Angular power spectrum analysis on current and future high-energy neutrino data

GRAPPA^{*}

GRavitation AstroParticle Physics Amsterdam

Ariane Dekker TeVPA 2019

Dekker, Ando, JCAP 02 (2019) 002 Dekker, Chianese, Ando, arXiv: 1910.12917

Astrophysical Sources

p-γ

Photo-hadronic interactions

Active Galactic Nuclei Blazars (4 – 6 %)

Gamma-Ray Bursts

p-p

Hadro-nuclear interactions

Starburst Galaxies Galaxy clusters

Astrophysical Sources

p- γ

Photo-hadronic interactions

Active Galactic Nuclei Blazars (4 - 6%)

Gamma-Ray Bursts

p-p

Hadro-nuclear interactions

Starburst Galaxies Galaxy clusters

Dark Matter

4

KM3NeT

IceCube

KM3NeT

- ν Construction phase
- ν High angular resolution

ν View on Galactic Centre with TG

IceCube

- ν 10yr observations
- ν Cubic km of Antarctic ice
- ν IceCube-Gen2

IceCube observations

ν HESE and Through-Going data sample

- $\boldsymbol{\nu}$ Isotropic distribution
- ν Correlation with source catalogs
- ν Sources unknown

IceCube Collaboration

Angular power spectrum analysis Statistical distributions Monte Carlo method

 $\frac{dN_s}{dF} \propto \begin{cases} F^{-2.5} & F_{\star} < F \\ F^{-1.5} & F_0 < F < F_{\star} \end{cases}$ Source-flux distribution

 $\frac{dN_s}{dF} \propto \begin{cases} F^{-2.5} & F_{\star} < F \\ F^{-1.5} & F_0 < F < F_{\star} \end{cases}$ Source-flux distribution

 $4\pi I_{\nu} = \langle F \rangle \propto N_{\star} F_{\star}$

Mean

 $\frac{dN_s}{dF} \propto \begin{cases} F^{-2.5} & F_{\star} < F \\ F^{-1.5} & F_0 < F < F_{\star} \end{cases}$ Source-flux distribution

/ /

 $4\pi I_{\nu} = \langle F \rangle \propto N_{\star} F_{\star}$

Mean

Angular Power Spectrum

Blazars: $N_{\star} = 6 \cdot 10^2$ Starburst galaxies: $N_{\star} = 10^7$

200-yr IceCube

200-yr IceCube

Angular Power spectrum

$$N(\theta, \phi) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\theta, \phi)$$
$$C_l = \frac{1}{2l+1} \sum_m |a_l^m|^2$$

21 observed events with $E_{\nu} > 50 \,\mathrm{TeV}$,

Constrain $N_{\star} < 82$

10 ⁻¹	
10 ⁻²	
10 ⁻³	

2-year lceCube

Heavy Dark Matter

 Tension between HESE (full sky) and **Through-Going (Northern** hemisphere)

$$\frac{d\Phi_{\nu}}{dE_{\nu}} = \Phi_0 \left(\frac{E_{\nu}}{100 \text{TeV}}\right)^{\gamma}$$

$$\Phi^{astro} = 3.5 - 10^{-18} S_{-1} S$$

J. Stettner, 2019

Heavy Dark Matter

 Tension between HESE (full sky) and **Through-Going (Northern** hemisphere)

- HESE best-fit $\gamma = 2.89$
- **1st order Fermi-acceleration**

 $2.0 \leq \gamma \leq 2.2$

- **Excess of events for single** component (IC & ANTARES)
- 2-component

J. Stettner, 2019

Heavy Dark Matter

Tension between HESE (full sky) and • **Through-Going (Northern** hemisphere)

- **DM** contributes to Extra-Galactic and Galactic emission
- Cannot produce too much anisotropy -> constrain DM parameters

J. Stettner, 2019

$$(1.44 \cdot \left(\frac{E}{100 \text{TeV}}\right)^{-2.28} \cdot 10^{-18} \text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

$$\frac{6.45}{3} \cdot \left(\frac{E}{100 \text{TeV}}\right)^{-2.89} \cdot 10^{-18} \text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

$$(1.44 \cdot \left(\frac{E}{100 \text{TeV}}\right)^{-2.28} \cdot 10^{-18} \text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

Null hypothesis (Astro)

Model (Astro + Decaying DM)

MC Simulations

10-yr IceCube-Gen2 HESE events

Model (Astro + Annihilating DM)

33 observed events (60-200 TeV)

Free parameter:

Cross section & Lifetime

Model

 $DM \rightarrow \tau^+ \tau^-$, $m_{DM} = 400 \text{ TeV}$ $DMDM \rightarrow \tau^+\tau^-, m_{DM} = 200 \text{ TeV}$ NFW density profile

6-year HESE data

Future sensitivity Decay

- 10-yr exposure
- ★ Best-fit DM component
- Gamma-ray constraints

Future sensitivity Annihilation

- 10-yr exposure
- Gamma-ray constraints
- Constraint by unitary

- *ν* Angular Power Spectrum powerful probe
- $\nu\,$ 2-year of IceCube data with 21 events already constrains $N_{\star}>82$
- ν With 10-yr IceCube-Gen2 & KM3NeT exposure we can constrain bright sources
- ν Constrain DM parameters with IceCube HESE and TG KM3NeT exposure
- ν Using only isotropic/anisotropic features
- ν Poster Marco Chianese on DM constraints with neutrino detectors

Summary

Backup slides

P-value 10-year IceCube-Gen2 Annihilation

P-value 10-year IceCube-Gen2 Decay

Source-flux distribution

Olber's paradox

$$\beta = 1.5$$

Homogeneous Univers, **Euclidean space**

$$F = \frac{L}{4\pi r^2}, \ \rho = \frac{N}{V}$$

$$\frac{dN}{dF} = \frac{dN}{dr}\frac{dr}{dF} = F^{-5/2}$$

$$\alpha = 2.5$$

