Global study of effective Higgs portal dark matter models using GAMBIT

Ankit Beniwal (On behalf of the GAMBIT Collaboration)

P. Athron et al., *Global analyses of Higgs portal singlet dark matter models using GAMBIT*, EPJC **79** (2019) no. 1, 38, [arXiv:**1808.10465**]

TeVPA 2019, Sydney, Australia December 02, 2019

Outline

Global fits and GAMBIT

- Many theories for particle dark matter (DM).
- Test theories with *few* model parameters, e.g., vector Higgs portal.
- Exclude parameter space using theoretical and observational constraints.

Theories with many free parameters/constraints?

• Construct a *composite likelihood* function:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{DM}} \times \mathcal{L}_{\text{Higgs}} \times \mathcal{L}_{\text{Collider}} \times \dots$$
(1)

- Explore parameter space using advanced sampling techniques.
- Interpret results in *frequentist* and/or *Bayesian* statistical frameworks.
- \rightarrow **GAMBIT**

[AB, F, Rajec et al., PRD, arXiv:1512.06458]

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

EPJC 77 (2017) 784

arXiv:1705.07908

- Extensive model database not just SUSY
- Extensive observable/data libraries
- Many statistical and scanning options (Bayesian & frequentist)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of:

ATLAS, Belle-II, CLiC, CMS, CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON

Authors of:

DarkSUSY, DDCalc, Diver, FlexibleSUSY, gamlike, GM2Calc, IsaTols, nulike, PolyChord, Rivet, SoftSUSY, SuperISO, SUSY-AI, WIMPSim

- Fast definition of new datasets and theories
- Plug and play scanning, physics and likelihood packages

Recent collaborators:

Peter Athron, Csaba Balázs, Ankit Beniwal, Sanjay Bloor, Torsten Bringmann, Andy Buckley, José Eliel Camargo-Molina, Marcin Chrząszcz, Jonathan Cornell, Matthias Danninger, Joakim Edsjö, Ben Farmer, Andrew Fowlie, Tomás E. Gonzalo, Will Handley, Sebastian Hoof, Selim Hotinli, Felix Kahlhoefer, Anders Kvellestad, Julia Harz, Paul Jackson, Farvah Mahmoudi, Greg Martinez, Are Raklev, Janina Renk, Chris Rogan, Roberto Ruiz de Austri, Pat Scott, Patrick Stöcker, Aaron Vincent, Christoph Weniger, Martin White, Yang Zhang

40+ participants in 11 experiments and 14 major theory codes

GAMBIT results

Supersymmetry:

- CMSSM/NUHM1/NUHM2
- MSSM7

Other beyond the SM theories:

- Axion and axion-like particles
- Higgs portal: scalar singlet
- Higgs portal: vector and fermion singlet (EPJC, arXiv:1808.10465)

(EPJC, arXiv:1705.07935) (EPJC, arXiv:1705.07917)

(JHEP, arXiv:1810.07192) (EPJC, arXiv:1806.11281)

This talk

GAMBIT talks @ TeVPA (Particle Physics session):

- Electroweak MSSM (EPJC, arXiv:1809.02097)
- GUM: GAMBIT Universal Model (coming soon!)
- Right-handed neutrinos (arXiv:1908.02302)

Pat Scott (Today @ 14:50)

Sanjay Bloor (Today @ 15:10)

Tomás Gonzalo (Today @ 15:30)

Effective Higgs portal models

- $H^{\dagger}H$ lowest dimensional, gauge-invariant operator.
- Vector (V_{μ}) and Majorana fermion¹ (χ) fields with \mathbb{Z}_2 symmetry:

$$(V_{\mu},\chi) \to -(V_{\mu},\chi).$$
⁽²⁾

• Lagrangians after EWSB and chiral rotation: $\chi \rightarrow e^{i\gamma_5 \alpha/2} \chi$ are

$$\mathscr{L}_{V} \supset \frac{1}{2} m_{V}^{2} V_{\mu} V^{\mu} + \frac{1}{2} \lambda_{hV} V_{\mu} V^{\mu} (v_{0}h + \frac{1}{2}h^{2}),$$
(3)

$$\mathscr{L}_{\chi} \supset \frac{1}{2}\overline{\chi}(i\partial - m_{\chi})\chi - \frac{1}{2}\frac{\lambda_{h\chi}}{\Lambda_{\chi}}(\cos\xi\,\overline{\chi}\chi + \sin\xi\,\overline{\chi}i\gamma_{5}\chi)(v_{0}h + \frac{1}{2}h^{2}).$$
(4)

Note: $\xi = 0, \pi(\pi/2) \implies$ pure scalar (pseudo-scalar) interaction.

