Reactor Neutrinos

Xin Qian xqian@bnl.gov

Borrowed many materials from my colleague Dr. Chao Zhang (<u>czhang@bnl.gov</u>), who is traveling right now

Me and Reactor Neutrinos

- Physicist in the Electronic Detector Group (EDG), Physics Department, BNL
 - PhD @ Duke University (2010)
 - Nucleon spin structure with electron scattering
 - Post-doc @ Caltech (2010-2013)
 - Daya Bay experiment (China)
 - LBNE \rightarrow DUNE experiment
 - Staff Scientist @ BNL (2013-Now):
 <u>BNL | Staff | Xin Qian, Physics Department</u>
 - PROSPECT experiment (US)
 - LArTPC technology development for DUNE
 - PIONEER: rare decay experiment

Worlds' First Nuclear Reactor

- Chicago Pile-1 (CP-1) ~ 0.5 W power
- Part of the Manhattan Project
 - Did you watch "Oppenheimer" last weekend?

- Dec 2, sustair
 - <u>Fuel</u> Urai
 - <u>Neu</u> bloc
 - <u>Con</u>

CP-1 in a squash court under the stands of Staff Field @ U. Chicago

Fission and Energy Release $E = mc^2$

Key properties of fission:

- Release substantial energy (mostly as kinetic energy of the fission fragments)
- Release excess neutrons: possibility of chain reaction

1 fission $\approx 0.219~\text{AMU} \approx 200~\text{MeV}$

- 1 g of U-235 fission = 24,000 kwh
 - 3.2 tons of coal
 - 12.6 barrel of oil
 - Lightening of a small city overnight
- Energy density (energy/mass) of U-235 = 28,000 times of that of coal

Reactor Design Requirement

- Thermal neutrons: needs "moderator" to slow down neutrinos (water, graphite etc.)
- Controllable fission: engineering to make output neutron = 1

Reactor Core Design:

- Core Power Distribution
- Ability to shutdown plant
- No fuel failure or melting

Core Heat Removal

- Coolant: Heat Transfer
- Safety Systems

- Confinement of Radioactivity
- Electricity Production
- Spent fuel processing

Full video with annotations:

Breazeale Nuclear Reactor Start up, 500kW, 1MW, and Shut Down (ANNOTATED) - YouTube

Production of Weapon-graded Plutonium

U-235: 52 kg critical mass

- Natural abundance of 0.72% (mostly U-238)
- 90% and above is needed for weapon graded
 → electromagnetic separation, diffusions, centrifuges, highly technically challenging

Pu-239: 10 kg critical mass

- 93% and above for weapon graded
- Produced in nuclear reactors → given enough time, all U-238 → Pu

•Safeguards efforts (e.g. WATCHMAN: <u>arXiv:1502.01132</u>)

Nuclear Reactor as Antineutrino Source

- Pure anti-v_e source with ~6 anti-v_e per fission
- ~2 x 10²⁰ anti-v_e/sec per GigaWatt thermal power (GW_{th})

- Low-enriched uranium (LEU) cores in Commercial reactors in Nuclear Power Plants
 - Mixture of fissions: ²³⁵U (~55%), ²³⁹Pu (~30%), ²³⁸U (~10%), ²⁴¹Pu (~5%)
 - Large power: ~3 GW_{th}
- Highly-enriched uranium (HEU) cores with compact size in Research reactors
 - 235U fission fraction ~99%
 - Lower power, few tens of MW_{th}

Reactor Antineutrino Spectrum

GRAPHITE RESEARCH REACTOR

Operated: 1950 to 1969

World's first peacetime research reactor. Fuel placed in 700-ton graphite "pile" that moderated fission. Scientists exposed experiments to neutrons by inserting them into slots on top and three sides of the core.

Initially ran on natural uranium, but in 1958 fuel was switched to enriched uranium, with reactor operating at 20 megawatts.

Scientific advances

- The radioactive isotope Technetium-99m, used as a medical tracer and similar to X-rays for diagnostic imaging, first detected here.
- Multi-grade motor oils developed as a result of studying engine piston rings in the reactor.
- Irradiated seeds used to produce the Star Ruby grapefruit, a sweet and nearly seedless variety with deep red flesh.

Cost to close: \$114 million, with **\$92 million** already spent. Stimulus money will pay about 60 percent of remaining **\$22 million** cost.

HIGH-FLUX BEAM REACTOR

Operated: 1965 to 1996 Permanently shut in 1999

Provided neutrons for research in material science, chemistry, biology and physics. Scientists conducted experiments with external neutron beams delivered through ports placed around reactor core.

