, Dimopoulos, Dvali



If the SM (us) is confined to a 3-dimensional brane



compositive 
$$V(r) \sim \frac{m_1 m_2}{M_{Pl(4+n)}^{n+2}} \frac{1}{r^{n+1}}, \ (r \ll R).$$

$$V(r) \sim \frac{m_1 m_2}{M_{Pl(4+n)}^{n+2} R^n} \frac{1}{r}, (r \gg R)$$

#### ADD Large extra dimensions

$$M_{Pl}^2 \sim M_{Pl(4+n)}^{2+n} R^n$$

$$R \sim 10^{\frac{30}{n} - 17} \text{cm} \times \left(\frac{1 \text{TeV}}{m_{EW}}\right)^{1 + \frac{2}{n}}$$

-> Solution (ish) to the Hierarchy problem

n = 1: too large: mess up gravity on solar system scales

n > 1: still works

#### Hoop conjecture (Thorne)

If the impact parameter of two colliding particles is less than 2 times the gravitational radius, r<sub>h</sub>, corresponding to their center-of-mass energy (E<sub>CM</sub>), a black hole with a mass of the order of E<sub>CM</sub> and horizon radius, r<sub>h</sub>, will form.





Contrast with regular 3+1 dim BH

$$\text{PDFs} \qquad r_s = 2G \times \text{TeV} \sim 10^{-35} \text{GeV}^{-1}$$
 
$$\sigma^{pp \to BH} = \int_{M^2/s}^1 du \int_u^1 \frac{dv}{v} \pi b_{\text{max}}^2 \sum_{i,j} f_i(v,Q) f_j(u/v,Q)$$

These things do not live very long:  $T_H = \frac{d-2}{r_h}$ 

TeV black hole has a ~ TeV Hawking Temperature



So a small BH

- 1) Evaporates very fast
  - 2) Evaporates to a few (~5-20) particles, because they each carry away an O(1) fraction of the BH mass.

Evaporation spectrum is *thermal:* evaporation products drawn from every degree of freedom in the SM



Leptons

Neutrinos (invisible)

Gravitons (invisible, can escape into extra

dimensions)

Photon, W, Z

Quarks

Gluons

Evaporation spectrum is *thermal:* evaporation products drawn from every degree of freedom in the SM



Leptons

Neutrinos (invisible)

Gravitons (invisible, can escape into extra

dimensions)

Photon, W, Z

Quarks

Gluons



3 generations, 3 colors, 2 polarizations: strong particle emission very likely!

Evaporation spectrum is *thermal:* evaporation products drawn from every degree of freedom in the SM



Leptons

Neutrinos (invisible)

Gravitons (invisible, can escape into extra

dimensions)

Photon, W, Z

Quarks Gluons



3 generations, 3 colors, 2 polarizations: strong particle emission very likely!

= 118 d.o.f. + 
$$D(D-3)/2$$
 gravitons

Evaporation spectrum is *thermal:* evaporation products drawn from every degree of freedom in the SM



Leptons

Neutrinos (invisible)

Gravitons (invisible, can escape into extra

dimensions)

Photon, W, Z

Quarks Gluons



3 generations, 3 colors, 2 polarizations: strong particle emission very likely!

= 118 d.o.f. + D(D-3)/2 gravitons

Distinct signature at colliders: high-multiplicity state, with many hadronic jets + some missing momentum

#### Collider searches

# $\frac{1}{n \cdot \log \cdot C}$

| Method     | Reference | n | $\log_{10}(E_*/\text{eV})$ | $\log_{10}(L/\mathrm{m})$ |
|------------|-----------|---|----------------------------|---------------------------|
| Grav force | [26]      | 2 | 12.5                       | -4.36                     |
| SN1987A    | [27]      | 2 | 13.4                       | -6.18                     |
|            |           | 3 | 12.4                       | -9.10                     |
| NS cooling | [28]      | 1 |                            | -4.35                     |
|            |           | 2 |                            | -9.81                     |
|            |           | 3 |                            | -11.6                     |
|            |           | 4 |                            | -12.5                     |
|            |           | 5 |                            | -13.0                     |
|            |           | 6 |                            | -13.4                     |
| CMS        | [29]      | 2 | 13.0                       |                           |
|            |           | 3 | 12.9                       |                           |
|            |           | 4 | 12.8                       |                           |
|            |           | 5 | 12.8                       |                           |
|            |           | 6 | 12.7                       |                           |



