Cosmology as a search for neutrinos and new light particles

Amol Upadhye UNSW Sydney December 3, 2019

Why look for neutrino masses?

Neutrinos are a fundamental part of the Standard Model of particle physics, and cosmology will weigh them first!

Why look for neutrino masses?

- Neutrinos are a fundamental part of the Standard Model of particle physics, and cosmology will weigh them first!
- New light particles could potentially resolve tensions in the cosmological parameters H₀ and σ₈ as well as anomalies in neutrino experiments (MiniBoone).

Why look for neutrino masses?

- Neutrinos are a fundamental part of the Standard Model of particle physics, and cosmology will weigh them first!
- New light particles could potentially resolve tensions in the cosmological parameters H₀ and σ₈ as well as anomalies in neutrino experiments (MiniBoone).

Neutrinos affect overall structure growth, hence constraints on the dark matter and dark energy.

Pressure vs. Gravity

Once a density fluctuation has begun to evolve, its growth is a competition between pressure and gravity.

Gravity

Pressure vs. Gravity

Once a density fluctuation has begun to evolve, its growth is a competition between pressure and gravity.

Pressure vs. Gravity

Once a density fluctuation has begun to evolve, its growth is a competition between pressure and gravity.

The Cosmic Web

The Cosmic Web has been observed

Amol Upadhye

Cosmology as a search for neutrinos

Amplitudes of individual modes

Amplitudes of individual modes

Amol Upadhye

Cosmology as a search for neutrinos

Amplitudes of individual modes

Amol Upadhye

Cosmology as a search for neutrinos

Fluid equations and power spectrum evolution

 Continuity equation: Mass is conserved. A change in density locally must be balanced by an inflow or outflow.

 $\frac{1}{a^3}\frac{\partial(a^3\rho)}{\partial\tau} + \vec{\nabla}\cdot(\rho\vec{v}) = 0$

• Euler equation: Changes in the velocity of a fluid element are driven by gradients in the gravitational potential.

$$\frac{1}{a}\frac{\partial(a\vec{v})}{\partial\tau} + (\vec{v}\cdot\vec{\nabla})\vec{v} + \vec{\nabla}\Phi = 0$$

Fluid equations and power spectrum evolution

• Continuity equation: Mass is conserved. A change in density locally must be balanced by an inflow or outflow.

$$\frac{1}{a^3}\frac{\partial(a^3\rho)}{\partial\tau} + \vec{\nabla}\cdot(\rho\vec{v}) = 0$$

$$\underbrace{\frac{\partial \delta}{\partial \tau} + \mathcal{H} \theta}_{\text{first order}} = \underbrace{-\vec{\nabla} \cdot (\delta \vec{v})}_{\text{second order}} \quad \text{where } \underbrace{\delta = \frac{\delta \rho}{\bar{\rho}}, \ \theta = \frac{\vec{\nabla} \cdot \vec{v}}{\mathcal{H}}}_{\text{perturbations}}, \ \mathcal{H} = \frac{1}{a} \frac{da}{d\tau}$$

• Euler equation: Changes in the velocity of a fluid element are driven by gradients in the gravitational potential.

$$\frac{\frac{1}{a}\frac{\partial(a\vec{v})}{\partial\tau} + (\vec{v}\cdot\vec{\nabla})\vec{v} + \vec{\nabla}\Phi = 0$$

$$\Rightarrow \underbrace{\frac{\partial}{\partial\tau}(\mathcal{H}\theta) + \mathcal{H}^{2}\theta + \frac{3}{2}\mathcal{H}^{2}\Omega_{\mathrm{m}}(\tau)\delta}_{\text{first order}} = \underbrace{-\vec{\nabla}\cdot[(\vec{v}\cdot\vec{\nabla})\vec{v}]}_{\text{second order}}$$

Fluid equations and power spectrum evolution

• Continuity equation: Mass is conserved. A change in density locally must be balanced by an inflow or outflow.

$$\frac{1}{a^3}\frac{\partial(a^3\rho)}{\partial\tau} + \vec{\nabla}\cdot(\rho\vec{v}) = 0$$

$$\underbrace{\frac{\partial \delta}{\partial \tau} + \mathcal{H} \theta}_{\text{first order}} = \underbrace{-\vec{\nabla} \cdot (\delta \vec{v})}_{\text{second order}} \quad \text{where } \underbrace{\delta = \frac{\delta \rho}{\bar{\rho}}, \ \theta = \frac{\vec{\nabla} \cdot \vec{v}}{\mathcal{H}}}_{\text{perturbations}}, \ \mathcal{H} = \frac{1}{a} \frac{da}{d\tau}$$

