### A New Method for an Untriggered, **Source Stacking** Search for **Neutrino Flares**

William Luszczak, Jim Braun, Albrecht Karle TeVPA Neutrino Parallel, 12/3/19









50 m



#### IceCube Laboratory

Data is collected here and sent by satellite to the data warehouse at UW-Madison

1450 m



Digital Optical Module (DOM)

5,160 DOMs deployed in the ice

2450 m



#### IceCube Events: Signal and Background

- Northern sky ("upgoing"):
  - Astrophysical neutrinos (signal)
  - Atmospheric neutrinos (background)
- Sample is high statistics but low purity
- Attempt to distinguish between astrophysical and atmospheric neutrinos on a statistical basis



#### **Existing Clustering Analyses**

- September 2017: IceCube observes a high energy neutrino originating from the direction of a flaring blazar (TXS 0506+056)
- ~3 sigma neutrino flare from archival data in 2014-2015
  - No gamma ray counterpart observed for this flare



#### A New Method: "Multiflare Stacking"

- A single flare search (old) will find the most significant flare for a given source
  - Most sensitive to the case where sources flare 0-1 times on average
- Multiflare stacking (new) attempts to use information from <u>all</u> flares
  - Most sensitive to the case where sources flare >2 times on average



| t <sub>o</sub> | Δt | p-val | A single flare search will only report this |
|----------------|----|-------|---------------------------------------------|
| 25             | 10 | 1e-3  | value                                       |
| 43             | 5  | 2e-3  |                                             |
| 75             | 10 | 2e-3  |                                             |
| 13             | 5  | 3e-3  | Multiflare stacking attempts to combine     |
| 94             | 15 | 4e-3  | information from all                        |
|                |    |       | flares                                      |

- ICRC proceedings:
  - https://pos.sissa.it/358/950/pdf
- Expand on single flare method:
  - Define a set of box-shaped test windows, each starting and ending on an event



- ICRC proceedings:
  - https://pos.sissa.it/358/950/pdf
- Expand on single flare method:
  - Define a set of box-shaped test windows, each starting and ending on an event
  - Calculate a flare test statistic for each window (TS<sub>i</sub>)



$$\mathcal{L}(n_s, \gamma, \Delta t_j) = \prod_{i=1}^{N} \frac{n_s}{N} S_i + (1 - \frac{n_s}{N}) B_i$$

$$S_i = R_i(\vec{r_i} | \vec{r_o}) \times \mathcal{E}(E_i | \gamma) \times \mathcal{T}(t_i | t_o, \Delta t)$$

Spatial PDF ("What is the probability that an event at **r**<sub>i</sub> originated from **r**<sub>i</sub>") Energy PDF ("What is the probability that an event with energy  $E_{\rm i}$  originated from a source with spectral index  $\gamma$ ?")

Temporal PDF ("What is the probability that an event at  $t_{\rm o}$ , with width  $\Delta t$ ?")

- ICRC proceedings:
  - https://pos.sissa.it/358/950/pdf
- Expand on single flare method:
  - Define a set of box-shaped test windows, each starting and ending on an event
  - Calculate a flare test statistic for each window (TS<sub>i</sub>)



$$\mathcal{L}(n_s, \gamma, \Delta t_j) = \prod_{i=1}^{N} \frac{n_s}{N} S_i + (1 - \frac{n_s}{N}) B_i$$

$$TS_{j}|_{\Delta t_{j}} = -2 \log \left[ \frac{\Delta T_{\text{data}}}{\Delta t_{j}} \times \frac{\mathcal{L}(\vec{x}_{s}, n_{s} = 0)}{\mathcal{L}(\vec{x}_{s}, \hat{n}_{s}, \hat{\gamma}_{s})} \right]$$