Limited by CM energy

#### Collider searches

# extra dimensions

| Method     | Reference | n | $\log_{10}(E_*/\text{eV})$ | $\log_{10}(L/\mathrm{m})$ |
|------------|-----------|---|----------------------------|---------------------------|
| Grav force | [26]      | 2 | 12.5                       | -4.36                     |
| SN1987A    | [27]      | 2 | 13.4                       | -6.18                     |
|            |           | 3 | 12.4                       | -9.10                     |
| NS cooling | [28]      | 1 |                            | -4.35                     |
|            |           | 2 |                            | -9.81                     |
|            |           | 3 |                            | -11.6                     |
|            |           | 4 |                            | -12.5                     |
|            |           | 5 |                            | -13.0                     |
|            |           | 6 |                            | -13.4                     |
| CMS        | [29]      | 2 | 13.0                       |                           |
|            |           | 3 | 12.9                       |                           |
|            |           | 4 | 12.8                       |                           |
|            |           | 5 | 12.8                       |                           |
|            |           | 6 | 12.7                       |                           |



Limited by CM energy

We could wait for a 100 TeV collider... or let the cosmos do it for us!

Mack & McNees 1809.05089

| 2. E | Black | holes | at Ice( | Cube ( | (and k | eyonc | <b>d</b> ) |
|------|-------|-------|---------|--------|--------|-------|------------|
|      |       |       |         |        |        |       |            |

#### The main idea





Black hole evaporation: Mostly hadronic Electroweak event: Mostly \*not\* hadronic

















#### Pacific Ocean Neutrino Explorer (PONE)



#### "plum pudding" configuration: PMTs inside the transparent detector



#### "plum pudding" configuration: PMTs inside the transparent detector







IceCube Collaboration

#### Black holes from neutrinos



#### Event rates

IceCube has seen ~120 HE events (30 TeV - 3 PeV) in 8 years Flux decreases as  $E^{-2.5}$ . We need to go to higher energies

Very high energies Very high exposures



#### Planned experiments that we have in mind:

- IceCube Gen2: about 10x effective size of IceCube
- Pacific Ocean Neutrino Experiment (pONE? STRAW?): up to 50 km<sup>3</sup>

Radio arrays (ARA, ARIANA) have the capacity to reach large effective volumes, but events are harder to characterize

#### Travel to earth: flavour mixing



#### Standard neutrino-nucleus interactions



#### Standard neutrino-nucleus interactions





Final-state lepton:

electron: deposits E

muon: can travel ~ km

tau: If HE enough, can

travel then decay

#### Standard neutrino-nucleus interactions







Final-state lepton:

**electron**: deposits E

muon: can travel ~ km

tau: If HE enough, can

travel then decay

#### Event topology



Shower (electronic or hadronic)



**Muon track** 



#### Double bang:



when tau lepton travels far enough and decays to  $e^\pm$  or hadrons (first db events reported 1908.05506)

#### Black hole simulations



We modify BlackMax (aimed at collider searches) to handle neutrino-nucleon collisions

#### SM

#### Black hole

#### Showers







some electrons

#### Tracks





#### doublebangs





#### BH vs SM



|                            | shower | track | double bang |
|----------------------------|--------|-------|-------------|
| $\nu_e \ { m SM}$          | 28.58  | 0     | 0           |
| $\nu_{\mu}   \mathrm{SM}$  | 2.31   | 8.31  | 0           |
| $\nu_{\tau}   \mathrm{SM}$ | 5.07   | 5.39  | 2.83        |
| All Flavor Total SM        | 35.96  | 13.70 | 2.83        |
| All Flavor Total BH        | 62.96  | 36.36 | 0.20        |



When BHs start being produced, they will dominate

#### BH vs SM



|                           | shower | track | double bang |
|---------------------------|--------|-------|-------------|
| $\nu_e \ { m SM}$         | 28.58  | 0     | 0           |
| $\nu_{\mu}   \mathrm{SM}$ | 2.31   | 8.31  | 0           |
| $\nu_{	au}   \mathrm{SM}$ | 5.07   | 5.39  | 2.83        |
| All Flavor Total SM       | 35.96  | 13.70 | 2.83        |
| All Flavor Total BH       | 62.96  | 36.36 | 0.20        |



When BHs start being produced, they will dominate

What does the reconstructed flavor composition look like if I'm seeing black holes instead of electroweak events?

