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A Global Fit to the Anomalies
Base our analysis on fits described in Descotes-Genon et al [arXiv:1510.04239] 
and updated in Capdevila et al [arXiv:1704.05340]

1 Introduction

Flavour-Changing Neutral Currents (FCNC) have been prominent tools in high-energy

physics in the search for new degrees of freedom, due to their quantum sensitivity to

energies much higher than the external particles involved. In the current context where

the LHC has discovered a scalar boson completing the Standard Model (SM) picture but

no additional particles that would go beyond this framework, FCNC can be instrumental

in order to determine where to look for New Physics (NP). One particularly interesting

instance of FCNC is provided by b ! s`` and b ! s� transitions, which can be probed

through various decay channels, currently studied in detail at the LHCb, CMS and AT-

LAS experiments. In addition, in some kinematic configurations it is possible to build

observables with a very limited sensitivity to hadronic uncertainties, and thus enhancing

the discovery potential of these decays for NP, based on the use of e↵ective field theories

adapted to the problem at hand. Finally, it is possible to analyse all these decays using a

model-independent approach, namely the e↵ective Hamiltonian [1,2] where heavy degrees

of freedom have been integrated out in short-distance Wilson coe�cients Ci, leaving only

a set of operators Oi describing the physics at long distances:

He↵ = �4GFp
2
VtbV

⇤
ts

X

i

CiOi (1)

(up to small corrections proportional to VubV ⇤
us

in the SM). In the following, the factori-

sation scale for the Wilson coe�cients is µb = 4.8 GeV. We focus our attention on the

operators

O7 =
e

16⇡2
mb(s̄�µ⌫PRb)F

µ⌫ , O70 =
e

16⇡2
mb(s̄�µ⌫PLb)F

µ⌫ ,

O9 =
e2

16⇡2
(s̄�µPLb)(¯̀�

µ`), O90 =
e2

16⇡2
(s̄�µPRb)(¯̀�

µ`),

O10 =
e2

16⇡2
(s̄�µPLb)(¯̀�

µ�5`), O100 =
e2

16⇡2
(s̄�µPRb)(¯̀�

µ�5`), (2)

where PL,R = (1 ⌥ �5)/2 and mb ⌘ mb(µb) denotes the running b quark mass in the

MS scheme. In the SM, three operators play a leading role in the discussion, namely

the electromagnetic operator O7 and the semileptonic operators O9 and O10, di↵ering

with respect to the chirality of the emitted charged leptons (see Ref. [3] for more detail).

NP contributions could either modify the value of the short-distance Wilson coe�cients

C7,9,10, or make other operators contribute in a significant manner (such as O70,90,100 defined

above, or the scalar and pseudoscalar operators OS,S0,P,P 0).

Recent experimental results have shown interesting deviations from the SM. In 2013,

the LHCb collaboration announced the measurement of angular observables describing

the decay B ! K⇤µµ in both regions of low- and large-K⇤ recoil [4]. Two observables, P2

and P 0
5 [5–7], were in significant disagreement with the SM expectations in the large-K⇤
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For theoretical correlations, we have produced a correlation matrix by performing a

propagation of error. This is achieved by varying all input parameters following a Gaus-

sian distribution including known correlations, and determining the resulting distribution

of the observables of interest. This is particularly necessary for the form factors: we in-

clude correlations between parameters from the lattice QCD computation at low recoil in

Ref. [97,98]. We treat all parameters as uncorrelated at large recoil in the case of Ref. [17],

whereas we include the available correlations when we use Ref. [20]. We stress that even

the uncorrelated scan of parameters (like power corrections) induces correlations among

the observables (for instance branching ratios at large recoil) because the latter have a

correlated functional dependence on these parameters. The large error bars in Ref. [17]

for B ! K⇤µµ may lead to excursions in parameter space that distort the distribution of

the Pi observables and yield significant non-Gaussianities. These non-Gaussianities are

avoided by scanning over the input parameters after scaling down all uncertainties by a

global factor ⇢, producing the correlation matrix for the Pi observables, and multiplying

all its entries by ⇢2 . The resulting covariance matrix is an accurate representation of the

uncertainties and correlations for the Pi observables in the vicinity of the central values

of the input parameters, as long as it is possible to propagate errors in a linearised way.

This matrix encodes all the relevant information concerning uncertainties and correlations

among observables, with all uncertainties e↵ectively added in quadrature (we explicitly

checked that the results are independent on the exact numerical choice of the rescaling

factor ⇢, and in practice ⇢ = 3 is su�cient). The other sets of form factors yield Gaus-

sian distributions for the Bs ! �µµ and B ! Kµµ observables, because of the smaller

uncertainty ranges.

Finally, we construct a single covariance matrix as the sum of the experimental (Cexp
ij

)

and the theoretical one (Cth
ij
), and we use it to build the usual �2 function corresponding

to observables with correlated Gaussian distributions 12:

�2(Ck) =
NobsX

i,j=1

⇥
Oexp

i
�Oth

i
(Ck)

⇤
(Cexp + Cth)

�1
ij

⇥
Oexp

j
�Oth

j
(Ck)

⇤
. (38)

Once the �2 function is computed, it remains to exploit the information that it car-

ries. Following standard frequentist analysis, a first piece of information is provided by

the global minimum �2
min, which provides an indication of the goodness-of-fit. It can

be expressed as a p-value assessing the agreement between the measurements and the

scenario tested, given as the probability for a �2-distributed random variable with the

corresponding number of degrees of freedom (number of data points minus number of free

parameters) to reach a higher value than the one obtained from the data.

12 The theoretical correlation matrices are obtained for the observables in the context of the SM com-

putation. In the following, we will assume that the theory covariance matrix has only a mild dependence

on the values of the Wilson coe�cients, and we will keep its SM value in the construction of our �2 test

statistics [15]. We have checked that for the scenarios considered in this paper this assumption holds, by

calculating the covariance matrix at the best-fit point and comparing the outcome of the fit with the one

using the SM covariance matrix.
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Best fit (BF) parameters obtained by minimising

over 175 observables, finding preference of BF point over SM by approximately 5 𝜎 
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Presenting Results

2

Largest pulls hP 0
5i[4,6] hP 0

5i[6,8] R[1,6]
K R[0.045,1.1]

K⇤ R[1.1,6]
K⇤ B[2,5]

Bs!�µ+µ� B[5,8]

Bs!�µ+µ�

Experiment �0.30± 0.16 �0.51± 0.12 0.745+0.097
�0.082 0.66+0.113

�0.074 0.685+0.122
�0.083 0.77± 0.14 0.96± 0.15

SM prediction �0.82± 0.08 �0.94± 0.08 1.00± 0.01 0.92± 0.02 1.00± 0.01 1.55± 0.33 1.88± 0.39

Pull (�) -2.9 -2.9 +2.6 +2.3 +2.6 +2.2 +2.2

Prediction for CNP
9µ = �1.1 �0.50± 0.11 �0.73± 0.12 0.79± 0.01 0.90± 0.05 0.87± 0.08 1.30± 0.26 1.51± 0.30

Pull (�) -1.0 -1.3 +0.4 +1.9 +1.2 +1.8 +1.6

TABLE I: Main anomalies currently observed in b ! s`` transitions, with the current measurements, our predictions for the
SM and the NP scenario CNP

9µ = �1.1, and the corresponding pulls. In addition, a deficit compared to the SM predictions has

been observed at low and large recoils for B(B(0,+) ! K(0,+)µµ) [10] and B(B0 ! K⇤0µµ) [11], as well as at low recoil (above
15 GeV2) for B(B+ ! K⇤+µ+µ�) [10] and B(Bs ! �µ+µ�) [12].

allow for NP in all SM and chirally-flipped operators. In
Sec. 4.2, we discuss the role played by the LFUV ob-
servables RK and RK⇤ in our global analysis thanks to
semi-analytical formulae. In Sec. 4.3, we discuss the im-
pact of these compelling patterns of physics beyond the
SM on specific NP models with new heavy gauge bosons
or leptoquarks (hypothetical particles coupling to quarks
and leptons simultaneously), which provide extensions of
the SM able to explain the anomalies.

We relate the impact of LFUV observables with the
most prominent deviation among b ! sµµ observables,
namely P

0
5 [7], in Sec. 5. We also provide additional infor-

mation concerning theoretical uncertainties, focusing on
the issue of charm-loop contributions: we perform a com-
parison between the empirical model analysed in Ref. [8],
and our estimate based on the framework of Ref. [9], find-
ing a very good agreement between the two. In Sec. 6, we
investigate how additional LFUV observables can disen-
tangle the various scenarios favoured by our global anal-
yses in the future, before reaching our conclusions.

2. EXPERIMENTAL SITUATION

We start by briefly discussing the recent experimental
activity concerning b ! s`` transitions. In 2013, using
the 1 fb�1 dataset, the LHCb experiment measured the
basis of optimised observables [13] for B ! K

⇤
µ

+
µ

� [14],
observing the so-called P

0
5 anomaly [1], i.e., a sizeable

3.7 � discrepancy between the measurement and the SM
prediction in one bin for the angular observable P

0
5 [7].

In 2015, using the 3 fb �1 dataset, LHCb confirmed this
discrepancy with a 3 � deviation in each of two adja-
cent bins at large K

⇤ recoil [15]. LHCb also observed
a systematic deficit with respect to SM predictions for
the branching ratios of several decays, [12, 16]. In 2016,
the Belle experiment presented an independent analysis
of P

0
5 [17, 18] confirming the LHCb measurements in a

very di↵erent experimental setting.
A conceptually new element arose when a discrepancy

in the ratio RK = BB!Kµ+µ� /BB!Ke+e� was also ob-
served by LHCb [19], hinting at the violation of Lepton
Flavour Universality (LFU) and suggesting that devia-
tions from the SM are predominantly present in b !

sµ
+
µ

� transitions but not in b ! se
+
e
� ones. Recently

Belle has measured for the first time [18] the additional
LFU violating (LFUV) observables Q4,5 = P

µ0
4,5 � P

e0
4,5,

proposed in Ref. [20]. Even if not yet statistically signifi-
cant, the result points also towards LFUV in Q5, consis-
tently with the deviation in RK .

The ATLAS and CMS collaborations have presented
new preliminary results for B ! K

⇤
µµ observables: AT-

LAS measured the whole set as well as FL at large K
⇤

recoil [21], whereas CMS presented results for P1 and P
0
5

at low and large recoils [22]. The results show a good
(but not perfect) overall agreement with the LHCb re-
sults, and a global model-independent analysis [23] has
confirmed the earlier picture in Refs. [1–4] on many is-
sues: favoured hypotheses for NP contributions to Wilson
Coe�cients, consistency of deviation patterns in the var-
ious channels and types of observables, robustness with
respect to the theoretical assumptions on hadronic cor-
rections, and absence of q

2- or helicity-dependences for
CNP
9,µ that would signal uncontrolled long-distance contri-

butions in B ! K
⇤
µ

+
µ

�.