- ICRC proceedings:
  - https://pos.sissa.it/358/950/pdf
- Expand on single flare method:
  - Define a set of box-shaped test windows, each starting and ending on an event
  - Calculate a flare test statistic for each window (TS<sub>i</sub>)
  - Sum TS<sub>j</sub> associated with nonoverlapping, positive TS<sub>j</sub> flares only
    - If two signal-like flares overlap, only take TS<sub>j</sub>, ns<sub>j</sub> from the flare with the larger TS<sub>i</sub> value



$$\mathcal{L}(n_s, \gamma, \Delta t_j) = \prod_{i=1}^{N} \frac{n_s}{N} S_i + (1 - \frac{n_s}{N}) B_i$$

$$TS_{j}|_{\Delta t_{j}} = -2 \log \left[ \frac{\Delta T_{\text{data}}}{\Delta t_{j}} \times \frac{\mathcal{L}(\vec{x}_{s}, n_{s} = 0)}{\mathcal{L}(\vec{x}_{s}, \hat{n}_{s}, \hat{\gamma}_{s})} \right]$$

$$\widetilde{TS}_{new} = \sum_{j|TS_j > 0} TS_j$$

#### 3LAC Blazars: Results

- Northern sky 3LAC blazars (1023 sources)
- Result associated with stacking entire catalog:
  - p-value = 0.05736 (1.57 sigma)
- Result associated with optimizing number of sources:
  - k (best fit number of sources) = 125
  - p-value = 0.06254 (1.53
    sigma)





#### Blazar Catalog Results: Top 10 Sources

| Name                  | RA     | Dec   | Class   | TS    | ns    | p-val (pre-trial) |
|-----------------------|--------|-------|---------|-------|-------|-------------------|
| 1RXS J154604.6+081912 | 236.52 | 8.32  | bll     | 52.08 | 53.49 | 8.11e-5           |
| GB6 J0723+2859        | 110.97 | 28.99 | fsrq    | 47.75 | 40.48 | 4.58e-4           |
| RBS 1467              | 227.18 | 27.15 | bll     | 46.55 | 55.11 | 3.05e-4           |
| RBS 1558              | 241.59 | 56.51 | bll     | 41.48 | 28.88 | 1.91e-3           |
| PMN J2324+0801        | 351.18 | 8.03  | bll     | 35.40 | 28.15 | 3.11e-3           |
| B2 2214+24B           | 334.25 | 24.36 | bll     | 39.18 | 36.90 | 3.78e-3           |
| GB6 J0850+4855        | 132.50 | 48.92 | bll     | 37.43 | 38.18 | 4.75e-3           |
| 4C +20.25             | 171.49 | 20.10 | fsrq    | 37.28 | 27.83 | 5.02e-3           |
| MG2 J094148+2728      | 145.45 | 27.48 | fsrq    | 36.01 | 60.58 | 5.12e-3           |
| TXS 2241+406          | 341.05 | 40.95 | bll     | 36.12 | 22.61 | 5.22e-3           |
| TXS 0213+619          | 34.26  | 62.19 | bcu III | 37.38 | 30.15 | 5.32e-3           |

#### 3LAC Blazars: Flare Curves

- Can use this to produce neutrino "light curves" ("flare curves")
- TXS 0506+056 is #20 in terms of multiflare significance
  - 3.5 sigma untriggered flare in 2014/15
  - DOI:10.1126/science.aat2890







## "Self-Triggered" Catalog: Results

- Use locations of northern sky IceCube events with reconstructed energy > 200 TeV as "sources" (32 locations)
  - Similar to analysis done by Martina Karl: https://pos.sissa.it/358/929/pdf
- Result associated with stacking entire catalog:
  - p-value = 0.05211 (1.62 sigma)
- Result associated with optimizing number of sources:
  - k (best fit number of sources) = 4
  - p-value: 0.01664 (2.13 sigma)

| RA     | Dec   | TS    | ns    | P-value<br>(pre-trial) |
|--------|-------|-------|-------|------------------------|
| 36.69  | 18.32 | 40.75 | 47.21 | .00197                 |
| 272.14 | 35.66 | 34.36 | 30.71 | .00729                 |
| 170.19 | 27.85 | 34.30 | 45.75 | .00834                 |
| 93.26  | 16.33 | 28.70 | 30.02 | .02667                 |





#### "Self-Triggered" Catalog: Flare Curves



\*Red line marks the arrival time of the high-energy "seed" event that defines the "source" location