Free model parameters:

 m_V, λ_{hV} (Vector DM); $m_{\chi}, \lambda_{h\chi}/\Lambda_{\chi}, \xi$ (Majorana fermion DM).

¹Similar for a Dirac fermion field ψ .

Observables and constraints

Theoretical constraints:

• Perturbative unitarity of $VV \rightarrow hh$ scattering amplitudes,

 $0 \le \lambda_{hV} \le 2m_V^2/v_0^2.$

• EFT validity of Majorana fermion DM model,

 $\lambda_{h\chi}/\Lambda_{\chi} < 4\pi/(2m_{\chi}).$

Sanjay Bloor

Observational constraints:

- Thermal relic density;
- Itiggs invisible decays $(h \rightarrow VV, \chi\chi)$;
- Indirect detection via gamma rays;
- Direct detection (XENON1T 2018; LUX 2016; PandaX 2016, 2017; CDMSlite; CRESST-II; PICO-60 and DarkSide-50);
- Solar DM capture and annihilation.
- + 7 important Standard Model (SM), nuclear and astrophysical nuisance parameters.

Profile likelihoods

(White star = best-fit point)

- Perturbative unitarity (*dark grey*) shortens 'neck' region at m_V ~ m_h/2, c.f. Z₂ symmetric scalar model. (EPJC, arXiv:1806.11281, arXiv:1705.07931)
- Viable solutions at low and high vector masses.

Marginalised posteriors

(White star = best-fit point, White circle = posterior mean)

- 'Neck' region disfavoured after marginalising over nuisance parameters, particularly *m_h*.
- Fine-tuned 'resonance' region falls outside 2σ credible interval in full mass-range scan.

DM observables

- Direct (indirect) detection signals scaled by $f \equiv \Omega_V / \Omega_{\text{DM}} (f^2)$.
- Future direct searches will (fully) explore high vector masses.

Profile likelihoods

- Resonance and high mass regions now connected \rightarrow effect of mixing parameter ξ .
- EFT validity constraint (*dark grey*) cuts out large $\lambda_{h\chi}/\Lambda_{\chi}$ values.

Suppressed direct detection rates when $\xi = \pi/2$ (CP-violating coupling):

$$\frac{d\sigma_{\rm SI}}{dq^2} \propto \frac{1}{v^2} \left(\frac{\lambda_{h\chi}}{\Lambda_{\chi}}\right)^2 \left[\cos^2 \xi + \frac{q^2}{4m_{\chi}^2} \sin^2 \xi\right],\tag{5}$$

where $|q| \simeq (1 - 100) \operatorname{MeV} \ll m_{\chi}$.

Marginalised posteriors

- Free parameter $\xi \implies$ larger (allowed) parameter space than $\xi = 0$ case.
- Resonance region less favoured in full mass-range scan.

DM observables

- Cross section (σ_{SI}) at reference momentum exchange of q = 50 MeV.
- Large portions of parameter space will remain unexplored due to q² suppression.

- Resonance $(m_{V,\chi} \simeq m_h/2)$ and high mass regions compatible with all experimental constraints.
- Fermion DM models with CP-violating ($\xi \approx \pi/2$) couplings favoured due to q^2 suppression.
- Future indirect/direct searches will probe high mass regions, albeit less so for CP-violating case.

All results, samples and input files available via Zenodo:

https://www.zenodo.org/communities/gambit-official/

GAMBIT code is publicly available:

https://gambit.hepforge.org

Backup slides

GAMBIT modules

1	DarkBit	(EPJC, arXiv:1705.07920)
2	SpecBit, DecayBit and PrecisionBit Spectrum calculation, decay widths and precision obs	(EPJC, arXiv:1705.07936) ervables.
3	FlavBit Flavour physics, observables and likelihoods.	(EPJC, arXiv:1705.07933)
4	ColliderBit Collider observables and likelihoods.	(EPJC, arXiv:1705.07919)
5	ScannerBit Module for scanners and printers	(EPJC, arXiv:1705.07959)
6	NeutrinoBit Neutrino observables and likelihoods.	(arXiv:1908.02302)
7	CosmoBit Cosmological observables and likelihoods.	(coming soon!)