#### Reconstructed flavor composition (IC-Gen2 exposure)

|                           | shower | track | double bang |
|---------------------------|--------|-------|-------------|
| $\nu_e   { m SM}$         | 28.58  | 0     | 0           |
| $\nu_{\mu}   \mathrm{SM}$ | 2.31   | 8.31  | 0           |
| $\nu_{	au}   \mathrm{SM}$ | 5.07   | 5.39  | 2.83        |
| All Flavor Total SM       | 35.96  | 13.70 | 2.83        |
| All Flavor Total BH       | 62.96  | 36.36 | 0.20        |

More tracks than SM

Fewer double-bangs

#### Reconstructed flavor composition (IC-Gen2 exposure)

|                           | shower | track | double bang |
|---------------------------|--------|-------|-------------|
| $\nu_e \ { m SM}$         | 28.58  | 0     | 0           |
| $\nu_{\mu}   \mathrm{SM}$ | 2.31   | 8.31  | 0           |
| $\nu_{	au}   \mathrm{SM}$ | 5.07   | 5.39  | 2.83        |
| All Flavor Total SM       | 35.96  | 13.70 | 2.83        |
| All Flavor Total BH       | 62.96  | 36.36 | 0.20        |

## More tracks than SM

Fewer double-bangs



#### Reconstructed flavor composition (IC-Gen2 exposure)

|                           | shower | track | double bang |
|---------------------------|--------|-------|-------------|
| $\nu_e \ { m SM}$         | 28.58  | 0     | 0           |
| $\nu_{\mu} \text{ SM}$    | 2.31   | 8.31  | 0           |
| $\nu_{	au}   \mathrm{SM}$ | 5.07   | 5.39  | 2.83        |
| All Flavor Total SM       | 35.96  | 13.70 | 2.83        |
| All Flavor Total BH       | 62.96  | 36.36 | 0.20        |

### More tracks than SM

#### Fewer double-bangs





#### SM

Lepton carries away most of the momentum  $\frac{d\sigma}{dy}$  peaks at

$$dy'$$
high  $(1-y) \equiv \frac{E_{\ell}}{E_{\nu}}$ 

#### Black hole

Lepton only carries  $\sim 1/N$  of the total energy, where N is the number of emitted particles

#### Tracks





#### doublebangs





### Muon track energy ratio

shower





Hadronic (shower) energy

## Muon track energy ratio

shower





Hadronic (shower) energy



#### Double bang energy ratio







#### Double bang energy ratio





**Multitrack** events, when multiple muons are produced. Because these events are highly collimated, angular separation is too small to see (less that 0.01° — IC can see at best 0.1°)



**Multitrack** events, when multiple muons are produced. Because these events are highly collimated, angular separation is too small to see (less that 0.01° — IC can see at best 0.1°)

**n-bang:** multiple tau leptons decay hadronically, leaving a string of cascades separated by  $d=c\Delta t$ . These occur in about 0.2% of black hole events.



**Multitrack** events, when multiple muons are produced. Because these events are highly collimated, angular separation is too small to see (less that 0.01° — IC can see at best 0.1°)

**n-bang:** multiple tau leptons decay hadronically, leaving a string of cascades separated by  $d=c\Delta t$ . These occur in about 0.2% of black hole events.

**Kebab:** At least one high energy muon and tau are produced, yielding several bangs and a track. This occurs in about 3% of cases.



**Multitrack** events, when multiple muons are produced. Because these events are highly collimated, angular separation is too small to see (less that 0.01° — IC can see at best 0.1°)

**n-bang:** multiple tau leptons decay hadronically, leaving a string of cascades separated by  $d=c\Delta t$ . These occur in about 0.2% of black hole events.