On the other hand, the LHCb collaboration has re-
cently updated the di↵erential branching ratio for B !
K

⇤
µ

+
µ

� [11], and it has presented striking new re-
sults concerning the LFUV ratio RK⇤ = BB!K⇤µ+µ�

/BB!K⇤e+e� at large K
⇤ recoil [24], exhibiting signifi-

cant deviations from SM expectations. Ratios like RK

and RK⇤ are particularly interesting due to their lack of
sensitivity to hadronic uncertainties in the SM and their
potential to uncover NP [25, 26]. The significant devia-
tion of RK⇤ from SM expectations confirms in particular
that hadronic uncertainties in the theoretical predictions
are not su�cient to explain all the anomalies observed in
b ! s`

+
`
� transitions, and that alternative explanations

must be searched for.

A summary of the most prominent anomalies is pre-
sented in Table I. In the following, we discuss how
these remarkable new results a↵ect the global model-
independent analysis of NP in b ! s`

+
`
� decays, we

determine patterns of NP contributions favored by the
whole set of experimental data, and discuss their impli-
cations for NP models as well as further experimental
tests.

4

All LFUV

1D Hyp. Best fit 1 � 2 � PullSM p-value Best fit 1 � 2 � PullSM p-value

CNP
9µ -1.11 [�1.28,�0.94] [�1.45,�0.75] 5.8 68 -1.76 [�2.36,�1.23] [�3.04,�0.76] 3.9 69

CNP
9µ = �CNP

10µ -0.62 [�0.75,�0.49] [�0.88,�0.37] 5.3 58 -0.66 [�0.84,�0.48] [�1.04,�0.32] 4.1 78

CNP
9µ = �C0

9µ -1.01 [�1.18,�0.84] [�1.34,�0.65] 5.4 61 -1.64 [�2.13,�1.05] [�2.52,�0.49] 3.2 32

CNP
9µ = �3CNP

9e -1.07 [-1.24,-0.90] [-1.40,-0.72] 5.8 70 -1.35 [�1.82,�0.95] [�2.38,�0.59] 4.0 72

TABLE II: Most prominent patterns of New Physics in b ! sµµ under the 1D hypothesis. The p-values are quoted in % and
PullSM in units of standard deviation.

Regarding the theory computation of all observables,
we follow Refs. [2, 34], which take into account the the-
oretical updates for the branching ratios of B ! Xs�,
B ! Xsµµ and Bs ! µµ in Refs. [35–37]. For the
B ! K

? form factors at large recoil we use the calcula-
tion in Ref. [9], which has more conservative uncertain-
ties than the ones in Ref. [38], obtained with a di↵erent
method. For Bs ! � the corresponding calculation is
not available, and therefore we use Ref. [38]. This leads
to smaller hadronic uncertainties quoted for Bs ! �``

and R�, but we stress that this is only due to the choice
of input.

We follow the same statistical method as in Ref. [2].
We perform a frequentist analysis with all known theory
and experimental correlations taken into account through
the covariance matrix when building the �

2 function,
which is minimised to find best-fit points, pulls, p-values
and confidence-level intervals. Depending on the dimen-
sionality of the hypothesis, the minimisation is performed
either using a simple scan or the Markov-Chain Monte
Carlo Metropolis-Hastings algorithm.

4. RESULTS

4.1. Fit results

In Tabs. II and III, we give the fit results for several
one- or two-dimensional hypothesis for NP contributions
to the various operators, with two di↵erent datasets: ei-
ther we include all available data from muon and elec-
tron channels presented in the previous section (column
“All”, 175 measurements), or we include only LFUV ob-
servables, i.e., RK and RK⇤ from LHCb and Qi (i = 4, 5)
from Belle (column “LFUV”, 17 measurements). In both
cases, we include also the b ! s� observables, as well as
B(B ! Xsµµ) and B(Bs ! µµ). The SM point yields a
�

2 corresponding to a p-value of 11.3% for the fit “All”
and 4.4% for the fit “LFUV”.

We start by discussing NP hypotheses for the fit “All”.
The measurement of RK⇤ increases further the signifi-
cance of already prominent hypotheses in previous stud-
ies, namely, the first three hypotheses (CNP

9µ , CNP
9µ =

�CNP
10µ and CNP

9µ = �C90µ) already identified in Refs. [1, 2].
The SM pull exceeds 5 � in each case: the hypotheses can
hardly be distinguished on this criterion, and as discussed

in Ref. [20], the Qi observables will be very powerful tools
to lift this quasi-degeneracy.

Besides providing the results for one- and two-
dimensional hypotheses with SM pulls above 5 �, we
discuss four illustrative examples of NP hypotheses with
specific chiral structures, leading to correlated shifts in
Wilson coe�cients. These hypotheses are:

1. (CNP
9µ = �C90µ, CNP

10µ = C100µ),

2. (CNP
9µ = �C90µ, CNP

10µ = �C100µ),

3. (CNP
9µ = �CNP

10µ, C90µ = C100µ),

4. (CNP
9µ = �CNP

10µ, C90µ = �C100µ).

Hypothesis 1 has the highest SM pull, in agreement
with our previous global analysis [2]. Taking CNP

10µ =
�C100µ (i.e., Hypothesis 2) reduces the significance from
5.7 � to 5.0 �, similarly to Hypotheses 3 and 4 taking
CNP
9µ = �CNP

10µ (irrespectively of the relative sign taken to
constrain C90µ = ±C100µ). From a model-independent
point of view, Hypothesis 1 is particularly interesting
to yield a low value for RK⇤ (especially if a contribu-
tion CNP

7 > 0 is allowed). Let us add that a scenario
with only CNP

9µ = �C90µ would predict RK = 1 and
RK⇤ < 1 [2, 25, 26]. One could however obtain RK < 1
by adding a positive contribution to C10µ and/or C100µ

(see Tab. 9 in Ref. [2]).
Up to now, we have discussed scenarios where NP con-

tributions occur only in b ! sµµ transitions. It is also
interesting to consider scenarios with NP in both muon
and electron channels, in particular (CNP

9µ , CNP
9e ), with a

SM pull of 5.5 �, and a p-value of 68%. While CNP
9µ ⇠ �1

is preferred over the SM with a significance around 5 �,
C9e is compatible with the SM already at 1 �, in agree-
ment with the LFUV data included in the fit. One can as-
sess more precisely the need for LFUV in the framework
where NP is allowed in both (CNP

9e and CNP
9µ ) through the

pull of the hypothesis (CNP
9e = CNP

9µ ) which reaches 3.3 �.
Considering the results for the (CNP

9e , CNP
9µ ) hypothesis,

one can notice that a very good fit is also obtained for
the one-dimensional hypothesis CNP

9µ = �3CNP
9e favoured

in some models discussed in the next section.
In Fig. 1 we show the corresponding constraints for

the fit “All” under the three hypotheses (CNP
9µ , CNP

10µ),

Tabulated results from [arXiv:1704.05340]

0-d (single point)

1-d
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Presenting Results
2d fits from [arXiv:1704.05340]
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FIG. 1: From left to right: Allowed regions in the (CNP
9µ , CNP

10µ), (CNP
9µ , C90µ) and (CNP

9µ , CNP
9e ) planes for the corresponding two-

dimensional hypotheses, using all available data (fit “All”). We also show the 3 � regions for the data subsets corresponding
to specific experiments. Constraints from b ! s� observables, B(B ! Xsµµ) and B(Bs ! µµ) are included in each case (see
text).

FIG. 2: From left to right: Allowed regions in the (CNP
9µ , CNP

10µ), (CNP
9µ , C90µ) and (CNP

9µ , CNP
9e ) planes for the corresponding two-

dimensional hypotheses, using only LFUV observables (fit “LFUV”). Constraints from b ! s� observables, B(B ! Xsµµ) and
B(Bs ! µµ) are included in each case (see text).

ment of the uncertainty is less important in the optimized
LFUV observables Qi [20]. An exception to this enhance-
ment occurs under the hypothesis CNP

9µ = �CNP
10µ: above

1 GeV2, the contribution of right-handed amplitudes to
RK⇤ cancel to a large extent, reducing the theoretical
uncertainty substantially.

Large-recoil expressions for the transversity ampli-
tudes can be used to provide approximate expressions
for RK⇤ in the first two bins in terms of Wilson coe�-
cients, leading to further cross-checks of our predictions.
Let us stress that the following approximate expressions
are given for illustrative purposes, and that complete ex-
pressions have been used for all the numerical evaluations
in this article (see also Refs. [20] and [41] for exact pre-
dictions). We consider the large-recoil limit and we work
under the hypothesis that New Physics enters in muon

modes and is suppressed for electrons [2, 42]. In the first
bin one finds:

R
[0.045,1.1]
K⇤ '

⇣
12.8 + g

µ
(1) + g

µ
(2)

⌘
/

⇣
13.4 + g

e
(1) + g

e
(2)

⌘

where g
`
(i) stands for the linear (i = 1) and quadratic

(i = 2) term for ` = e, µ and are given by:

g
`
(1) = �1.1

⇥
CNP
10` � CNP

9` /2 + C90` � C100`

⇤

�61.9 CNP
7 � 1.7 C0

7 , (10)
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g
`
(1) = �1.1
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All LFUV

2D Hyp. Best fit PullSM p-value Best fit PullSM p-value

(CNP
9µ , CNP

10µ) (-1.01,0.29) 5.7 72 (-1.30,0.36) 3.7 75

(CNP
9µ , C0

7) (-1.13,0.01) 5.5 69 (-1.85,-0.04) 3.6 66

(CNP
9µ , C90µ) (-1.15,0.41) 5.6 71 (-1.99,0.93) 3.7 72

(CNP
9µ , C100µ) (-1.22,-0.22) 5.7 72 (-2.22,-0.41) 3.9 85

(CNP
9µ , CNP

9e ) (-1.00,0.42) 5.5 68 (-1.36,0.46) 3.5 65

Hyp. 1 (-1.16,0.38) 5.7 73 (-1.68,0.60) 3.8 78

Hyp. 2 (-1.15, 0.01) 5.0 57 (-2.16,0.41) 3.0 37

Hyp. 3 (-0.67,-0.10) 5.0 57 (0.61,2.48) 3.7 73

Hyp. 4 (-0.70,0.28) 5.0 57 (-0.74,0.43) 3.7 72

TABLE III: Most prominent patterns of New Physics in b ! sµµ with high significances. The last four rows corresponds
to hypothesis 1: (CNP

9µ = �C90µ, CNP
10µ = C100µ), 2: (CNP

9µ = �C90µ, CNP
10µ = �C100µ), 3: (CNP

9µ = �CNP
10µ, C90µ = C100µ) and 4:

(CNP
9µ = �CNP

10µ, C90µ = �C100µ). The “All” columns include all available data from LHCb, Belle, ATLAS and CMS, whereas the
“LFUV” columns are restricted to RK , RK⇤ and Q4,5 (see text for more detail). The p-values are quoted in % and PullSM in
units of standard deviation.

CNP
7 CNP

9µ CNP
10µ C70 C90µ C100µ

Best fit +0.03 -1.12 +0.31 +0.03 +0.38 +0.02

1 � [�0.01,+0.05] [�1.34,�0.88] [+0.10,+0.57] [+0.00,+0.06] [�0.17,+1.04] [�0.28,+0.36]

2 � [�0.03,+0.07] [�1.54,�0.63] [�0.08,+0.84] [�0.02,+0.08] [�0.59,+1.58] [�0.54,+0.68]

TABLE IV: 1 and 2 � confidence intervals for the NP contributions to Wilson coe�cients in the six-dimensional hypothesis
allowing for NP in b ! sµµ operators dominant in the SM and their chirally-flipped counterparts, for the fit “All”. The SM
pull is 5.0 �.

