Photo-Hadronic Neutrino Production in Blazars

Markus Böttcher

North-West University
Potchefstroom, South Africa

Anita Reimer

University of Innsbruck, Austria

Sara Buson

University of Würzburg

Hassan Abdalla

North-West University, Potchefstroom

Supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Innovation and the National Research Foundation of South Africa.

Neutrino Production in Blazars

IceCube-170922A

TXS 0506+056

(IceCube et al. 2018)

The Neutrino Flare from TXS 0506+056

(IceCube et al. 2018b)

Search in archival data => Evidence for $\sim 13 \pm 5$ excess neutrinos from the direction of TXS 0506+056 in 2014 – 2015 (~ 4 months around December 2014).

=> Well determined flux and spectrum!

The Neutrino Flare from TXS 0506+056

Spectral Energy Distribution of TXS 0506+056

General Scenario

Earth

$$\delta = \frac{1}{\Gamma (1 - \beta \cos \theta)}$$

$$E_{obs} = \delta E'$$

Quasar 3C175 YLA 6cm image (c) NRAO 1996

Photo-Pion Production

Photo-Pion Production

Center-of-Momentum energy

For realistic target photon fields, most interactions occur near Δ^+ resonance.

Photo-pion production - Energetics

At Δ^+ resonance:

$$s = E'_p E'_t (1 - \beta_p' \mu) \sim E'_p E'_t \sim E_{\Delta^+}^2 = (1232 \text{ MeV})^2$$

and

$$E'_{v} \sim 0.05 E'_{p}$$

 \Rightarrow To produce IceCube neutrinos (~ 100 TeV \rightarrow E $_{v}$ = 10¹⁴ E $_{14}$ eV): (i.e., E' $_{v}$ = 10 E $_{14}$ δ_{1} -1 TeV)

Need protons with $E'_p \sim 200 E_{14} \delta_1^{-1} \text{ TeV} => \text{PeV CRs}$

and target photons with $E'_t \sim 1.6 E_{14}^{-1} \delta_1 \text{ keV} => \chi - \text{rays}$

Cosmic-Ray Acceleration in Blazars

- No conclusive correlation between AGN and UHECR arrival directions observed.
- To produce > 100 TeV neutrinos → Need PeV protons
- Simplest constraint: Confinement (Hillas Criterion):

$$E'_n$$
 < Z e B R = 3 × 10¹⁸ B₂ R₁₆ eV (Z = 1 for protons) for hadronic blazar models with B = 100 B₂ G R = 10¹⁶ R₁₆ cm

 \Rightarrow UHECRs (E = δ E' > 10¹⁹ eV): Plausible for heavy elements (Z >> 1)(e.g., Rodrigues et al., 2018: ApJ, 854, 54)

Photo-Pion Models for TXS 0506+056

Models producing neutrinos and gamma-rays through the same proton population, predict too high neutrino energies!

Photo-Pion Models for TXS 0506+056

Models with p- γ induced γ -ray emission over-produce X-rays due to cascades!

Photo-Pion Models for TXS 0506+056

(Gao et al. 2018, Nature Astron., 3, 88)

(Keivani et al. 2018, ApJ, 864, 84)

Models producing neutrinos and gamma-rays require leptonically dominated gamma-ray production!

The py Efficiency Problem

- Efficiency for protons to undergo py interaction ~ $\tau_{p\gamma}$ = ℓ_{esc} $\sigma_{p\gamma}$ n_{ph}
- Likelihood of γ -ray photons to be absorbed $\tau_{\gamma\gamma} = R \sigma_{\gamma\gamma} n_{ph}$

$$\frac{\tau_{p\gamma}}{\tau_{\gamma\gamma}} = \frac{\sigma_{p\gamma} \ell_{\rm esc}}{\sigma_{\gamma\gamma} R} \approx \frac{1}{300} \frac{\ell_{\rm esc}}{R}$$

