Primordial Black Holes as Silver Bullets for WIMPS

arXiv:1905.01238

Adam Coogan

With Gianfranco Bertone, Daniele Gaggero, Bradley Kavanagh, Christoph Weniger

TeVPA, 3 December 2019

Primordial black holes accumulate WIMP halos

High redshift

Low redshift

Thermal WIMP ⇒ PBH constraint

1. Detection scenario: Mрвн, Nрвн

1. Detection scenario: Мрвн, Nрвн

2. Infer PBH abundance fpbH

1. Detection scenario: Мрвн, Nрвн

2. Infer PBH abundance fpBH

3. For **WIMP model**, constrain $\langle \sigma v \rangle$ with γ -ray observations

• LIGO O3 detects M_{PBH} = **0.5** M_☉ merger

- LIGO O3 detects M_{PBH} = 0.5 M_☉ merger
 - Why PBHs? M_{PBH} < 1.4 M_☉ (Chandrasekhar limit)

- LIGO O3 detects M_{PBH} = 0.5 M_☉ merger
 - Why PBHs? M_{PBH} < 1.4 M_☉ (Chandrasekhar limit)
- Einstein Telescope detects z≥40, M_{PBH} = 10 M_☉ merger

- LIGO O3 detects M_{PBH} = 0.5 M_☉ merger
 - Why PBHs? M_{PBH} < 1.4 M_☉ (Chandrasekhar limit)
- Einstein Telescope detects z≥40, M_{PBH} = 10 M_☉ merger
 - Why PBHs? Astrophysical BHs form and merge at lower redshifts

- LIGO O3 detects M_{PBH} = 0.5 M_☉ merger
 - Why PBHs? M_{PBH} < 1.4 M_☉ (Chandrasekhar limit)
- Einstein Telescope detects z≥40, M_{PBH} = 10 M_☉ merger
 - Why PBHs? Astrophysical BHs form and merge at lower redshifts

p(fpbh|Npbh): depends on
$$\int dz$$
 (merger rate) × (sensitivity)

 Square Kilometer Array detects radio emission from gas accretion by 100 M_☉ galactic PBHs

- Square Kilometer Array detects radio emission from gas accretion by 100 M_☉ galactic PBHs
 - Requires complex, multiwavelength population analysis

- Square Kilometer Array detects radio emission from gas accretion by 100 M_☉ galactic PBHs
 - Requires complex, multiwavelength population analysis

Compute p(fpbh Npbh) with Monte Carlo simulation

2. Detection → abundance

WIMP halo around 30 M_☉ PBH

Can now compute gamma-ray flux from PBH's halo

Constraint: PBH halos as γ-ray *galactic point sources*

Constraint: PBH halos as γ-ray galactic point sources

Monte Carlo procedure

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

1. Place PBHs in Milky Way

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

- 1. Place PBHs in Milky Way
- 2. Assess detectability

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

- 1. Place PBHs in Milky Way
- 2. Assess detectability

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

- 1. Place PBHs in Milky Way
- 2. Assess detectability

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

- 1. Place PBHs in Milky Way
- 2. Assess detectability
- 3. Limit: require $N_{p.s.}$ < 19

Constraint: PBH halos as γ-ray *galactic point sources*

Monte Carlo procedure

- 1. Place PBHs in Milky Way
- 2. Assess detectability
- 3. Limit: require $N_{p.s.}$ < 19

Fermi/NASA

Number of 3FGL unassociated sources compatible with DM annihilation

3. Extragalactic y-ray limits

Constraint: diffuse γ rays from *extragalactic* PBH halos

3. Extragalactic y-ray limits

Constraint: diffuse γ rays from *extragalactic* PBH halos

3. Extragalactic y-ray limits

Constraint: diffuse γ rays from *extragalactic* PBH halos

Ingredients:

Constraint: diffuse γ rays from *extragalactic* PBH halos

Ingredients:

Ann. rate in PBH halo

Constraint: diffuse γ rays from *extragalactic* PBH halos

Ingredients:

Ann. rate in PBH halo

Cosmological PBH density

Constraint: diffuse y rays from *extragalactic* PBH halos

Ingredients:

PBH halo

PBH density

Attenuation

Constraint: diffuse y rays from extragalactic PBH halos

Ingredients:

Ann. rate in PBH halo

Cosmological PBH density

Attenuation

Redshifting

Constraint: diffuse y rays from extragalactic PBH halos

Limit: for each bin, require $\phi \lesssim \phi_{\rm obs} + 3 \Delta \phi_{\rm obs}$

Constraint: diffuse y rays from extragalactic PBH halos

Limit: for each bin, require $\phi \lesssim \phi_{\rm obs} + 3 \Delta \phi_{\rm obs}$

Robust constraint with few assumptions

PBH detection

WIMP constraint

100 M_☉, radio detections at SKA

100 M_☉, radio detections at SKA 10^{-23} Thermal relic **Envelope of** 10^{-26} various **BSM** models $\frac{\text{(s)}}{\text{Em}} 10^{-29}$ $\frac{\text{(s)}}{\text{(s)}} 10^{-32}$ $\frac{\text{(s)}}{\text{(s)}} 10^{-35}$ $\frac{\text{(s)}}{\text{(s)}} 10^{-38}$ $f_{\gamma} < 0.1$ $N_{\rm SKA} = 10$ 10^{-35} $N_{SKA} = 80$ 10^{-41} 10^{-44} $10^{\overline{3}}$ 10^{2} 10^{1} 10^{4} $m_{\chi} \; ({\rm GeV})$

 Even one PBH detection would rule out standard thermal WIMPs

- Even one PBH detection would rule out standard thermal WIMPs
- Also would constrain any BSM model with a WIMP, even if it's under-abundant

- Even one PBH detection would rule out standard thermal WIMPs
- Also would constrain any BSM model with a WIMP, even if it's under-abundant