Enriched uranium fueled the reactor. "Heavy" water — in which deuterium replaces the two hydrogen atoms — moderated fission and served as main coolant. Operated at 30, 40 or 60 megawatts.

Scientific advances

- Structure of cell's "protein factory" the 16-part ribosome first discerned here.
- New uses of radioactive isotopes developed for treating illnesses such as cancer, heart disease and arthritis.
- Advanced understanding of life span and decays of isotopes such as zinc-80, which astrophysicists use to study supernovas.
- Magnet experiments led to Nobel Prize-winning theories of cooperative ordering in large collections of atoms.
- Scientists using the high-flux beam reactor determined structures of the 23 amino acids, which make up every protein in every cell in living things.

Cost to close: \$64 million, with **\$32 million** already spent. Stimulus money will pay about 90 percent of the remaining cost, which excludes taking it apart after 65 years.

- Research Reactors typically ~10 MW
- BNL's past 3 reactors
 - BGRR, HFBR, BMRR

MEDICAL RESEARCH REACTOR

Operated: 1959 to 2000

The smallest of the lab's reactors, it was the first in the nation built just for medical research. Large objects were irradiated at one of the reactor's four faces; holes in another face permitted irradiation of samples and production of short-lived radioisotopes. Neutron streams traveled from two remaining ports to treatment rooms for animal and clinical studies.

Reactor operated at 3 megawatts but could generate 5 megawatts for short periods of time. Core was water cooled.

Scientific advances

 Boron neutron capture therapy, developed to treat a deadly form of brain cancer, was pioneered here.

Cost to close: Decommissioning plan and budget not yet developed.

> Source: Brookhaven National Laboratory

Homework Problem 1

- How many antineutrinos are produced per second for a typical 3-gigawatt (thermal) commercial reactor?
 - Each fission releases ~200 MeV energy. How many fissions are produced per second?
 - 2. Each fission produce ~6 antineutrinos on average from the betadecay chains. How many antineutrinos are produced per second?

Neutrino and Beta Decay

 $\rightarrow {}^{210}_{84}\text{Po} + e^- +$

1930: Pauli's letter to physicists at a workshop in Tubingen

Wolfgang Pauli

Dear Radioactive Ladies and Gentlemen,

Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December. With my best regards to you, and also to Mr Back. Your humble servant

. W. Pauli

"I have done a terrible thing. I have postulated a particle that cannot be detected."

Neutrino detection requires:

- An intensive neutrino source: a billion trillion (~10²¹) ν per second
- A huge neutrino detector: tons to kilotons of target material
- A distinctive method to tell "neutrino interactions" from other backgrounds

Neutrinos from the Universe

99% of the energy in a core collapse supernova explosion is carried away by neutrinos

 $10^{38} v_{e}/s$ are produced by the sun

Neutrino Sources

Neutrinos: First Detection

Frederick Reines and Clyde Cowan first detected (anti)neutrinos using the Savanah River nuclear reactor in South Carolina in 1956. (26 years after Pauli's proposal)

Target: Water + CdCl₂ Detector: Liquid Scintillator + PMTs

Reines and Cowan's telegram to W. Pauli (1956)

"We are happy to inform you that we have definitely detected neutrinos from fission fragments by observing inverse beta decay of protons"

As fundamental particles in the standard model of particle physics, neutrinos are the second most abundant (known) particles in our universe

Discoveries with Reactor Anti-v

- Detection of anti-v
- Solving solar v problem on Earth
- Measurement of nonzero oscillation angle θ_{13}
- Currently hold the best precision of
 - $-\Delta m^2_{21}$ (KamLAND)
 - θ_{13} (Daya Bay)
- Comparable precision to accelerator-based experiments
 - | Δm²₃₂ | (Daya Bay)

2000s: KamLAND

Courtesy of Karsten Heeger

Reactor Models

Conversion Method

- Measure total outgoing beta-decay electron energy spectra
- Predict corresponding antineutrino spectra with >30 virtual branches
- Considered to be more precise: ~2.5% uncertainty

- Summation (*ab initio*) method
 - Calculate the spectrum of each beta-decay branch using nuclear databases: <u>fission yields</u>, <u>decay schemes</u>
 - ~10% uncertainty

Reactor Anti-v_e Detection

Channel	Interaction Type	Cross section (10 ⁻⁴⁴ cm ² /fission)	Threshold (MeV)
$\bar{\nu}_{\rm e} + p \rightarrow e^+ + n$	CC	~63	1.8
$\bar{\nu}_{\rm e} + d \rightarrow n + n + e^+$	CC	~1.1	4.0
$\bar{\nu}_{\rm e} + d \rightarrow n + p + \bar{\nu}_{\rm e}$	NC	~3.1	2.2
$\bar{\nu}_{\rm e} + e^- \rightarrow \bar{\nu}_{\rm e} + e^-$	CC/NC	~ 0.4	0
$\bar{\nu}_{\rm e} + A \rightarrow \bar{\nu}_{\rm e} + A$	NC	$\sim 9.2 \times N^2$	0