• Euler equation: Changes in the velocity of a fluid element are driven by gradients in the gravitational potential.

$$\frac{\frac{1}{a}\frac{\partial(a\vec{v})}{\partial\tau} + (\vec{v}\cdot\vec{\nabla})\vec{v} + \vec{\nabla}\Phi = 0$$

$$\Rightarrow \underbrace{\frac{\partial}{\partial\tau}(\mathcal{H}\theta) + \mathcal{H}^{2}\theta + \frac{3}{2}\mathcal{H}^{2}\Omega_{\mathrm{m}}(\tau)\delta}_{\text{first order}} = \underbrace{-\vec{\nabla}\cdot[(\vec{v}\cdot\vec{\nabla})\vec{v}]}_{\text{second order}}$$

First-order terms give the growth factor (upwards shift). Second-order terms give smaller higher-order corrections.

How accurate is perturbation theory?

Linear Perturbation Theory

Amol Upadhye Cosmology as a search for neutrinos

How accurate is perturbation theory?

Power spectrum with massive neutrinos

What does this suppression do to the cosmic web?

matter

neutral hydrogen

Amol Upadhye Cosmology as

What does this suppression do to the cosmic web?

matter

neutral hydrogen

Amol Upadhye Cosmology as a s

What does this suppression do to dark matter halos?

Amol Upadhye

Cosmology as a search for neutrinos

Redshift-Space Distortions (RSD)

Redshift-space position: $\vec{s} =$

 $\frac{dz'}{H(z')}$ î

 $+\underbrace{\frac{\hat{r}\cdot\hat{v}_{\text{pec}}}{aH}}_{\text{distortion}}$

homogeneous-universe distance

Cosmology as a search for neutrinos

RSD in massive neutrino models (z = 1)

AU, et al., PRD **93**:063515(2016)[1506.07526]; AU, JCAP 1905:041 (2019)[1707.09354] github.com/upadhye/redTime

Application of redTime to BOSS DR11 and DR12 galaxy redshift data plus Planck data for the ν ACDM model: $\sum m_{\nu} < 0.18 \text{ eV}$ (95%CL)

AU, JCAP 1905:041 (2019)[1707.09354]

Application of redTime to BOSS DR11 galaxy redshift data, Planck, and SN Ia for the νw CDM model: $\sum m_{\nu} < 0.54 \text{ eV} (95\% \text{CL})$

AU, JCAP 1905:041 (2019)[1707.09354]

Next step: Neutrinos as multiple fluids

Next step: Neutrinos as multiple fluids: Linear response

Future work

My goal is a fast, efficient multi-fluid perturbation theory for massive neutrinos and other light particles. This work sits at the intersection of several important advances in theoretical cosmology:

- Perturbation theory for DM in presence of massive v: Pietroni, JCAP 0810:036(2008); AU, et al., PRD 93:063515(2016)[1506.07526]
- 2 many-fluid perturbation theory for large velocity dispersion: Dupuy and Bernardeau, JCAP 1401:030(2014)
- Sast Fourier Transform acceleration of perturbation theory: McEwen, Fang, Hirata, Blazek, JCAP 1609:015(2016)[1603.04826]; AU, JCAP 1905:041 (2019)[1707.09354]
- Combination of perturbation theory and N-body simulations: Lawrence, Heitmann, Kwan, AU, et al., Ap. J. 847:50(2017)[1705.03388]
- Perturbation theory applied to data analysis: AU, JCAP 1905:041 (2019)[1707.09354]
- future: higher-redshift data!

- The cosmological power spectrum represents the interplay between pressure and gravity for density fluctuations on a range of wavelengths.
- Massive neutrinos, which alter the pressure and suppress matter clustering, have unique signatures in the redshift-space power spectrum.
- Ourrent data impose powerful constraints on the sum of neutrino masses. Over the next several years we will measure, and not just bound, their masses.
- A convergence of modern theoretical tools allows us to address major challenges to power spectrum prediction in massive neutrino models.