**Kebab:** At least one high energy muon and tau are produced, yielding several bangs and a track. This occurs in about 3% of cases.

**Double black hole bang:** If one of the decay products is 1) energetic enough and 2) can travel far enough, it can collide and form a second black hole, again separated by  $d=c\Delta t$ 



**Multitrack** events, when multiple muons are produced. Because these events are highly collimated, angular separation is too small to see (less that 0.01° — IC can see at best 0.1°)

**n-bang:** multiple tau leptons decay hadronically, leaving a string of cascades separated by  $d=c\Delta t$ . These occur in about 0.2% of black hole events.

**Kebab:** At least one high energy muon and tau are produced, yielding several bangs and a track. This occurs in about 3% of cases.

**Double black hole bang:** If one of the decay products is 1) energetic enough and 2) can travel far enough, it can collide and form a second black hole, again separated by  $d=c\Delta t$ 

These are rare, but if we see even one we can suspect LEDs are involved!!

#### SM

#### Black hole

Showers







some electrons

What about these showers?

SM: hadronic shower have lower energies, electromagnetic showers have high energies

BH: shower should look like a very big hadronic shower

#### Cherenkov light echoes

First interaction of neutrinos in ice produces a large **prompt** Cherenkov burst that lasts  $\sim 10^{-7}$  s, proportional to the total event energy.



Li, Bustamante, Beacom 1606.06290

#### Cherenkov light echoes

First interaction of neutrinos in ice produces a large **prompt** Cherenkov burst that lasts  $\sim 10^{-7}$  s, proportional to the total event energy.



Li, Bustamante, Beacom 1606.06290

Muons produced during hadronization and propagation are low-energy, and therefore live  $\sim 10^{-6}$ s, leading to a second **muon echo** as they decay

#### Cherenkov light echoes

First interaction of neutrinos in ice produces a large **prompt** Cherenkov burst that lasts  $\sim 10^{-7}$  s, proportional to the total event energy.



Li, Bustamante, Beacom 1606.06290

Muons produced during hadronization and propagation are low-energy, and therefore live  $\sim 10^{-6}$ s, leading to a second **muon echo** as they decay

Neutrons can live for up to .1 ms before being captured, leading to a third **neutron capture echo** 

#### Analysis



#### Cherenkov light echos

Cherenkov light generation for specific particles injected in the ice



Peaks 2 and 3 are exactly correlated, so we can use the **peak ratio**  $E_3/E_1$  to determine how hadronic/electronic a shower is

# Light echos seen with an astrophysical neutrino spectrum



#### **Neutral current events**

above the hadron line since hadronization yields mostly hadrons + a few  $\gamma$ . Low energy because neutrino takes away most of the E.

Charged current events: much lower muon/neutron light echo, because most energy injection is from an electron or positron

**Black Holes**: Most of the energy is hadronic: high energy and large Cherenkov echo.

#### Detection prospects (6 Large Extra Dimensions)

Combining muon energy ratios, (very few) double bang energy ratios and light echos



#### Exclusion prospects (6 Large Extra Dimensions)

Combining muon energy ratios, (very few) double bang energy ratios and light echos



#### Stability of the Universe



If the Higgs potential actually puts us in a metastable vacuum, the extremely high curvature near a microscopic black hole can make tunnelling to true vacuum much more probable.

#### Stability of the Universe



If the Higgs potential actually puts us in a metastable vacuum, the extremely high curvature near a microscopic black hole can make tunnelling to true vacuum much more probable.

Discovery of a MBH at neutrino telescopes, combined with the fact that we are all not dead —> the Higgs vacuum is likely stable

#### Summary

- The next generation of large neutrino telescopes has the capacity to probe large extra dimensions.
- There are unique, interesting signatures in neutrino telescopes that have never been explored!
- Only tens to hundreds of events above ~5 PeV required
- Radio detectors (IC radio array, GRAND, etc) have potential for very large exposures, but it's trickier to extract information
- If we see a MBH, we can infer some information about the Higgs vacuum at high energies

# Thank You

