A Unique Multi-Messenger Signal of QCD Axion Dark Matter

Marco Chianese

TeV Particle Astrophysics 2019, 2-6 December 2019, Sydney

Edwards, MC, Kavanagh, Nissanke and Weniger, <u>arXiv: 1905.04686</u>

UNIVERSITY OF AMSTERDAM

GRavitation AstroParticle Physics Amsterdam

QCD axion: solution for Strong-CP problem

The QCD axion is a viable and theoretically well-motivated Dark Matter candidate.

- The QCD Lagrangian admits CP violating term θ : $\mathcal{L}_{QCD} \supset -\frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a \theta$
- ► However, no evidence of CP violation in QCD sector: $|\theta| \le 10^{-10}$

Strong CP-problem: why θ is so small?

• It is dynamically solved by promoting θ to be a scalar field, the axion.

Most of the axion searches exploits its coupling to the photon field.

$$\mathcal{L} \supset -\frac{1}{4} g_{a\gamma\gamma} a \boldsymbol{E} \cdot \boldsymbol{B}$$

Axion-photon conversion in an external magnetic field

Axion parameter space

Marco Chianese | GRAPPA

Irastorza and Redondo, Prog.Part.Nucl.Phys. 102 (2018)

Multi-messenger Signal of QCD axion

Dark Matter Spike

IMBHs may exist in DM haloes and form a DM spike through their adiabatic growth.

Navarro, Frenk, White, **ApJ 462 (1996)**; Gondolo and Silk, **PRL 83 (1999)**; Zhao and Silk, **PRL 95 (2005)**; Bertone, Zentner and Silk, **PRD 72 (1999)**.

Inspiral takes less time than in vacuum

Eda et al., PRL 110 (2013), PRD 91 (2015)

Inspiral takes less time than in vacuum

Phase shift in the GW signal

Measuring the phase shift constrains the DM density

LISA Sensitivity – Dark Matter density

LISA Sensitivity – Dark Matter density

Three effects: *1*) GW dominates over DF; *2*) low number of cycles; *3*) LISA sensitivity decreases at higher frequencies (signal ends at 0.44 Hz)

**Caveats*: measurements of individual masses and spins (high order post-Newtonian effects)

Neutron Stars — Axion-Photon conversion

Neutron Stars have:

- extremely high magnetic fields
- Iong spin periods
- a surrounding dense plasma that provides an effective photon mass ω_p

Resonant Axion-Photon Conversion

For *radial trajectories*, the radiated power is:

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\Omega} = 2 \times p_{a\gamma} \,\rho_{\mathrm{DM}}(r_c) \, v_c \, r_c^2$$

Manchester et al., Astron.J. 129 (2005)

(the catalogue contains **only** nearby active pulsar in the galactic disk, the population of old NSs is uncertain)

see also: Huang et al., PRD 93 (2018), Hook et al., PRL 121 (2018), Safdi et al., PRD 99 (2019) Marco Chianese | GRAPPA

Dark Matter phase-space distribution

Thanks to Eddington's inversion formula, it is completely determined by the spike slope.

$$f(v|r) = 4\pi v^2 \frac{g(r,v)}{\rho(r)}$$
 with $g(r,v) \sim \left[\frac{GM_{\rm BH}}{r} - \frac{v^2}{2}\right]^{\alpha - \frac{3}{2}}$

Square Kilometre Array Sensitivity

Fragione et al., ApJ 856 (2018)

Square Kilometre Array Sensitivity

Dependence on the spike slope

Dependence on NS parameters

The radiated power of the radio signal roughly scales as

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\Omega} \sim B_0 P\left(\frac{3\cos^2\theta + 1}{|3\cos\theta - 1|}\right) \underbrace{\left[g_{a\gamma\gamma}^2 m_a \,\rho_{\mathrm{DM}}(r_c) \,v_c\right]}_{\begin{array}{c} \text{Independent of}\\ \text{NS parameters}\end{array}} \quad \text{with} \quad \begin{array}{c} \theta = \pi/2 \\ \text{Viewing angle}\\ \text{(benchmark value)}\end{array}$$

Take-home messages

- Difficult to set robust limits due to the uncertainty in the NS properties
- Extremely complementary to direct axion searches
- QCD axion Dark Matter can be potentially discovered through multi-messenger observations with future GW detectors and radio telescopes.

Take-home messages

- Difficult to set robust limits due to the uncertainty in the NS properties
- Extremely complementary to direct axion searches
- QCD axion Dark Matter can be potentially discovered through multi-messenger observations with future GW detectors and radio telescopes.

Thanks for listening

BACKUP SLIDES

Intermediate Mass Black Holes

IMBHs are the least constrained mass window:

 $M_{\rm IMBH} = 10^3 - 10^5 \, M_{\odot}$

No detection by GWs so far, but evidences of their existence in the centre of small galaxies and in globular clusters.

Miller and Hamilton, **MNRAS 330 (2002)**; Webb et al., **Science 337 (2012)**; Ballone et al., **MNRAS 480 (2018)**; Woo et al., **arXiv:1905.00145**

Different possibile formation mechanisms:

- Mergers of stellar mass objects
- Collapse of gas clouds at high redshift
- Collapse of large primordial density perturbations before BBN

Taniguchi et al., **Publ. Astron. Soc. Jap. 52 (2000)**; Begelman et al., **MNRAS 370 (2006)**; Carr and Rees, **MNRAS 206 (1984)**

Radio Signal

We consider the Goldreich-Julian model for the NS magnetosphere:

the resonant conversion radius

 $r_c(B_0, P, m_a): \ \omega_p = m_a/2\pi$

• the conversion probability

$$p_{a\gamma} \sim \frac{g_{a\gamma\gamma}^2 B \left(r_c\right)^2 L_{\rm conv}^2}{2 v_c}$$

Flux density

 $S \sim \frac{2 p_{a\gamma} \rho_{\rm DM}(r_c) v_c r_c^2}{\mathcal{B} d^2}$

Dependence on the Dark Matter six-dimensional phase-space distribution function:

Goldreich and Julian, **ApJ 157 (1969)**, Huang et al., **PRD 93 (2018)**, Hook et al., **PRL 121 (2018)**, Safdi et al., **PRD 99 (2019)**