(CNP
9µ , C9µ0) and (CNP

9µ , CNP
9e ), as well as the 3 � regions

according to the results from individual experiments (for
each region, we add the constraints from b ! s� ob-
servables, B(B ! Xsµµ) and the world average for
B(Bs ! µµ) [29]). As expected, the LHCb results drive
most of the e↵ect, with a clear exclusion of the origin,
i.e., the SM point.

We can now move to the fit “LFUV” in Fig. 2, where
we consider the same hypotheses favoured by global anal-
yses. It is interesting to notice that this restricted sub-
set of observables excludes the SM point with a high
significance, and it favours regions similar to the fit
“All” dominated by di↵erent b ! sµµ-related observ-
ables (B ! K

⇤
µµ optimised angular observables as well

as low- and large-recoil branching ratios for B ! Kµµ,
B ! K

⇤
µµ and Bs ! �µµ). This is also shown in

Tabs. II and III, where the scenarios with the highest
pulls are confirmed with significances between 3 and 4
�, but get harder to distinguish on the basis of their sig-
nificance. Scenarios like CNP

9µ = �C90µ that would fail to
explain RK are not disfavoured due to their good compat-
ibility with RK⇤ data. Interestingly, the inclusion of the
RK⇤ measurement now disfavours solutions with right-
handed currents only, as proposed in Ref. [5, 6]. Such
a scenario was valid considering only RK (excluding the
other b ! sµ

+
µ

� data), but is now disfavoured by the
measurement of RK⇤ . This was solved later on in [39],
by modifying the model via a scalar leptoquark with hy-
percharge Y = 7/6.

Finally, we have performed a six-dimensional fit allow-
ing for NP contributions in C7(0),9(0)µ,10(0)µ. The SM pull
has shifted from 3.6� in the fit of Ref. [2] to 5.0 � if one
considers the fit “All” described above. The 1 and 2 �

CL intervals are given in Tab. IV, with the pattern:

CNP
7 & 0, CNP

9µ < 0, CNP
10µ > 0, C70 & 0, C90µ > 0, C100µ & 0

(9)
where C9µ is compatible with the SM beyond 3 �, C10µ,
C70 at 2 � and all the other coe�cients at 1 �.

4.2. RK and RK⇤ : A closer look

Theoretical predictions in the SM for RK and RK⇤ are
very accurate: hadronic uncertainties cancel to a large
extent and electromagnetic corrections have been esti-
mated to be small and under control [40]. This is true
as long as there are no significant LFUV e↵ects. If there
are, interference e↵ects between LFUV and LFU conserv-
ing contributions spoil the cancellation of hadronic un-
certainties. These e↵ects might come from NP or from
lepton-mass e↵ects in the SM. The latter are only impor-
tant at very low q

2, wherever m
2
`/q

2 is not small com-
pared to 1 (say, below q

2 ⇠ 1GeV2), and a↵ect in par-
ticular the first measured bin in RK⇤ . In this bin one
thus expects larger theoretical uncertainties than in the
region above 1 GeV2, as well as at any value of q

2 in the
presence of LFUV new physics [20, 41]. This enhance-

6d fit from [arXiv:1704.05340]

A lot of information is lost 
Characterisation beyond just the best fit (BF) point

How does the 6d fit differ from lower dimensional ones

Which observables are important in constraining the parameters

Fit in observable space

Role of correlation

Predictions in the context of the fit rather than for the BF only
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Ideas
• Use tools for visualisation of high-dimensional distributions 

(the grand tour) to compare fits in 6 parameters

• Systematically compare predictions between BF and SM for 

all observables, also taking into account correlation between 
observables


• Construct quadratic approximation and use it to select set of 
points that are representative of the fit


• Use the set of points to discuss:

- Fit uncertainty in observable space and for predictions

- Connection between observables and constraints in 

specific directions in parameter space
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Visualisation in 6 Dimensions

We then search for appropriate projections that illustrate the separation between the BF point

and the SM point. Finally, to show these projections we center the view by subtracting the mean

position of the points in S1�. Notice that the axes are centered with respect to the point cloud

and therefore the origin is somewhat shifted with respect to the BF point.

Most notably in this example we observe how the SM point moves away from the cloud of BF

region points along with the change in the importance of C9 in the projections. The animation

provides a striking picture of the separation between the BF region and the SM that is mostly

along the C9 direction, a result that is well known in the literature. We further illustrate this with

a static picture in Figure 1, where the projection has been selected for showing the large distance

between the SM and BF point. For comparison we illustrate the positions of the SM, BF and

selected one and two dimensional best fits from Ref. [1] (listed in the first column of Table 1) as

described in the caption. Another interesting feature that can be seen in the animation is that all

these lower dimensional best fits are found roughly in the same half of the 6-d 1� region.

C7

C9

C10

C7ʹ

C9ʹ

C10ʹ

Figure 1: Visualization of parameter space in six dimensions via a general two dimensional projec-

tion. The set S1� of points within 1� of the BF is shown in yellow, the black symbols mark the SM

point (box); the BF point (diamond); one dimensional best fits (upwards pointing triangle); and

two dimensional best fits (downwards pointing triangle). The S1� cloud is seen to be separated

from the SM point mostly along the C9 direction.

2.2 Quadratic approximation

The Hessian matrix is the standard tool to construct a quadratic approximation to the �2 function

in the vicinity of the global minimum. The eigenvectors of this matrix correspond to the directions

of the principal axes of the six-dimensional confidence level ellipsoids around the BF that occur in

this approximation. These ellipsoids can be used to study variations in the fit defined by parameter

displacements along these principal axes away from the BF point. In this case there are twelve,

six dimensional, sets of points Ci that result in fits that di↵er from the BF by approximately one

standard deviation. The Hessian at the minimum, in the basis (C7, C9, C10, C70 , C90 , C100), is given

4

SM

1-d BF

2-d BF

6-d BF

Within 1 𝜎  of the BF

https://uschilaa.github.io/animations/points/animation.html
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Pull
experimental and theoretical errors in quadrature and ignoring correlations:3

Pull(p) =
T (p)�Oq
�2

exp +�2
T (p)

(6)

We will use the parameter sets, p, corresponding to the SM, the BF point and the 1� shifted

points in what follows.

The Pulls are the metrics that compare theoretical predictions against experimental measure-

ments and we present results for Pull(SM) and Pull(BF) below. These, of course, quantify the

relative position of a measurement with respect to the SM and BF predictions respectively.

2. The pull di↵erence will be used to compare the BF against the SM, quantified as

�(Pull) = |Pull(SM)|� |Pull(BF)|,

��(Pull)i =

����
X

j

��1/2
ij

(T (SM)�O)j

�����
����
X

j

��1/2
ij

(T (BF )�O)j

����. (7)

The absolute value ensures that a positive number indicates that the BF prediction is in better

agreement with the observation, and a negative value signals better agreement of the SM

prediction with the observation. �(Pull) will then highlight the relative contributions from

di↵erent observables to deviations by the fit from the SM. Notice that �(Pull) and ��(Pull)i

have di↵erent connotations. While �(Pull) measures the absolute preference for the BF over

the SM for a given observable, ��(Pull)i corresponds to the di↵erence in conditional Pull,

taking into account the correlation with other observables.

3. Di↵erent metrics will be used to evaluate variations in the fit itself, ignoring agreement with

experiment. These allow one to associate specific observables with the uncertainty in the

fit along one of the principal axes of the (approximate) one-sigma confidence level ellipsoid.

These quantities are thus constructed to single out specific observables with large contribu-

tions to ��2 as the parameters move away from their best fit value. Several definitions are

possible and we will compare the following ones:

�i =
(Ti � TBF )q
�2

exp +�2
BF

�0i =
(Ti �O)q
�2

exp +�2
i

� (TBF �O)q
�2

exp +�2
BF

��,i =
X

l

��1/2
il

(Tpt � TBF )l

�̃�,i =
X

l

1q
��1
ii

��1
il

(Tpt � TBF )l (8)

where the index i labels the observables and the di↵erent �s are all calculated for the twelve

SVD directions. The di↵erent definitions have the simple interpretations:

3This definition is di↵erent from the “Pull” used in Section 2 which is defined in parameter space rather than for

each observable.
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Figure 4: The top panels show the Pull of each observable with respect to the SM (left) and the

best fit (right). The bottom panels show �(Pull) for all observables ignoring correlations (left)

and with correlations (right). Values larger than 2 for the top panels (1 and 0.84) for the bottom)

have been labeled in red and selected for discussion in the text.

Points with values of |�(Pull)| � 1 (left) and |��(Pull)| � 0.84 (left) are highlighted in red

in Figure 4. The particular cuto↵s for this are rather arbitrary. For individual pulls, we have

a statistical interpretation since �(Pull) is normalised to the total uncorrelated errors. When

including correlations, we follow the argument sketched in App. B. The largest values without

correlations are found for branching ratio measurements and for RK . The points that are singled

out as large by both definitions are:

• 68: 107 ⇥Br(B0 ! K0⇤µµ) [15-19] LHCb

• 73: 107 ⇥Br(B0 ! K+⇤µµ) [15-19] LHCb

• 92: 107 ⇥Br(Bs ! �µµ) [5-8] LHCb

• 93: 107 ⇥Br(Bs ! �µµ) [15-18.8] LHCb

• 98: RK(B+ ! K+) [1-6] LHCb

• 100: RK⇤(B0 ! K0⇤) [1.1-6] LHCb

• 167: 107 ⇥Br(B ! K⇤µµ) [16-19] CMS-7

Of the observables in this list, (167) is the only one that has a large preference for the SM over

the BF.

