*
4. MR B3
=i g N C <
Australian Government A

Research Activities

Overview of current Accelerator Physics research involvement.

Rohan Dowd

Science. Ingenuity. Sustainability.



Overview

= Emittance minimization and the Quantum Limit
= Beam based alignment
= Studies into IVU generated instabilities

= The CompactLight Collaboration
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Vertical Emittance at the
Quantum Limit
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ILC School 2007

= Linear Collider Basics

= Super Conducting &
Warm RF Technology

= Beam Dynamics of
Collider Linac & Damping
Rings

= |LC and Its Major Systems
= CLIC
= Detectors and Physics
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Emittance

= Emittance is the area of phase space the
particles in the beam occupy.

= Emission of synchrotron radiation will
‘Damp’ the emittance

= Dispersion, Magnet misalignments and
Quantum effects can increase the
emittance

= Colliders want a very small vertical beam

size, which means a very small vertical Nee Pre /O 850,
emittance. L oc =
E.. o,

= New colliders will employ ‘Damping Rings



Low Emittance rings workshop series

= HEP community Is starting to appreciate input from light sources.
Low Emittance Rings 2010 Workshop. CERN, 12-15 January:

“The workshop will profit from the experience of colleagues who
have desighed, commissioned and operated lepton ring colliders and
synchrotron light sources.”
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Light Sources as a testing ground

= Light sources excel at beam stability and
precision. The collider community has now
recognized there are many lessons to learn
from them.

= Physicists at light sources often have the
time and ability to test beam dynamics
theories and hardware

= Light Sources are very similar to damping
rings. Can demonstrate techniques needed
for future accelerators.




Direct emittance medasurement
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Indirect emittance medsurement

= Without the resources for a dedicated high quality diagnostic beamline,
we must try indirect inference of the beam size.

= Tousheck effect Is the scattering of particles within the beam from each
other.
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Towards the Quantum Limit

= Employed a model based
minimization technique and
Indirect measurements to
achieve 1.3 pm Vertical emittance
— Phys. Rev. ST Accel. Beams 14, 012804 (2011)

= Since then, we have refined the
technigue and come within
spitting distance of the Quantum
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= Some further-analysis to do.
= Lessons learned in beam control " FRacaomsgaly

have translated to better stability
of AS beam




Beam Based Alighment
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Alighment Methods Comparison

= AS uses laser tracker and magnet g s “ﬁl!'ﬁ“
fiducials. Magnet to magnet S = I
resolution ~ 25-50 micron (but
magnetic centre somewhat
uncertain).

= NSLS Il employs a vibrating wire
measurement. Resolution of
finding magnetic centre 1s 5-10
micron. Locked onto girder then
Installed. Overall magnet to
magnet positioning claimed < 30
micron (15-207?)

= What about Beam based
Alignment?




Sextupole Vertical offsets

= Shunt each sextupole magnet family to different strengths and and fit skew
quadrupole terms to each sextupole.

= Gradient of skew field vs sextupole field gives vertical offset.
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Quadrupole Rolls

= Turn off Sextupoles and perform skew
analysis of quadrupoles.

= Method was found to be accurate to +0.05
mRad. Mechanical precision of setting the
girders +0.1 mRad.

= Rolls now reduced to < 0.2 mRad.

= Alignment through BBA methods now on
par with mechanical bench top
measurements

= Further Refinement of alignment technique
ongoing
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IVU Induced Instabilties
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Background

= We have observed vertical beam
Instabilities generated when the IVUs are at
small gap since they were installed in 2006.

= Have been able to control them, but
mechanism was not identified.

= Risk that future IVUs will produce stronger
Instabilities

= This problem also reported in other
facilities — of Iinterest to global community.
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Modelling the IVUs

= Afull 3D model of the IVU was
created from the engineering
drawings

Mode MHz Q MHz/mm @ 8mm
2m Device
Mode | 118.9 497 6.71
Mode 2 148.3 643 3.97
Mode 3 1944 815 4.81
Mode 4 251.3 96l 3.48
Mode 5 313.0 1094 2.67
3m Device
Mode | 121.0 751 7.68
Mode 2 1359 852 6.30
i . Mode 3 160.9 960 5.38
- Y77 Moded 1935 1061 4.56
“°; Mode 5 230.7 1166 3.64
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Possible solution —ferrite rings
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The CompactLight
Collaboration
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CompactLight

= “The key objective of the CompactLight Design Study Is to demonstrate,
through a conceptual design, the feasibility of an innovative, compact
and cost effective FEL facility suited for user demands identified in the
sclence case.”

= X-Band acceleration will be a compact, cost effective solution for a
future FEL in Australia.
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RF Undulator Work

= David Is working with Strathclyde University for RF undulator research,
Including simulations of electromagnetic wave fields setup in the cavity,
electron beam dynamics simulations by ASTRA code, photon radiation
simulations by SPECTRA code and SIMPLEX code.

= A 36 GHz microwave undulator has been chosen for producing a conceptual
design report for this work package .
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Thank you.
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