### **Existing Clustering Analyses**

|                               | Time Independent                                                 | Untriggered Time-<br>Dependent                         |
|-------------------------------|------------------------------------------------------------------|--------------------------------------------------------|
| Single-<br>Source<br>Searches | "Standard" PS analysis<br>(DOI: 10.3847/1538-<br>4357/835/2/151) | Single flare analysis<br>(DOI:10.1126/science.aat2890) |
| Source<br>Stacking            | Blazar catalog analysis<br>(DOI:10.3847/1538-<br>4357/835/1/45)  | This analysis!<br>(Multiflare stacking)                |

#### Summary and Conclusion

- New method (multiflare stacking) allows us to perform an untriggered, time-dependent, source stacking search for neutrino flares
- New method applied to two different catalogs:
  - Northern sky 3LAC blazars:
    - p=0.05736 (full catalog)
    - p=0.06254 (k=125 sources)
  - "Self-triggered" catalog:
    - p=0.05211 (full catalog)
    - p=0.01664 (k=4 sources)
- Paper in progress, plan to publish in ApJ in early 2020
  - "Flare curves" produced for each source, planned for release alongside paper
- Full multiflare skymap in the works
  - Every flare, everywhere

### Thanks for listening!

### Backup Slides

#### Hypothesis Testing for Flares

Past analyses use a likelihood based construction to attempt to fit a **single flare** to the data:

$$\mathcal{L}(n_s, \gamma, t_o, \Delta t) = \prod_{i=1}^{N} \left[ \frac{n_s}{N} S_i + (1 - \frac{n_s}{N}) B_i \right]$$

$$S_i = R_i(\vec{r_i}|\vec{r_o}) \times \mathcal{E}(E_i|\gamma) \times \mathcal{T}(t_i|t_o, \Delta t)$$

$$B_i = \frac{1}{\Omega \Delta T} \mathcal{E}(E_i | Atm)$$

Spatial PDF ("What is the probability that an event at  $\mathbf{r}_{i}$  originated from  $\mathbf{r}_{o}$ ")

Energy PDF ("What is the probability that an event with energy  $E_i$  originated from a source with spectral index  $\gamma$ ?")

Temporal PDF ("What is the probability that an event at  $t_i$  came from a flare at  $t_i$ , with width  $\Delta t$ ?")

Same questions, but assuming the event is a background (atmospheric) event

$$TS = -2log\left[\frac{\mathcal{L}(n_s = 0)}{\mathcal{L}(n_s = \hat{n}_s)}\right]$$



• "Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data", DOI: 10.3847/0004-637X/833/1/3

#### IceCube Event Types



#### Track



$$\nu_{\mu} + X \rightarrow \mu^{+} + Hadrons$$

- Factor of ~2 energy resolution
- < 1 degree angular resolution</li>

#### Cascade



$$\nu_e + X \rightarrow e^+ + Hadrons$$

- 15% deposited energy resolution
- ~10 degree angular resolution above 100 TeV

#### **Double Cascade**



$$\nu_{\tau} + X \rightarrow \tau^{+} + Hadrons$$
  
 $\tau^{+} \rightarrow \bar{\nu}_{\tau} + \pi^{+} + \pi^{o}$ 

- Morphology observed recently (2017)
- Decay length is 50m/PeV

#### Recovering Injected Signal



#### "Iterative" Stacking

- Problem: Stacking too many sources is likely to drown out signal
- Solution: Stack only the k most significant sources
  - Iterate over k to find minimum p-value
  - Account for correlations and trial factor with background scrambles



# Self-Triggered Catalog: TS Distributions



#### 3LAC Blazars: TS Distributions





# Self Triggered Catalog: Flare Parameter Distributions





# Blazar Catalog: Flare Parameter Distributions





# Some Other Interesting Flare Curves

- A few sources with seed events on top of flares
- 7 seed event/flare correlations (out of 32 sources)
- Likely triplets of events where 1 event is very high energy
- Some quick background scrambles give a correlation significance of around 11%
  - 11% of background trials with random seed event times produce 7 or more sources with correlations