There are several other observables highlighted in the bottom-left panel as showing a pull

di↵erence between 1 and 2 that no longer stand out when correlations are included (bottom-right
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SM BF

Pull�(p) =
X

j

�
�1/2
ij (T (p)�O)jCan take into account correlated 

uncertainties by defining

ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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81 FL(Bs ! �µµ)[2� 5] LHCb [26]

82 P1(Bs ! �µµ)[5� 8] LHCb [26]

83 P 0
4(Bs ! �µµ)[5� 8] LHCb [26]

84 P 0
6(Bs ! �µµ)[5� 8] LHCb [26]

85 FL(Bs ! �µµ)[5� 8] LHCb [26]

86 P1(Bs ! �µµ)[15� 18.8] LHCb [26]

87 P 0
4(Bs ! �µµ)[15� 18.8] LHCb [26]

88 P 0
6(Bs ! �µµ)[15� 18.8] LHCb [26]

89 FL(Bs ! �µµ)[15� 18.8] LHCb [26]

90 107 ⇥Br(Bs ! �µµ)[0.1� 2] LHCb [26]

91 107 ⇥Br(Bs ! �µµ)[2� 5] LHCb [26]

92 107 ⇥Br(Bs ! �µµ)[5� 8] LHCb [26]

93 107 ⇥Br(Bs ! �µµ)[15� 18.8] LHCb [26]

94 FL(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

95 P1(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

96 P2(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

97 P3(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

98 RK(B+ ! K+)[1� 6] LHCb [28]

99 RK⇤(B0 ! K0⇤)[0.045� 1.1] LHCb [29]

100 RK⇤(B0 ! K0⇤)[1.1� 6] LHCb [29]

101 P 0
4(B ! K⇤ee)[0.1� 4] Belle [30]

102 P 0
4(B ! K⇤µµ)[0.1� 4] Belle [30]

103 P 0
5(B ! K⇤ee)[0.1� 4] Belle [30]

104 P 0
5(B ! K⇤µµ)[0.1� 4] Belle [30]

105 P 0
4(B ! K⇤ee)[4� 8] Belle [30]

106 P 0
4(B ! K⇤µµ)[4� 8] Belle [30]

107 P 0
5(B ! K⇤ee)[4� 8] Belle [30]

108 P 0
5(B ! K⇤µµ)[4� 8] Belle [30]

109 P 0
4(B ! K⇤ee)[14.18� 19] Belle [30]

110 P 0
4(B ! K⇤µµ)[14.18� 19] Belle [30]

111 P 0
5(B ! K⇤ee)[14.18� 19] Belle [30]

112 P 0
5(B ! K⇤µµ)[14.18� 19] Belle [30]

113 FL(B ! K⇤µµ)[0.04� 2] ATLAS [31]

114 P1(B ! K⇤µµ)[0.04� 2] ATLAS [31]

115 P 0
4(B ! K⇤µµ)[0.04� 2] ATLAS [31]

116 P 0
5(B ! K⇤µµ)[0.04� 2] ATLAS [31]

117 P 0
6(B ! K⇤µµ)[0.04� 2] ATLAS [31]

118 P 0
8(B ! K⇤µµ)[0.04� 2] ATLAS [31]

119 FL(B ! K⇤µµ)[2� 4] ATLAS [31]

120 P1(B ! K⇤µµ)[2� 4] ATLAS [31]

121 P 0
4(B ! K⇤µµ)[2� 4] ATLAS [31]

122 P 0
5(B ! K⇤µµ)[2� 4] ATLAS [31]

123 P 0
6(B ! K⇤µµ)[2� 4] ATLAS [31]

124 P 0
8(B ! K⇤µµ)[2� 4] ATLAS [31]

125 FL(B ! K⇤µµ)[4� 6] ATLAS [31]

126 P1(B ! K⇤µµ)[4� 6] ATLAS [31]

127 P 0
4(B ! K⇤µµ)[4� 6] ATLAS [31]

ID Observable Exp

128 P 0
5(B ! K⇤µµ)[4� 6] ATLAS [31]

129 P 0
6(B ! K⇤µµ)[4� 6] ATLAS [31]

130 P 0
8(B ! K⇤µµ)[4� 6] ATLAS [31]

131 P1(B ! K⇤µµ)[1� 2] CMS8 [32]

132 P 0
5(B ! K⇤µµ)[1� 2] CMS8 [32]

133 FL(B ! K⇤µµ)[1� 2] CMS8 [33]

134 AFB(B ! K⇤µµ)[1� 2] CMS8 [33]

135 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS8 [33]

136 P1(B ! K⇤µµ)[2� 4.3] CMS8 [32]

137 P 0
5(B ! K⇤µµ)[2� 4.3] CMS8 [32]

138 FL(B ! K⇤µµ)[2� 4.3] CMS8 [33]

139 AFB(B ! K⇤µµ)[2� 4.3] CMS8 [33]

140 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS8 [33]

141 P1(B ! K⇤µµ)[4.3� 6] CMS8 [32]

142 P 0
5(B ! K⇤µµ)[4.3� 6] CMS8 [32]

143 FL(B ! K⇤µµ)[4.3� 6] CMS8 [33]

144 AFB(B ! K⇤µµ)[4.3� 6] CMS8 [33]

145 107 ⇥Br(B ! K⇤µµ)[4.3� 6] CMS8 [33]

146 P1(B ! K⇤µµ)[6� 8.68] CMS8 [32]

147 P 0
5(B ! K⇤µµ)[6� 8.68] CMS8 [32]

148 FL(B ! K⇤µµ)[6� 8.68] CMS8 [33]

149 AFB(B ! K⇤µµ)[6� 8.68] CMS8 [33]

150 107 ⇥Br(B ! K⇤µµ)[6� 8.68] CMS8 [33]

151 P1(B ! K⇤µµ)[16� 19] CMS8 [32]

152 P 0
5(B ! K⇤µµ)[16� 19] CMS8 [32]

153 FL(B ! K⇤µµ)[16� 19] CMS8 [33]

154 AFB(B ! K⇤µµ)[16� 19] CMS8 [33]

155 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS8 [33]

156 FL(B ! K⇤µµ)[1� 2] CMS7 [34]

157 AFB(B ! K⇤µµ)[1� 2] CMS7 [34]

158 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS7 [34]

159 FL(B ! K⇤µµ)[2� 4.3] CMS7 [34]

160 AFB(B ! K⇤µµ)[2� 4.3] CMS7 [34]

161 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS7 [34]

162 FL(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

163 AFB(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

164 107 ⇥Br(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

165 FL(B ! K⇤µµ)[16� 19] CMS7 [34]

166 AFB(B ! K⇤µµ)[16� 19] CMS7 [34]

167 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS7 [34]

168 105 ⇥Br(B0 ! K0⇤�) [35]

169 105 ⇥Br(B+ ! K+⇤�) [35]

170 105 ⇥Br(Bs ! ��) [35]

171 104 ⇥Br(B ! Xs�) [36]

172 109 ⇥Br(Bs ! µµ) [37]

173 S(B ! K⇤�) [38]

174 AI(B ! K⇤�) [38]

175 106 ⇥Br(B ! Xsµµ)[1� 6] [39]

Table 12: List of observables used in the fit continued.
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Pull Differences and Correlation
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Figure 4: The top panels show the Pull of each observable with respect to the SM (left) and the

best fit (right). The bottom panels show �(Pull) for all observables ignoring correlations (left)

and with correlations (right). Values larger than 2 for the top panels (1 and 0.84) for the bottom)

have been labeled in red and selected for discussion in the text.

Points with values of |�(Pull)| � 1 (left) and |��(Pull)| � 0.84 (left) are highlighted in red

in Figure 4. The particular cuto↵s for this are rather arbitrary. For individual pulls, we have

a statistical interpretation since �(Pull) is normalised to the total uncorrelated errors. When

including correlations, we follow the argument sketched in App. B. The largest values without

correlations are found for branching ratio measurements and for RK . The points that are singled

out as large by both definitions are:

• 68: 107 ⇥Br(B0 ! K0⇤µµ) [15-19] LHCb

• 73: 107 ⇥Br(B0 ! K+⇤µµ) [15-19] LHCb

• 92: 107 ⇥Br(Bs ! �µµ) [5-8] LHCb

• 93: 107 ⇥Br(Bs ! �µµ) [15-18.8] LHCb

• 98: RK(B+ ! K+) [1-6] LHCb

• 100: RK⇤(B0 ! K0⇤) [1.1-6] LHCb

• 167: 107 ⇥Br(B ! K⇤µµ) [16-19] CMS-7

Of the observables in this list, (167) is the only one that has a large preference for the SM over

the BF.

There are several other observables highlighted in the bottom-left panel as showing a pull

di↵erence between 1 and 2 that no longer stand out when correlations are included (bottom-right

11

experimental and theoretical errors in quadrature and ignoring correlations:3

Pull(p) =
T (p)�Oq
�2

exp +�2
T (p)

(6)

We will use the parameter sets, p, corresponding to the SM, the BF point and the 1� shifted

points in what follows.

The Pulls are the metrics that compare theoretical predictions against experimental measure-

ments and we present results for Pull(SM) and Pull(BF) below. These, of course, quantify the

relative position of a measurement with respect to the SM and BF predictions respectively.

2. The pull di↵erence will be used to compare the BF against the SM, quantified as

�(Pull) = |Pull(SM)|� |Pull(BF)|,
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The absolute value ensures that a positive number indicates that the BF prediction is in better

agreement with the observation, and a negative value signals better agreement of the SM

prediction with the observation. �(Pull) will then highlight the relative contributions from

di↵erent observables to deviations by the fit from the SM. Notice that �(Pull) and ��(Pull)i

have di↵erent connotations. While �(Pull) measures the absolute preference for the BF over

the SM for a given observable, ��(Pull)i corresponds to the di↵erence in conditional Pull,

taking into account the correlation with other observables.

3. Di↵erent metrics will be used to evaluate variations in the fit itself, ignoring agreement with

experiment. These allow one to associate specific observables with the uncertainty in the

fit along one of the principal axes of the (approximate) one-sigma confidence level ellipsoid.

These quantities are thus constructed to single out specific observables with large contribu-

tions to ��2 as the parameters move away from their best fit value. Several definitions are

possible and we will compare the following ones:
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ii
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where the index i labels the observables and the di↵erent �s are all calculated for the twelve

SVD directions. The di↵erent definitions have the simple interpretations:

3This definition is di↵erent from the “Pull” used in Section 2 which is defined in parameter space rather than for

each observable.
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Including correlation information reduces the Pull difference in particular for angular 
observables because patterns in residuals are more consistent with the covariance 

matrix as seen from the SM compared to the BF point

ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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Quadratic Approximation

The first problem we address is a technical one that is important in practice: If the
uncertainties are very disparate for different directions in the n-dimensional parameter space
{ai}, i.e., if the eigenvalues of Hij span many orders of magnitude, how can one calculate the
matrix Hij with sufficient accuracy that reliable predictions are obtained for all directions?
To solve this problem, we have developed an iterative procedure that adapts the step sizes
used in the numerical calculation of the Hessian to the uncertainties in each eigenvector
direction. We demonstrate the effectiveness of this procedure in our specific application,
where the standard tool fails to yield reliable results.

The second problem we address concerns the reliability of estimating the uncertainty
∆X in the prediction for some physical variable X that is a function of the {ai}: How
can one estimate ∆X in a way that takes into account the variation of χ2 over the entire
parameter space {ai}, without assuming the quadratic approximation to χ2 and the linear
approximation to X that are a part of the error matrix approach? We solve this problem
by using Lagrange’s method of the undetermined multiplier to make constrained fits that
derive the dependence of χ2 on X . Because this method is more robust, it can be used by
itself or to check the reliability of the Hessian method.

Section 2 summarizes the error matrix formalism and establishes our notation. Section
3 describes the iterative method for calculating the Hessian, and demonstrates its superiority
in a concrete example. Section 4 introduces the Lagrange multiplier method and compares
its results with the Hessian approach to the same application. Section 5 concludes.

2 Error Matrix and Hessian

First we review the well-known connection between the error matrix and the Hessian matrix
of second derivatives. We emphasize the eigenvector representations of those matrices, which
are used extensively later in the paper.

The basic assumption of the error matrix approach is that χ2 can be approximated by
a quadratic expansion in the fit parameters {ai} near the global minimum. This assumption
will be true if the variation of the theory values TI with {ai} is approximately linear near
the minimum. Defining yi = ai − a0i as the displacement of parameter ai from its value a0i
at the minimum, we have

χ2 = χ 2
0 +

∑

i,j

Hij yi yj , (2)

Hij =
1

2

(

∂2χ2

∂yi ∂yj

)

0

, (3)

where the derivatives are evaluated at the minimum point yi = 0 and Hij are the elements
of the Hessian matrix.1 There are no linear terms in yi in (2), because the first derivatives
of χ2 are zero at the minimum.