 $\ell_{\rm esc}$ = average length travelled by protons until escape

at
$$E_{\gamma} \sim \frac{m_e^2 c^4}{E_t} \sim 3.3 \times 10^{-5} E_{\nu} \leftarrow \sim \text{GeV} - \text{TeV } \gamma - \text{rays}$$

The py Efficiency Problem

$$\frac{\tau_{py}}{\tau_{vv}} = \frac{\sigma_{py}\ell_{\rm esc}}{\sigma_{vv}R} \approx \frac{1}{300} \frac{\ell_{\rm esc}}{R}$$

 $\ell_{\rm esc}$ = average length travelled by protons until escape

 $\ell_{\rm esc}$ from random walk:

mean free path $\lambda = \eta(\gamma) r_g(\gamma)$

Number of scatterings to escape, N_s : $R = \sqrt{N_s} \lambda$

$$\ell_{\rm esc} = N_{\rm s} \lambda = \frac{R^2}{\lambda} \approx 3.3 \times 10^{21} \ \eta(\gamma)^{-1} \ {\rm R}_{16}^2 \ {\rm B}_2 \ {\rm E}_{15}^{-1} \ {\rm cm}$$

$$\Rightarrow \frac{\tau_{p\gamma}}{\tau_{\gamma\gamma}} = \frac{\sigma_{p\gamma}\ell_{esc}}{\sigma_{\gamma\gamma}R} \approx 1.1 \times 10^3 \, \eta(\gamma)^{-1} \, R_{16} \, B_2 \, E_{15}^{-1}$$

 \Rightarrow Proton pγ efficiency can be >> $\tau_{\gamma\gamma}$, but misleading, as $t_{cool,p\gamma}$ and $t_{esc,p}$ >> R/c

The py Efficiency Problem

Relevant constraint for proton bulk kinetic luminosity:

$$L'_{\nu} \approx \frac{1}{2} mpc^2 \int d\gamma_p Np(\gamma_p) |\gamma_{p,p\gamma}| = L'_{\nu} \text{ (obs)}$$

$$\dot{\gamma}_{p,p\gamma} \approx -c < \sigma_{p\gamma} f > \frac{u'_{ph}}{m_e c^2} \gamma_p$$

$$2014-15 \text{ neutrino}$$
flare of TXS 0506+056

$$\Rightarrow L_p u'_{ph} \approx 1.4 \times 10^{52} \, \delta_1^{-4} \, \Gamma_1^2 \, R_{16}^{-1} \, \left(\frac{erg}{s}\right) \left(\frac{erg}{cm^3}\right)$$

Constrained from observed X-ray flux

(Reimer et al. 2019: ApJ, 881, 46)

Cascading Constraints for TXS 0506+056

 $p\gamma$ neutrino production in TXS 0506+056 possible with strong **external UV/X-ray radiation field**, but under-predicts Fermi γ -rays.

=> No neutrino – γ -ray correlation expected!

Requires $L_{p,kin} \sim 1.5 \times 10^{49} \, \delta_1^{-4} \, R_{t,17}^{2} \, R_{16}^{-1} \, erg/s$

(Reimer et al. 2019: ApJ, 881, 46; See also last year's TeVPA talk)

=> External Radiation field Doppler boosted and strongly anisotropic in co-moving frame

Effects of the Anisotropic Radiation Field

Primary effect: $(1 - \mu) \rightarrow 2$ ~ Factor 2 reduction of interaction threshold

Effects of the Anisotropic Radiation Field

Reduction of interaction time scales primarily for pion production near threshold; Negligible effect at Δ^+ resonance and above.

<u>Summary</u>

- Production of IceCube neutrinos requires
 - Protons of ~ PeV energies (not UHECRs!)
 - Target photons of co-moving UV / X-ray energies
- No correlation between γ -ray and neutrino activity necessarily expected
- TXS 0506+056 neutrino flare of 2014-15 strongly favours UV / soft X-ray target photon field external to the jet
- Effects of the anisotropic radiation field properly captured by simply accounting for Doppler boosting.

