TeVPA 2019, Sydney, Australia

# Two Source Population Models of Ultra-High Energy Cosmic Rays

Soebur Razzaque

University of Johannesburg, South Africa

srazzaque@uj.ac.za



With Saikat Das and Nayantara Gupta Raman Research Institute, India



#### Data from the Pierre Auger Observatory



- Huge number of events at low energy but still few at > 10^20 eV
- A rollover of the spectrum is confirmed but physical origin is controversial and complicated
- Significant differences exist in energy calibration among experiments

# **UHECR** Composition

Data from the Pierre Auger Observatory



Two main indicators:

- Average shower profile maximum <Xmax>
- Variation of Xmax from shower to shower

Pure proton composition of UHECR is disfavored at  $> 10^{19} \text{ eV}$ 

- No collider data exists at this energies
- Significant differences exists among high-energy particle interaction model

# **UHECR Propagation**

The sources of CRs above 5x10<sup>19</sup> eV should be very nearby to avoid catastrophic energy losses during propagation: GZK radius ~ few hundred Mpc



Puget, Stecker & Bredekamp 1976

Nuclear isotopes interesting for CR propagation



# **Simulations of UHECR Propagation**



### **CRPropa Simulations Setup**

Injection spectra of nuclei at the sources:  $\frac{dN}{dE} = A_0 \sum_i K_i E^{-\alpha} \times f_{cut}(E, ZR_{cut})$ 

Rigidity-dependent cutoff of the spectrum:  $f_{\rm cut}(E, ZR_{\rm cut}) = \begin{cases} 1 & (E < ZR_{\rm cut}) \\ \exp\left(1 - \frac{E}{ZR_{\rm cut}}\right) & (E > ZR_{\rm cut}) \end{cases}$ 

Evolution of the source density with redshift:  $\sim (1+z)^m$ 

Deflection in intergalactic and Galactic magnetic fields ignored - OK for diffuse flux

### Single Population Model Fits – Light Nuclei



# Single Population Model Fits – Intermediate Nuclei



### Single Population Model Fits – Intermediate Nuclei

| TABLE   | Ш.  | Best-fit   | values   | in   | parameter       | space | [H + He + |
|---------|-----|------------|----------|------|-----------------|-------|-----------|
| N + Si] | and | in the ene | rgy rang | ge E | $E > 10^{18.7}$ | eV.   |           |

| m  | α    | $\log_{10}(R_{\rm cut}/{\rm V})$ | $K_H$ | K <sub>He</sub> | K <sub>N</sub> | $K_{\rm Si}$ | $\chi^2$ |
|----|------|----------------------------------|-------|-----------------|----------------|--------------|----------|
| 0  | -1.8 | 18.1                             | 39    | 59              | 2              | 0.03         | 2.59     |
| -3 | -1.6 | 18.1                             | 17    | 81              | 2              | 0.04         | 2.57     |
| -6 | -1.5 | 18.1                             | 57    | 41              | 1              | 0.02         | 2.66     |

H + He + N + Si at injection

Some model parameter values from fits



Very low /undetectable cosmogenic neutrinos flux

Das, Razzaque, Gupta, PRD 2019

### Two Population Model Fits – Example 1



Population – I (Mixed Nuclei)

$$m = 0, \ \alpha = -1.58, \ R_{\rm cut} = 10^{18.12} \ {
m V}$$
  
 $K_{\rm He} \approx 71\%, \ K_{\rm N} \approx 29\%$   
 $K_{\rm Si} \approx 0.03\%, \ K_{\rm Fe} \approx 0.02\%$ 

Population – II (Proton)

$$m = 3, \, \alpha = 2.6, \, R_{\rm cut} = 100$$

Proton flux on earth ~ 25% at the highest E

Sibyll 2.1 Hadronic int. model

### Two Population Model Fits – Example 2



Population – I (Mixed Nuclei)

$$m = 0, \ \alpha = -1.60, \ R_{\rm cut} = 10^{18.14} \ {
m V}$$
  
 $K_{\rm He} \approx 0\%, \ K_{\rm N} \approx 100\%$   
 $K_{\rm Si} \approx 0\%, \ K_{\rm Fe} \approx 0.07\%$ 

Population – II (Proton)

$$m = 3, \, \alpha = 2.6, \, R_{\rm cut} = 100$$

Proton flux on earth ~ 25% at the highest E

Sibyll 2.1 Hadronic int. model

### **Cosmogenic Neutrino Fluxes**

#### Example 1

#### Example 2



#### Very similar neutrino fluxes, dominated by proton primaries

# **Summary and Outlook**

We present new fits to the Pierre Auger UHECR spectrum

#### □ Single Source Population Models

- Light nuclei composition: H+He (Can fit spectrum >~ 10<sup>18</sup> eV)
  - Injection index: -2.2, -2.4
  - Source evolution index: 0–3
  - Rigidity cutoff: ~50–80 EV
  - Redshift range: 0.0007–4
- Light-intermediate nuclei composition: H+He+N+Si (Can fit spectrum >~ 5x10<sup>18</sup> eV)
  - Injection index: -1.5, -1.8
  - Source evolution index: -6–0
  - Rigidity cutoff: ~1 EV
  - Redshift range: 0—1

#### Two Source Population Models

- Light-intermediate nuclei composition above + pure proton sources
- Pure proton sources contribute ~25% of the observed flux at the highest energies
- Pure proton sources evolve with redshift similar to luminous astrophysical objects