Being a symmetric matrix, Hij has a complete set of n orthonormal eigenvectors V (k)
i ≡

1We include a factor 1/2 in the definition of H , as is the custom in high energy physics.

2

The first problem we address is a technical one that is important in practice: If the
uncertainties are very disparate for different directions in the n-dimensional parameter space
{ai}, i.e., if the eigenvalues of Hij span many orders of magnitude, how can one calculate the
matrix Hij with sufficient accuracy that reliable predictions are obtained for all directions?
To solve this problem, we have developed an iterative procedure that adapts the step sizes
used in the numerical calculation of the Hessian to the uncertainties in each eigenvector
direction. We demonstrate the effectiveness of this procedure in our specific application,
where the standard tool fails to yield reliable results.

The second problem we address concerns the reliability of estimating the uncertainty
∆X in the prediction for some physical variable X that is a function of the {ai}: How
can one estimate ∆X in a way that takes into account the variation of χ2 over the entire
parameter space {ai}, without assuming the quadratic approximation to χ2 and the linear
approximation to X that are a part of the error matrix approach? We solve this problem
by using Lagrange’s method of the undetermined multiplier to make constrained fits that
derive the dependence of χ2 on X . Because this method is more robust, it can be used by
itself or to check the reliability of the Hessian method.

Section 2 summarizes the error matrix formalism and establishes our notation. Section
3 describes the iterative method for calculating the Hessian, and demonstrates its superiority
in a concrete example. Section 4 introduces the Lagrange multiplier method and compares
its results with the Hessian approach to the same application. Section 5 concludes.

2 Error Matrix and Hessian

First we review the well-known connection between the error matrix and the Hessian matrix
of second derivatives. We emphasize the eigenvector representations of those matrices, which
are used extensively later in the paper.

The basic assumption of the error matrix approach is that χ2 can be approximated by
a quadratic expansion in the fit parameters {ai} near the global minimum. This assumption
will be true if the variation of the theory values TI with {ai} is approximately linear near
the minimum. Defining yi = ai − a0i as the displacement of parameter ai from its value a0i
at the minimum, we have

χ2 = χ 2
0 +

∑

i,j

Hij yi yj , (2)

Hij =
1

2

(

∂2χ2

∂yi ∂yj

)

0

, (3)

where the derivatives are evaluated at the minimum point yi = 0 and Hij are the elements
of the Hessian matrix.1 There are no linear terms in yi in (2), because the first derivatives
of χ2 are zero at the minimum.

Being a symmetric matrix, Hij has a complete set of n orthonormal eigenvectors V (k)
i ≡

1We include a factor 1/2 in the definition of H , as is the custom in high energy physics.

2

use Hessian matrix to approximate 𝜒2 
function near the global minimum

fit parameter value at the 
minimum

Hessian matrix

See Pumplin et al [arXiv:0008191]
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Features of the Hessian

• Eigenvectors are principal axes of the 
approximate confidence level ellipsoids


• Eigenvalues encode how tightly each 
direction is constrained by the data


➡Use this to define normalised step 
size in each eigendirection, i.e. we 
can define step size in terms of Δ𝜒2


➡Construct set of representative points 
by moving 1𝜎 away from the BF point 
along each eigendirection

Figure 1: For illustrative purposes, two data sets of gluon parton distribution function, in the form

p(x)±�p(x) for 15 and 16 values of x, respectively (shown in red and blue). The left (right) panel

shows the low (high) x region respectively.

××1+ 1-

2+

2-

-1.10 -1.08 -1.06 -1.04 -1.02 -1.00 -0.98 -0.96
3.6

3.8

4.0

4.2

4.4

4.6

4.8

a

b

Figure 2: Di↵erence between the �2-function (black), and quadratic approximation (orange). Their

intersection with a 95% confidence level plane is shown on the right panel. The intersections of the

principal axes with the ellipse (that occurs in the quadratic approximation) are shown as the black

dots in the right panel. The numbers label the eigenvector of H corresponding to that direction.

The set of responses, �±i,l, in this example is shown in Figure 3. From inspecting the limiting

behaviour of Eq. 6 it is clear that the description at low x is dependent mainly on a while large

values of x are mostly sensitive to b. This is reflected in the uncertainty curves in Figure 1, and

also when looking at the �s. For this simple example the main directions identified by the Hessian

method are in fact well aligned with the original directions in parameter space. Considering the

values of � we find that �±1 , which corresponds mainly to a variation of a, takes large values for bins

with low values of x, while �±2 takes large values for bins with large values of x. We conclude that

the parameter dependence is captured by the �s as expected. Going to more complex descriptions

4

See example in [arXiv:1806.09742]
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Fit Uncertainty
Use set of representative points to 
evaluate fit uncertainty by selecting 
extreme values

Measured 
SM prediction 
BF prediction 
Fit uncertainty

145−162 163−175

109−126 127−144

73−90 91−108

37−54 55−72

1−18 19−36
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Figure 6: Measured value (black), SM prediction (green), best fit (brown) and error in the fit

(purple) for the 175 observables.

large hierarchy in �2. This indicates that it is really the combination of multiple observables that

constrains this direction. Observable 98 is found to be relevant in constraining direction six, for

which we find that the list of most sensitive observables is similar to that found for direction three.

Direction five (mostly C9) is not especially constrained by a single observable, as indicated by the

absence of a particularly large �5±. The largest �2 in this case occurs for 57 or P2 (rather than

P 0
5 as one might have expected). Moreover, observable 57 is more constraining in direction 5+

than in 5-. The most striking di↵erence when including correlations occurs for observable 68 (a
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ID Observable Exp

81 FL(Bs ! �µµ)[2� 5] LHCb [26]

82 P1(Bs ! �µµ)[5� 8] LHCb [26]

83 P 0
4(Bs ! �µµ)[5� 8] LHCb [26]

84 P 0
6(Bs ! �µµ)[5� 8] LHCb [26]

85 FL(Bs ! �µµ)[5� 8] LHCb [26]

86 P1(Bs ! �µµ)[15� 18.8] LHCb [26]

87 P 0
4(Bs ! �µµ)[15� 18.8] LHCb [26]

88 P 0
6(Bs ! �µµ)[15� 18.8] LHCb [26]

89 FL(Bs ! �µµ)[15� 18.8] LHCb [26]

90 107 ⇥Br(Bs ! �µµ)[0.1� 2] LHCb [26]

91 107 ⇥Br(Bs ! �µµ)[2� 5] LHCb [26]

92 107 ⇥Br(Bs ! �µµ)[5� 8] LHCb [26]

93 107 ⇥Br(Bs ! �µµ)[15� 18.8] LHCb [26]

94 FL(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

95 P1(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

96 P2(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

97 P3(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

98 RK(B+ ! K+)[1� 6] LHCb [28]

99 RK⇤(B0 ! K0⇤)[0.045� 1.1] LHCb [29]

100 RK⇤(B0 ! K0⇤)[1.1� 6] LHCb [29]

101 P 0
4(B ! K⇤ee)[0.1� 4] Belle [30]

102 P 0
4(B ! K⇤µµ)[0.1� 4] Belle [30]

103 P 0
5(B ! K⇤ee)[0.1� 4] Belle [30]

104 P 0
5(B ! K⇤µµ)[0.1� 4] Belle [30]

105 P 0
4(B ! K⇤ee)[4� 8] Belle [30]

106 P 0
4(B ! K⇤µµ)[4� 8] Belle [30]

107 P 0
5(B ! K⇤ee)[4� 8] Belle [30]

108 P 0
5(B ! K⇤µµ)[4� 8] Belle [30]

109 P 0
4(B ! K⇤ee)[14.18� 19] Belle [30]

110 P 0
4(B ! K⇤µµ)[14.18� 19] Belle [30]

111 P 0
5(B ! K⇤ee)[14.18� 19] Belle [30]

112 P 0
5(B ! K⇤µµ)[14.18� 19] Belle [30]

113 FL(B ! K⇤µµ)[0.04� 2] ATLAS [31]

114 P1(B ! K⇤µµ)[0.04� 2] ATLAS [31]

115 P 0
4(B ! K⇤µµ)[0.04� 2] ATLAS [31]

116 P 0
5(B ! K⇤µµ)[0.04� 2] ATLAS [31]

117 P 0
6(B ! K⇤µµ)[0.04� 2] ATLAS [31]

118 P 0
8(B ! K⇤µµ)[0.04� 2] ATLAS [31]

119 FL(B ! K⇤µµ)[2� 4] ATLAS [31]

120 P1(B ! K⇤µµ)[2� 4] ATLAS [31]

121 P 0
4(B ! K⇤µµ)[2� 4] ATLAS [31]

122 P 0
5(B ! K⇤µµ)[2� 4] ATLAS [31]

123 P 0
6(B ! K⇤µµ)[2� 4] ATLAS [31]

124 P 0
8(B ! K⇤µµ)[2� 4] ATLAS [31]

125 FL(B ! K⇤µµ)[4� 6] ATLAS [31]

126 P1(B ! K⇤µµ)[4� 6] ATLAS [31]

127 P 0
4(B ! K⇤µµ)[4� 6] ATLAS [31]

ID Observable Exp

128 P 0
5(B ! K⇤µµ)[4� 6] ATLAS [31]

129 P 0
6(B ! K⇤µµ)[4� 6] ATLAS [31]

130 P 0
8(B ! K⇤µµ)[4� 6] ATLAS [31]

131 P1(B ! K⇤µµ)[1� 2] CMS8 [32]

132 P 0
5(B ! K⇤µµ)[1� 2] CMS8 [32]

133 FL(B ! K⇤µµ)[1� 2] CMS8 [33]

134 AFB(B ! K⇤µµ)[1� 2] CMS8 [33]

135 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS8 [33]

136 P1(B ! K⇤µµ)[2� 4.3] CMS8 [32]

137 P 0
5(B ! K⇤µµ)[2� 4.3] CMS8 [32]

138 FL(B ! K⇤µµ)[2� 4.3] CMS8 [33]

139 AFB(B ! K⇤µµ)[2� 4.3] CMS8 [33]

140 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS8 [33]

141 P1(B ! K⇤µµ)[4.3� 6] CMS8 [32]

142 P 0
5(B ! K⇤µµ)[4.3� 6] CMS8 [32]

143 FL(B ! K⇤µµ)[4.3� 6] CMS8 [33]

144 AFB(B ! K⇤µµ)[4.3� 6] CMS8 [33]

145 107 ⇥Br(B ! K⇤µµ)[4.3� 6] CMS8 [33]

146 P1(B ! K⇤µµ)[6� 8.68] CMS8 [32]

147 P 0
5(B ! K⇤µµ)[6� 8.68] CMS8 [32]

148 FL(B ! K⇤µµ)[6� 8.68] CMS8 [33]

149 AFB(B ! K⇤µµ)[6� 8.68] CMS8 [33]

150 107 ⇥Br(B ! K⇤µµ)[6� 8.68] CMS8 [33]