Majorana fermion DM (Case $\xi = 0$)

Fig. 1: Marginalised posteriors in $(m_{\chi}, \lambda_{h\chi}/\Lambda_{\chi})$ plane for the case $\xi = 0$.

Dirac fermion DM

Fig. 2: Profile likelihoods in $(m_{\psi}, \lambda_{h\psi}/\Lambda_{\psi})$ plane for Dirac fermion DM model.

Free model and nuisance parameters

Model	Parameter	Minimum	Maximum	Prior type	
Vector DM	$rac{\lambda_{hV}}{m_V}$ (low mass) m_V (high mass)	10 ⁻⁴ 45 GeV 45 GeV	10 70 GeV 10 TeV	Log Flat Log	
Majorana/Dirac DM	$ \begin{array}{c} \lambda_{h\chi,h\psi}/\Lambda_{\chi,\psi} \\ \xi \\ m_{\chi,\psi} \text{ (low mass)} \\ m_{\chi,\psi} \text{ (high mass)} \end{array} $	10 ⁻⁶ GeV ⁻¹ 0 45 GeV 45 GeV	1 GeV ⁻¹ π 70 GeV 10 TeV	Log Flat Flat Log	

Table 1: Ranges and priors for our free model parameters.

Parameter	Value (± Range)		
Local DM density	$ ho_0$	$0.2-0.8~{ m GeV}~{ m cm}^{-3}$	
Most probable speed	Vpeak	240 (24) km s ⁻¹	
Galactic escape speed	Vesc	533 (96) km s ⁻¹	
Nuclear matrix element	σ_s	43 (24) MeV	
Nuclear matrix element	σ_l	50 (45) MeV	
Higgs pole mass	m_h	124.1–127.3 GeV	
Strong coupling	$\alpha_s^{\overline{\text{MS}}}(m_Z)$	0.1181 (33)	

Table 2: 7 SM, nuclear and astrophysical parameters varied simultaneously in our scans.

Likelihoods and best-fit points

Likelihoods	GAMBIT modules/backends		
Relic density (<i>Planck</i>)	DarkBit		
Higgs invisible width	DecayBit		
Fermi-LAT dSphs	gamLike 1.0.0		
IceCube 79-string	nulike 1.0.6		
LUX 2016 (Run II)	DDCalc 2.0.0		
PandaX (2016, 2017)	DDCalc 2.0.0		
XENON1T 2018	DDCalc 2.0.0		
CDMSlite, CRESST-II	DDCalc 2.0.0		
PICO-60 2017	DDCalc 2.0.0		
DarkSide-50 2018	DDCalc 2.0.0		

Table 3: List of likelihood functions and relevant GAMBIT modules/backends used in our scans.

Model	Relic density condition	λ_{hX}	m_X (GeV)	ξ (rad)	$\Omega_X h^2$	$\Delta \ln \mathcal{L}$
Vector	$\Omega_V h^2 \lesssim \Omega_{DM} h^2$	4.9×10^{-4}	62.46		9.343×10^{-2}	0.322
	$\Omega_V h^2 \sim \Omega_{DM} h^2$	4.5×10^{-4}	62.46	_	1.128×10^{-1}	0.428
Majorana	$\Omega_{\chi} h^2 \lesssim \Omega_{DM} h^2$	$4.5 \times 10^{-2} \text{GeV}^{-1}$	138.4	1.96	6.588×10^{-8}	0.308
	$\Omega_{\chi}h^2 \sim \Omega_{DM}h^2$	$6.3 \times 10^{-6} \mathrm{GeV^{-1}}$	61.03	1.41	1.128×10^{-1}	0.439
Dirac	$\Omega_{\psi} h^2 \lesssim \Omega_{DM} h^2$	$6.3 \times 10^{-4} {\rm GeV^{-1}}$	9.950×10^{3}	2.06	3.813×10^{-2}	0.307
	$\Omega_{\psi} h^2 \sim \Omega_{DM} h^2$	$3.6 \times 10^{-4} \mathrm{GeV^{-1}}$	9.895×10^3	2.07	1.155×10^{-1}	0.553

Fig. 3: Best-fit point for the model parameters from our global fit.