Coincidence signal of IBD:

Target nucleus	Process Thermal ne	eutron Cross section (barn)
Н	$n + p \rightarrow d + \gamma \ (2.2 \text{ MeV})$	~0.33
³ He	$n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H} + 0.764 \text{ MeV}$	$\sim \! 5300$
⁶ Li	$n + {}^{6}\text{Li} \rightarrow \alpha + {}^{3}\text{H} + 4.6 \text{ MeV}$	~ 950
$^{10}\mathrm{B}$	$n + {}^{10}\text{B} \rightarrow \alpha + {}^{7}\text{Li} + 6.2 \text{ MeV}$	$\sim \! 3860$
¹⁰⁸ Cd	$n + {}^{108}\text{Cd} \rightarrow {}^{109m}\text{Cd} \rightarrow {}^{109}\text{Cd} + \gamma (0.059 \text{ MeV})$	$\sim \! 1000^{\mathrm{a}}$
Gd	$n + {}^{155}\text{Gd} \rightarrow {}^{156}\text{Gd} + \gamma s (8.5 \text{ MeV})$	$\sim\!61000$
	$n + {}^{157}\text{Gd} \rightarrow {}^{158}\text{Gd} + \gamma s (7.9 \text{ MeV})$	$\sim \! 256000$

 $E_{prompt} \approx E_v - E_n - 0.78 MeV$

Event Rate

 Depending on the <u>power</u> of the reactors, <u>size</u> of the detectors, and the <u>distance</u> between them

1000 ton

Homework Problem 2

- Daya Bay's antineutrino detector (AD) is a 20-ton liquid scintillator detector. The far ADs are placed at ~1.6 km away from reactors with a total power of ~17 GW. How many inverse beta decay(IBD) reactions are expected per day in each far AD?
 - The hydrogen mass fraction in the AD is ~12%. How many free protons (from hydrogen) are there in each AD?
 - How many reactor antineutrinos per cm² per second is expected at the AD? (this is referred as the "flux")
 - The average IBD cross section is ~3x10⁻⁴³ cm², calculate event rate = flux * cross section * number of protons, assuming 100% detection efficiency. (remember that IBD can only detect 1/3 of all reactor antineutrinos)

Reactor Neutrino Experiments

Courtesy of Chao Zhang

23

- Four major motivations:
 - Measurement of fundamental parameters (MB, SB)
 - Search for new physics (VSB, SB, MB)
 - Measurement of neutrino flux, spectrum, evolution (SB, VSB)
 - Technology development (MB, VSB, SB)

Measurement of Fundamental Parameters

42'N

40 N

38 N

36 N

34 N

32 N

Image credit: H. Murayama

Far Hall 1540 m from Ling Ao I 1910 m from Daya Bay 324 m overburden

> 3 Underground Experimental Halls

Entrance

Ling Ao Near Hall 470 m from Ling Ao I 558 m from Ling Ao II 100 m overburden

Daya Bay Near Hall 363 m from Daya Bay

93 m overburden

Daya Bay Cores

Ling Ao II Cores

Designed to discover $sin^2(2\theta_{13})$

< 0.01 @90% C.L.

- 17.4 GW_{th} power
- 8 operating detectors
- 160 t total target mass

Statistics

powerful reactors

 (17.4 GW_{th}) + large
 detectors (80 ton at
 Far site)

Systematics

Reactor

 Far/Near relative measurement

Detector

 multiple functionally identical detectors (4 Near + 4 Far)

Background

 deep underground (860 m.w.e at far site)

Detection of Reactor Neutrino in Daya Bay

Discovery of non-zero $θ_{13}$ at 5.2 σ

- 2011/12/24 2012/2/17 (55 days)
- 6 detectors in operation first

In fact, in the first 5 days we already knew that θ_{13} is large from the data. In the homework I'll give you all the inputs to do a simplified analysis.

End of operation ceremony (Dec 24, 2011 - Dec 12, 2020)

BNL virtual mini-symposium: The Daya Bay Reactor Neutrino Experiment and the Discovery of Non-zero Theta13

https://indico.bnl.gov/event/9947/

Homework Problem 3

 How to discover the smallest neutrino oscillation with 5 days of Daya Bay reactor neutrino data?