151 P1(B ! K⇤µµ)[16� 19] CMS8 [32]

152 P 0
5(B ! K⇤µµ)[16� 19] CMS8 [32]

153 FL(B ! K⇤µµ)[16� 19] CMS8 [33]

154 AFB(B ! K⇤µµ)[16� 19] CMS8 [33]

155 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS8 [33]

156 FL(B ! K⇤µµ)[1� 2] CMS7 [34]

157 AFB(B ! K⇤µµ)[1� 2] CMS7 [34]

158 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS7 [34]

159 FL(B ! K⇤µµ)[2� 4.3] CMS7 [34]

160 AFB(B ! K⇤µµ)[2� 4.3] CMS7 [34]

161 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS7 [34]

162 FL(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

163 AFB(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

164 107 ⇥Br(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

165 FL(B ! K⇤µµ)[16� 19] CMS7 [34]

166 AFB(B ! K⇤µµ)[16� 19] CMS7 [34]

167 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS7 [34]

168 105 ⇥Br(B0 ! K0⇤�) [35]

169 105 ⇥Br(B+ ! K+⇤�) [35]

170 105 ⇥Br(Bs ! ��) [35]

171 104 ⇥Br(B ! Xs�) [36]

172 109 ⇥Br(Bs ! µµ) [37]

173 S(B ! K⇤�) [38]

174 AI(B ! K⇤�) [38]

175 106 ⇥Br(B ! Xsµµ)[1� 6] [39]

Table 12: List of observables used in the fit continued.
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ID Observable Exp

81 FL(Bs ! �µµ)[2� 5] LHCb [26]

82 P1(Bs ! �µµ)[5� 8] LHCb [26]

83 P 0
4(Bs ! �µµ)[5� 8] LHCb [26]

84 P 0
6(Bs ! �µµ)[5� 8] LHCb [26]

85 FL(Bs ! �µµ)[5� 8] LHCb [26]

86 P1(Bs ! �µµ)[15� 18.8] LHCb [26]

87 P 0
4(Bs ! �µµ)[15� 18.8] LHCb [26]

88 P 0
6(Bs ! �µµ)[15� 18.8] LHCb [26]

89 FL(Bs ! �µµ)[15� 18.8] LHCb [26]

90 107 ⇥Br(Bs ! �µµ)[0.1� 2] LHCb [26]

91 107 ⇥Br(Bs ! �µµ)[2� 5] LHCb [26]

92 107 ⇥Br(Bs ! �µµ)[5� 8] LHCb [26]

93 107 ⇥Br(Bs ! �µµ)[15� 18.8] LHCb [26]

94 FL(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

95 P1(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

96 P2(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

97 P3(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

98 RK(B+ ! K+)[1� 6] LHCb [28]

99 RK⇤(B0 ! K0⇤)[0.045� 1.1] LHCb [29]

100 RK⇤(B0 ! K0⇤)[1.1� 6] LHCb [29]

101 P 0
4(B ! K⇤ee)[0.1� 4] Belle [30]

102 P 0
4(B ! K⇤µµ)[0.1� 4] Belle [30]

103 P 0
5(B ! K⇤ee)[0.1� 4] Belle [30]

104 P 0
5(B ! K⇤µµ)[0.1� 4] Belle [30]

105 P 0
4(B ! K⇤ee)[4� 8] Belle [30]

106 P 0
4(B ! K⇤µµ)[4� 8] Belle [30]

107 P 0
5(B ! K⇤ee)[4� 8] Belle [30]

108 P 0
5(B ! K⇤µµ)[4� 8] Belle [30]

109 P 0
4(B ! K⇤ee)[14.18� 19] Belle [30]

110 P 0
4(B ! K⇤µµ)[14.18� 19] Belle [30]

111 P 0
5(B ! K⇤ee)[14.18� 19] Belle [30]

112 P 0
5(B ! K⇤µµ)[14.18� 19] Belle [30]

113 FL(B ! K⇤µµ)[0.04� 2] ATLAS [31]

114 P1(B ! K⇤µµ)[0.04� 2] ATLAS [31]

115 P 0
4(B ! K⇤µµ)[0.04� 2] ATLAS [31]

116 P 0
5(B ! K⇤µµ)[0.04� 2] ATLAS [31]

117 P 0
6(B ! K⇤µµ)[0.04� 2] ATLAS [31]

118 P 0
8(B ! K⇤µµ)[0.04� 2] ATLAS [31]

119 FL(B ! K⇤µµ)[2� 4] ATLAS [31]

120 P1(B ! K⇤µµ)[2� 4] ATLAS [31]

121 P 0
4(B ! K⇤µµ)[2� 4] ATLAS [31]

122 P 0
5(B ! K⇤µµ)[2� 4] ATLAS [31]

123 P 0
6(B ! K⇤µµ)[2� 4] ATLAS [31]

124 P 0
8(B ! K⇤µµ)[2� 4] ATLAS [31]

125 FL(B ! K⇤µµ)[4� 6] ATLAS [31]

126 P1(B ! K⇤µµ)[4� 6] ATLAS [31]

127 P 0
4(B ! K⇤µµ)[4� 6] ATLAS [31]

ID Observable Exp

128 P 0
5(B ! K⇤µµ)[4� 6] ATLAS [31]

129 P 0
6(B ! K⇤µµ)[4� 6] ATLAS [31]

130 P 0
8(B ! K⇤µµ)[4� 6] ATLAS [31]

131 P1(B ! K⇤µµ)[1� 2] CMS8 [32]

132 P 0
5(B ! K⇤µµ)[1� 2] CMS8 [32]

133 FL(B ! K⇤µµ)[1� 2] CMS8 [33]

134 AFB(B ! K⇤µµ)[1� 2] CMS8 [33]

135 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS8 [33]

136 P1(B ! K⇤µµ)[2� 4.3] CMS8 [32]

137 P 0
5(B ! K⇤µµ)[2� 4.3] CMS8 [32]

138 FL(B ! K⇤µµ)[2� 4.3] CMS8 [33]

139 AFB(B ! K⇤µµ)[2� 4.3] CMS8 [33]

140 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS8 [33]

141 P1(B ! K⇤µµ)[4.3� 6] CMS8 [32]

142 P 0
5(B ! K⇤µµ)[4.3� 6] CMS8 [32]

143 FL(B ! K⇤µµ)[4.3� 6] CMS8 [33]

144 AFB(B ! K⇤µµ)[4.3� 6] CMS8 [33]

145 107 ⇥Br(B ! K⇤µµ)[4.3� 6] CMS8 [33]

146 P1(B ! K⇤µµ)[6� 8.68] CMS8 [32]

147 P 0
5(B ! K⇤µµ)[6� 8.68] CMS8 [32]

148 FL(B ! K⇤µµ)[6� 8.68] CMS8 [33]

149 AFB(B ! K⇤µµ)[6� 8.68] CMS8 [33]

150 107 ⇥Br(B ! K⇤µµ)[6� 8.68] CMS8 [33]

151 P1(B ! K⇤µµ)[16� 19] CMS8 [32]

152 P 0
5(B ! K⇤µµ)[16� 19] CMS8 [32]

153 FL(B ! K⇤µµ)[16� 19] CMS8 [33]

154 AFB(B ! K⇤µµ)[16� 19] CMS8 [33]

155 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS8 [33]

156 FL(B ! K⇤µµ)[1� 2] CMS7 [34]

157 AFB(B ! K⇤µµ)[1� 2] CMS7 [34]

158 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS7 [34]

159 FL(B ! K⇤µµ)[2� 4.3] CMS7 [34]

160 AFB(B ! K⇤µµ)[2� 4.3] CMS7 [34]

161 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS7 [34]

162 FL(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

163 AFB(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

164 107 ⇥Br(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

165 FL(B ! K⇤µµ)[16� 19] CMS7 [34]

166 AFB(B ! K⇤µµ)[16� 19] CMS7 [34]

167 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS7 [34]

168 105 ⇥Br(B0 ! K0⇤�) [35]

169 105 ⇥Br(B+ ! K+⇤�) [35]

170 105 ⇥Br(Bs ! ��) [35]

171 104 ⇥Br(B ! Xs�) [36]

172 109 ⇥Br(Bs ! µµ) [37]

173 S(B ! K⇤�) [38]

174 AI(B ! K⇤�) [38]

175 106 ⇥Br(B ! Xsµµ)[1� 6] [39]

Table 12: List of observables used in the fit continued.
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Relating Observables and Parameter 
Directions

experimental and theoretical errors in quadrature and ignoring correlations:3

Pull(p) =
T (p)�Oq
�2

exp +�2
T (p)

(6)

We will use the parameter sets, p, corresponding to the SM, the BF point and the 1� shifted

points in what follows.

The Pulls are the metrics that compare theoretical predictions against experimental measure-

ments and we present results for Pull(SM) and Pull(BF) below. These, of course, quantify the

relative position of a measurement with respect to the SM and BF predictions respectively.

2. The pull di↵erence will be used to compare the BF against the SM, quantified as

�(Pull) = |Pull(SM)|� |Pull(BF)|,

��(Pull)i =

����
X

j

��1/2
ij

(T (SM)�O)j

�����
����
X

j

��1/2
ij

(T (BF )�O)j

����. (7)

The absolute value ensures that a positive number indicates that the BF prediction is in better

agreement with the observation, and a negative value signals better agreement of the SM

prediction with the observation. �(Pull) will then highlight the relative contributions from

di↵erent observables to deviations by the fit from the SM. Notice that �(Pull) and ��(Pull)i

have di↵erent connotations. While �(Pull) measures the absolute preference for the BF over

the SM for a given observable, ��(Pull)i corresponds to the di↵erence in conditional Pull,

taking into account the correlation with other observables.

3. Di↵erent metrics will be used to evaluate variations in the fit itself, ignoring agreement with

experiment. These allow one to associate specific observables with the uncertainty in the

fit along one of the principal axes of the (approximate) one-sigma confidence level ellipsoid.

These quantities are thus constructed to single out specific observables with large contribu-

tions to ��2 as the parameters move away from their best fit value. Several definitions are

possible and we will compare the following ones:

�i =
(Ti � TBF )q
�2

exp +�2
BF

�0i =
(Ti �O)q
�2

exp +�2
i

� (TBF �O)q
�2

exp +�2
BF

��,i =
X

l

��1/2
il

(Tpt � TBF )l

�̃�,i =
X

l

1q
��1
ii

��1
il

(Tpt � TBF )l (8)

where the index i labels the observables and the di↵erent �s are all calculated for the twelve

SVD directions. The di↵erent definitions have the simple interpretations:

3This definition is di↵erent from the “Pull” used in Section 2 which is defined in parameter space rather than for

each observable.
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These quantities are thus constructed to single out specific observables with large contribu-

tions to ��2 as the parameters move away from their best fit value. Several definitions are

possible and we will compare the following ones:

�i =
(Ti � TBF )q
�2

exp +�2
BF

�0i =
(Ti �O)q
�2

exp +�2
i

� (TBF �O)q
�2

exp +�2
BF

��,i =
X

l

��1/2
il

(Tpt � TBF )l

�̃�,i =
X

l

1q
��1
ii

��1
il

(Tpt � TBF )l (8)

where the index i labels the observables and the di↵erent �s are all calculated for the twelve

SVD directions. The di↵erent definitions have the simple interpretations:

3This definition is di↵erent from the “Pull” used in Section 2 which is defined in parameter space rather than for

each observable.

8

Change in predicted value when 
moving 1 𝜎 in eigendirection i, 
normalised to the error

Taking into account correlated 
errors

Which observables change most in each eigendirection

Which directions result in the larges variation in predictions

How important are correlation effects

Use set of representative points to evaluate variation in theory 
predictions in the eigendirections of the parameter space
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Ranking Observables

1+ 1- 2+ 2- 3+ 3-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

171 4.07 171 5.03 16 2.48 16 2.28 68 1.02 57 0.87

170 0.58 170 0.74 95 1.25 95 1.19 57 0.89 98 0.85

41 0.56 41 0.52 114 0.83 114 0.74 155 0.85 68 0.80

90 0.34 90 0.46 173 0.74 173 0.74 172 0.85 172 0.69

49 0.31 49 0.39 74 0.73 74 0.72 98 0.75 155 0.68

Table 4: Ranking of observables by � along directions 1,2,3.

4+ 4- 5+ 5- 6+ 6-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

98 2.33 98 2.87 57 0.93 49 0.64 98 1.42 68 2.07

68 1.41 68 1.67 49 0.72 68 0.58 172 0.97 155 1.64

13 1.33 13 1.62 52 0.56 155 0.49 13 0.91 93 1.44

155 1.08 155 1.28 44 0.56 41 0.43 40 0.61 20 0.80

93 0.93 93 1.10 171 0.35 93 0.42 19 0.54 73 0.80

Table 5: Ranking of observables by � along directions 4,5,6.

constraining multiple directions. An alternative way of looking at this information is to study

which parameter combinations result in the largest variance in theory predictions. One approach

is therefore to perform a principal component analysis (PCA) on the set of delta vectors. PCA is

an orthogonal linear transformation onto a coordinate system such that the first basis direction

is aligned with the maximum variance in the data, the second basis is the direction of maximum

variation orthogonal to the first coordinate, and the remaining bases are sequentially computed

analogously. It can be used for dimension reduction as the first few principal components (PCs)

capture most of the information.

For this we consider each observable as one data point with 12 parameters, the values of �

in the 12 shifted points. The first two principal components, for example, provide the directions

with largest variations, and plotting the data points in these projections shows which observables

dominate. Di↵erent information is captured by looking at each observable in isolation (using �)

or in the context of correlations within the global fit (using ��), and we therefore reproduce this

analysis for both cases.

For the PCA analysis the data should first be centered, i.e. the mean in each direction has to

be subtracted. In our case, the mean values are close to zero so the e↵ect of centering is not very

large. We find very symmetric behavior: the main di↵erence between plus/minus directions is just

the sign of �. This means that we can fully describe the 12 dimensional distribution in the space

of the first six PCs. These six remaining PCs are found to contain considerable variance in the

distribution: whereas the first PC explains 31% of the variance, the sixth one explains 8% when

correlations are ignored. When correlations are kept the first PC explains 20% of the variance

and the sixth one explains 13%. This suggests that all six dimensions (i.e. WCs) still allow for

considerable variance in the predictions of the considered observables. The full rotation matrix

transforming from delta space to the first six PC space is given explicitly in Table 8.

We find that �6 is the only direction which exhibits strongly asymmetric behavior: for certain
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Mostly C7 Mostly C9

Constraints clearly dominated 
by observable 171 

ID Observable Exp

81 FL(Bs ! �µµ)[2� 5] LHCb [26]

82 P1(Bs ! �µµ)[5� 8] LHCb [26]

83 P 0
4(Bs ! �µµ)[5� 8] LHCb [26]

84 P 0
6(Bs ! �µµ)[5� 8] LHCb [26]

85 FL(Bs ! �µµ)[5� 8] LHCb [26]

86 P1(Bs ! �µµ)[15� 18.8] LHCb [26]

87 P 0
4(Bs ! �µµ)[15� 18.8] LHCb [26]

88 P 0
6(Bs ! �µµ)[15� 18.8] LHCb [26]

89 FL(Bs ! �µµ)[15� 18.8] LHCb [26]

90 107 ⇥Br(Bs ! �µµ)[0.1� 2] LHCb [26]

91 107 ⇥Br(Bs ! �µµ)[2� 5] LHCb [26]

92 107 ⇥Br(Bs ! �µµ)[5� 8] LHCb [26]

93 107 ⇥Br(Bs ! �µµ)[15� 18.8] LHCb [26]

94 FL(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

95 P1(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

96 P2(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

97 P3(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

98 RK(B+ ! K+)[1� 6] LHCb [28]

99 RK⇤(B0 ! K0⇤)[0.045� 1.1] LHCb [29]

100 RK⇤(B0 ! K0⇤)[1.1� 6] LHCb [29]

101 P 0
4(B ! K⇤ee)[0.1� 4] Belle [30]

102 P 0
4(B ! K⇤µµ)[0.1� 4] Belle [30]

103 P 0
5(B ! K⇤ee)[0.1� 4] Belle [30]

104 P 0
5(B ! K⇤µµ)[0.1� 4] Belle [30]

105 P 0
4(B ! K⇤ee)[4� 8] Belle [30]

106 P 0
4(B ! K⇤µµ)[4� 8] Belle [30]

107 P 0
5(B ! K⇤ee)[4� 8] Belle [30]

108 P 0
5(B ! K⇤µµ)[4� 8] Belle [30]

109 P 0
4(B ! K⇤ee)[14.18� 19] Belle [30]

110 P 0
4(B ! K⇤µµ)[14.18� 19] Belle [30]

111 P 0
5(B ! K⇤ee)[14.18� 19] Belle [30]

112 P 0
5(B ! K⇤µµ)[14.18� 19] Belle [30]

113 FL(B ! K⇤µµ)[0.04� 2] ATLAS [31]

114 P1(B ! K⇤µµ)[0.04� 2] ATLAS [31]

115 P 0
4(B ! K⇤µµ)[0.04� 2] ATLAS [31]

116 P 0
5(B ! K⇤µµ)[0.04� 2] ATLAS [31]

117 P 0
6(B ! K⇤µµ)[0.04� 2] ATLAS [31]

118 P 0
8(B ! K⇤µµ)[0.04� 2] ATLAS [31]

119 FL(B ! K⇤µµ)[2� 4] ATLAS [31]

120 P1(B ! K⇤µµ)[2� 4] ATLAS [31]

121 P 0
4(B ! K⇤µµ)[2� 4] ATLAS [31]

122 P 0
5(B ! K⇤µµ)[2� 4] ATLAS [31]

123 P 0
6(B ! K⇤µµ)[2� 4] ATLAS [31]

124 P 0
8(B ! K⇤µµ)[2� 4] ATLAS [31]

125 FL(B ! K⇤µµ)[4� 6] ATLAS [31]

126 P1(B ! K⇤µµ)[4� 6] ATLAS [31]

127 P 0
4(B ! K⇤µµ)[4� 6] ATLAS [31]

ID Observable Exp

128 P 0
5(B ! K⇤µµ)[4� 6] ATLAS [31]

129 P 0
6(B ! K⇤µµ)[4� 6] ATLAS [31]

130 P 0
8(B ! K⇤µµ)[4� 6] ATLAS [31]

131 P1(B ! K⇤µµ)[1� 2] CMS8 [32]

132 P 0
5(B ! K⇤µµ)[1� 2] CMS8 [32]

133 FL(B ! K⇤µµ)[1� 2] CMS8 [33]

134 AFB(B ! K⇤µµ)[1� 2] CMS8 [33]

135 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS8 [33]

136 P1(B ! K⇤µµ)[2� 4.3] CMS8 [32]

137 P 0
5(B ! K⇤µµ)[2� 4.3] CMS8 [32]

138 FL(B ! K⇤µµ)[2� 4.3] CMS8 [33]

139 AFB(B ! K⇤µµ)[2� 4.3] CMS8 [33]

140 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS8 [33]

141 P1(B ! K⇤µµ)[4.3� 6] CMS8 [32]

142 P 0
5(B ! K⇤µµ)[4.3� 6] CMS8 [32]

143 FL(B ! K⇤µµ)[4.3� 6] CMS8 [33]

144 AFB(B ! K⇤µµ)[4.3� 6] CMS8 [33]

145 107 ⇥Br(B ! K⇤µµ)[4.3� 6] CMS8 [33]

146 P1(B ! K⇤µµ)[6� 8.68] CMS8 [32]

147 P 0
5(B ! K⇤µµ)[6� 8.68] CMS8 [32]

148 FL(B ! K⇤µµ)[6� 8.68] CMS8 [33]

149 AFB(B ! K⇤µµ)[6� 8.68] CMS8 [33]

150 107 ⇥Br(B ! K⇤µµ)[6� 8.68] CMS8 [33]

151 P1(B ! K⇤µµ)[16� 19] CMS8 [32]

152 P 0
5(B ! K⇤µµ)[16� 19] CMS8 [32]

153 FL(B ! K⇤µµ)[16� 19] CMS8 [33]

154 AFB(B ! K⇤µµ)[16� 19] CMS8 [33]

155 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS8 [33]

156 FL(B ! K⇤µµ)[1� 2] CMS7 [34]

157 AFB(B ! K⇤µµ)[1� 2] CMS7 [34]

158 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS7 [34]

159 FL(B ! K⇤µµ)[2� 4.3] CMS7 [34]

160 AFB(B ! K⇤µµ)[2� 4.3] CMS7 [34]

161 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS7 [34]

162 FL(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

163 AFB(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

164 107 ⇥Br(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

165 FL(B ! K⇤µµ)[16� 19] CMS7 [34]

166 AFB(B ! K⇤µµ)[16� 19] CMS7 [34]

167 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS7 [34]

168 105 ⇥Br(B0 ! K0⇤�) [35]

169 105 ⇥Br(B+ ! K+⇤�) [35]

170 105 ⇥Br(Bs ! ��) [35]

171 104 ⇥Br(B ! Xs�) [36]

172 109 ⇥Br(Bs ! µµ) [37]

173 S(B ! K⇤�) [38]

174 AI(B ! K⇤�) [38]

175 106 ⇥Br(B ! Xsµµ)[1� 6] [39]

Table 12: List of observables used in the fit continued.
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Constraints much more 
balanced → combination of 

observables is important

moving towards 
the SM 

ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]
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ID Observable Exp

81 FL(Bs ! �µµ)[2� 5] LHCb [26]

82 P1(Bs ! �µµ)[5� 8] LHCb [26]

83 P 0
4(Bs ! �µµ)[5� 8] LHCb [26]

84 P 0
6(Bs ! �µµ)[5� 8] LHCb [26]

85 FL(Bs ! �µµ)[5� 8] LHCb [26]

86 P1(Bs ! �µµ)[15� 18.8] LHCb [26]

87 P 0
4(Bs ! �µµ)[15� 18.8] LHCb [26]

88 P 0
6(Bs ! �µµ)[15� 18.8] LHCb [26]

89 FL(Bs ! �µµ)[15� 18.8] LHCb [26]

90 107 ⇥Br(Bs ! �µµ)[0.1� 2] LHCb [26]

91 107 ⇥Br(Bs ! �µµ)[2� 5] LHCb [26]

92 107 ⇥Br(Bs ! �µµ)[5� 8] LHCb [26]