Reactor and Detector Location

L3

Reactor	D1	D2	L1	L2	L3	L4
x (m)	43.0	-44.6	856.0	792.3	1143.6	1076.5
y (m)	-7.0	6.9	830.9	767.9	1206.1	1138.5
z (m)	-12.0	-12.0	-12.0	-12.0	-12.0	-12.0

AD	1	2	3	4	5	6
x (m)	94.5	97.8	584.1	-254.3	-259.5	257.3
y (m)	350.2	345.2	1216.2	1892.6	1889.6	897.8
z (m)	-20.0	-20.0	-16.6	-15.4	-15.4	-15.4

- All reactor cores
 operated at
 approximately equal
 power for the 5 days
 - L2 was powered off during the 5 days

Summary of event selection for the first 5 days

	EH1 AD1	EH1 AD2	EH2 AD1	EH3 AD1	EH3 AD2	EH3 AD3	
IBD Candidates	3278	3194	2193	338	350	348	Signal + Backgrounds
DAQ Live Time [days]	5.39	5.39	4.97	5.20	5.20	5.20	
Accidentals	60.9	59.6	49.3	20.5	19.4	19.3	ר
Li9	43	42	28	4	4	4	 Backgrounds
Fast Neutron	6	6	6	0.6	0.6	0.6	
Efficiency	0.8144	0.8120	0.8510	0.9515	0.9501	0.9508	

- Calculate the signal rate per day after efficiency correction
 EH1-AD1: (3278 60.9 43 6) / 0.8144 / 5.39 = 721.7 events/day
- □ Calculate the statistical error on the signal rate
 - EH1-AD1: sqrt(3278)/0.8144/5.39 = 13.0 events/day

Background t

Accidentals

- Accidentals: statistically calculate from uncorrelated singles
- Li9 / He8: measure time distribution of after-muon events
- Fast neutron: measure energy spectrum from AD/water/RPC tagged muon events

Background	Near	Far	Uncertainty
Accidentals	1.4%	2.3%	negligible
Li-9 / He-8	0.4%	0.4%	~30%
Fast neutron	0.1%	0.1%	~30%

Prompt Energy (MeV)

- How to discover the smallest neutrino oscillation with 5 days of Daya Bay reactor neutrino data?
 - 1. Plot the measured antineutrino signal rate of each AD vs. the expected flux, assuming each AD has the same size, and each reactor has the same power.
 - 2. Fit the data (what function to use?) with the near ADs and extrapolate to the far ADs. What do you see?
 - 3. What is the "survival probability" in the far ADs relative to the near ADs? What is the statistical significance of this observation?
 - 4. What is the size of θ_{13} using the oscillation formula?

$$P = 1 - \sin^2 2\theta_{13} \cdot \sin^2(1.27 |\Delta m_{ee}^2(eV^2)| \cdot \frac{L(m)}{E(MeV)}) \qquad \begin{array}{l} \Delta m^2 & 2.4 \times 10^{-3} (eV^2) \\ L & 1.66 \times 10^3 (m) \\ E & 3.5 (MeV) \end{array}$$

□ Data taking (12/24/2011 – 12/12/2020)

• 3275 days, 5.5M $\overline{\nu}_e$ events

Precision Oscillation (1/26 free parameters in the SM)

□ Final results with the full data set

Phys. Rev. Lett. 130, 161802 (2023)

 $\sin^2 2\theta_{13} = 0.0853^{+0.0024}_{-0.0024}$ (2.8% precision)

- Likely to be the best measurement in the foreseeable future
- Critical input to the current and future long-baseline experiments (DUNE)

Resolution of the Neutrino Mass Hierarchy (MH or NMO) with Reactors

- 20 kt JUNO detector with better than 3% energy resolution
 @ 1 MeV and better than 1% energy scale determination
- ~100k neutrino events with ~27 GW_{th} \rightarrow 3 σ MH sensitivity*

* See <u>PRD 86, 113011</u> for the statistical interpretation of MH sensitivity

Micro-Channel Plate PMT and High-Light-Yield Liquid Scintillator (LS)

20 kT liquid scintillator

3% energy resolution @ 1 MeV

PMTs: 17,600 20'' PMT 25,000 3'' PMT Coverage 77.5%

LS: 10⁴ PE/MeV L_{att} > 20 m @ 430 nm Low background

Dynode:(PDE)= QE_{Trans} * CE = 20% * 70% = 14% (2009) = 30% * 90% = 27% (2015)

MCP :(PDE)= QE_{Trans} * CE = 27% * 100% = 27% (2016)

PDE: Photon Detection Efficiency

http://juno.ihep.cas.cn/

Construction Process of JUNO

Questions?

40