93 107 ⇥Br(Bs ! �µµ)[15� 18.8] LHCb [26]

94 FL(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

95 P1(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

96 P2(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

97 P3(B ! K⇤ee)[0.0020� 1.120] LHCb [27]

98 RK(B+ ! K+)[1� 6] LHCb [28]

99 RK⇤(B0 ! K0⇤)[0.045� 1.1] LHCb [29]

100 RK⇤(B0 ! K0⇤)[1.1� 6] LHCb [29]

101 P 0
4(B ! K⇤ee)[0.1� 4] Belle [30]

102 P 0
4(B ! K⇤µµ)[0.1� 4] Belle [30]

103 P 0
5(B ! K⇤ee)[0.1� 4] Belle [30]

104 P 0
5(B ! K⇤µµ)[0.1� 4] Belle [30]

105 P 0
4(B ! K⇤ee)[4� 8] Belle [30]

106 P 0
4(B ! K⇤µµ)[4� 8] Belle [30]

107 P 0
5(B ! K⇤ee)[4� 8] Belle [30]

108 P 0
5(B ! K⇤µµ)[4� 8] Belle [30]

109 P 0
4(B ! K⇤ee)[14.18� 19] Belle [30]

110 P 0
4(B ! K⇤µµ)[14.18� 19] Belle [30]

111 P 0
5(B ! K⇤ee)[14.18� 19] Belle [30]

112 P 0
5(B ! K⇤µµ)[14.18� 19] Belle [30]

113 FL(B ! K⇤µµ)[0.04� 2] ATLAS [31]

114 P1(B ! K⇤µµ)[0.04� 2] ATLAS [31]

115 P 0
4(B ! K⇤µµ)[0.04� 2] ATLAS [31]

116 P 0
5(B ! K⇤µµ)[0.04� 2] ATLAS [31]

117 P 0
6(B ! K⇤µµ)[0.04� 2] ATLAS [31]

118 P 0
8(B ! K⇤µµ)[0.04� 2] ATLAS [31]

119 FL(B ! K⇤µµ)[2� 4] ATLAS [31]

120 P1(B ! K⇤µµ)[2� 4] ATLAS [31]

121 P 0
4(B ! K⇤µµ)[2� 4] ATLAS [31]

122 P 0
5(B ! K⇤µµ)[2� 4] ATLAS [31]

123 P 0
6(B ! K⇤µµ)[2� 4] ATLAS [31]

124 P 0
8(B ! K⇤µµ)[2� 4] ATLAS [31]

125 FL(B ! K⇤µµ)[4� 6] ATLAS [31]

126 P1(B ! K⇤µµ)[4� 6] ATLAS [31]

127 P 0
4(B ! K⇤µµ)[4� 6] ATLAS [31]

ID Observable Exp

128 P 0
5(B ! K⇤µµ)[4� 6] ATLAS [31]

129 P 0
6(B ! K⇤µµ)[4� 6] ATLAS [31]

130 P 0
8(B ! K⇤µµ)[4� 6] ATLAS [31]

131 P1(B ! K⇤µµ)[1� 2] CMS8 [32]

132 P 0
5(B ! K⇤µµ)[1� 2] CMS8 [32]

133 FL(B ! K⇤µµ)[1� 2] CMS8 [33]

134 AFB(B ! K⇤µµ)[1� 2] CMS8 [33]

135 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS8 [33]

136 P1(B ! K⇤µµ)[2� 4.3] CMS8 [32]

137 P 0
5(B ! K⇤µµ)[2� 4.3] CMS8 [32]

138 FL(B ! K⇤µµ)[2� 4.3] CMS8 [33]

139 AFB(B ! K⇤µµ)[2� 4.3] CMS8 [33]

140 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS8 [33]

141 P1(B ! K⇤µµ)[4.3� 6] CMS8 [32]

142 P 0
5(B ! K⇤µµ)[4.3� 6] CMS8 [32]

143 FL(B ! K⇤µµ)[4.3� 6] CMS8 [33]

144 AFB(B ! K⇤µµ)[4.3� 6] CMS8 [33]

145 107 ⇥Br(B ! K⇤µµ)[4.3� 6] CMS8 [33]

146 P1(B ! K⇤µµ)[6� 8.68] CMS8 [32]

147 P 0
5(B ! K⇤µµ)[6� 8.68] CMS8 [32]

148 FL(B ! K⇤µµ)[6� 8.68] CMS8 [33]

149 AFB(B ! K⇤µµ)[6� 8.68] CMS8 [33]

150 107 ⇥Br(B ! K⇤µµ)[6� 8.68] CMS8 [33]

151 P1(B ! K⇤µµ)[16� 19] CMS8 [32]

152 P 0
5(B ! K⇤µµ)[16� 19] CMS8 [32]

153 FL(B ! K⇤µµ)[16� 19] CMS8 [33]

154 AFB(B ! K⇤µµ)[16� 19] CMS8 [33]

155 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS8 [33]

156 FL(B ! K⇤µµ)[1� 2] CMS7 [34]

157 AFB(B ! K⇤µµ)[1� 2] CMS7 [34]

158 107 ⇥Br(B ! K⇤µµ)[1� 2] CMS7 [34]

159 FL(B ! K⇤µµ)[2� 4.3] CMS7 [34]

160 AFB(B ! K⇤µµ)[2� 4.3] CMS7 [34]

161 107 ⇥Br(B ! K⇤µµ)[2� 4.3] CMS7 [34]

162 FL(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

163 AFB(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

164 107 ⇥Br(B ! K⇤µµ)[4.3� 8.68] CMS7 [34]

165 FL(B ! K⇤µµ)[16� 19] CMS7 [34]

166 AFB(B ! K⇤µµ)[16� 19] CMS7 [34]

167 107 ⇥Br(B ! K⇤µµ)[16� 19] CMS7 [34]

168 105 ⇥Br(B0 ! K0⇤�) [35]

169 105 ⇥Br(B+ ! K+⇤�) [35]

170 105 ⇥Br(Bs ! ��) [35]

171 104 ⇥Br(B ! Xs�) [36]

172 109 ⇥Br(Bs ! µµ) [37]

173 S(B ! K⇤�) [38]

174 AI(B ! K⇤�) [38]

175 106 ⇥Br(B ! Xsµµ)[1� 6] [39]

Table 12: List of observables used in the fit continued.
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Ranking Observables

Mostly C7 Mostly C9

Similar picture as before Quite different, BR observables 
drop out, angular observables 

become more important

moving towards 
the SM 

ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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With correlation

1+ 1- 2+ 2- 3+ 3-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

171 4.07 171 5.03 16 1.95 16 1.77 172 0.85 98 0.85

170 0.49 170 0.64 95 0.96 95 0.91 98 0.75 172 0.69

41 0.30 49 0.35 173 0.74 173 0.74 100 0.53 93 0.42

49 0.24 41 0.27 74 0.74 74 0.73 93 0.51 100 0.42

169 0.13 169 0.17 114 0.66 114 0.59 57 0.40 13 0.36

Table 6: Ranking of observables by �� in the first three directions.

4+ 4- 5+ 5- 6+ 6-

ID �2 ID �2 ID �2 ID �2 ID �2 ID �2

98 2.34 98 2.88 49 1.20 49 1.14 98 1.42 100 1.07

100 0.66 100 0.79 57 1.15 41 0.47 172 0.97 172 0.78

172 0.51 13 0.61 52 0.66 171 0.37 19 0.60 93 0.71

13 0.50 172 0.61 44 0.48 44 0.27 13 0.49 40 0.61

93 0.41 93 0.49 56 0.42 57 0.26 40 0.45 20 0.61

Table 7: Ranking of observables by �� in the last three directions.

observables there are di↵erences between the change in prediction in plus/minus directions, see

Figure 9 (left). This figure compares the values in the two directions of �6� (a similar but more

crowded picture is found plotting �6), and shows as an extreme example observable 100, RK? , for

which the theory prediction varies significantly along one direction but not the opposite. �6� is

the only one of the twelve points with a large negative C90 , and to a lesser extent C100 .

Another observation is that �3 (mostly C100) is an important contribution to PC2 based on �,

but not relevant in the first two PCs when for PCA based on ��. This suggests that including

correlations reduces the variance in that direction.

We now focus on the first two PCs to study which directions and observables are responsible

for the largest variation. To get an overview of the distribution of �s we show the projection of

observables onto the first two principal components in Figure 8 in the form of so-called biplots.

These show the projected data points, as well as a visualisation of the projection in the form of

labeled arrows pointing outwards from the center. This format makes it easy to relate directions

on the projection to the original parameters.

When considering each observable in isolation (left view), clear trends can be observed. For

example, observables aligned with direction 6�, 5� and anti-aligned with direction 5+ are mainly

branching ratio observations in bins of large q2 (e.g. IDs 68, 93, ...). There are di↵erences in

branching ratio observables depending on the final state: notably most observables with negative

PC1 but positive PC2 correspond to decays into K⇤, while decays into K+ and K0 appear to take

negative values in PC2 (e.g. IDs 98, 13, 14). Angular observables on the other hand show a very

di↵erent behavior. For example observables 28, 41 and 44 are found to have the largest values of

PC1. Large q2 bins are di↵erent, e.g. IDs 56, 57, 60, take small positive values in PC1 but large

absolute values in PC2.

The picture changes drastically when considering correlations (right view), where the relevance

of large q2 bins of branching ratio observables is no longer dominant. Note also the di↵erent e↵ect
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ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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ID Observable Exp.

1 107 ⇥Br(B+ ! K+µµ)[0.1� 0.98] LHCb [23]

2 107 ⇥Br(B+ ! K+µµ)[1.1� 2] LHCb [23]

3 107 ⇥Br(B+ ! K+µµ)[2� 3] LHCb [23]

4 107 ⇥Br(B+ ! K+µµ)[3� 4] LHCb [23]

5 107 ⇥Br(B+ ! K+µµ)[4� 5] LHCb [23]

6 107 ⇥Br(B+ ! K+µµ)[5� 6] LHCb [23]

7 107 ⇥Br(B+ ! K+µµ)[6� 7] LHCb [23]

8 107 ⇥Br(B+ ! K+µµ)[7� 8] LHCb [23]

9 107 ⇥Br(B0 ! K0µµ)[0.1� 2] LHCb [23]

10 107 ⇥Br(B0 ! K0µµ)[2� 4] LHCb [23]

11 107 ⇥Br(B0 ! K0µµ)[4� 6] LHCb [23]

12 107 ⇥Br(B0 ! K0µµ)[6� 8] LHCb [23]

13 107 ⇥Br(B+ ! K+µµ)[15� 22] LHCb [23]

14 107 ⇥Br(B0 ! K0µµ)[15� 22] LHCb [23]

15 FL(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

16 P1(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

17 P2(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

18 P3(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

19 P 0
4(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

20 P 0
5(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

21 P 0
6(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

22 P 0
8(B ! K⇤µµ)[0.1� 0.98] LHCb [24]

23 FL(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

24 P1(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

25 P2(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

26 P3(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

27 P 0
4(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

28 P 0
5(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

29 P 0
6(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

30 P 0
8(B ! K⇤µµ)[1.1� 2.5] LHCb [24]

31 FL(B ! K⇤µµ)[2.5� 4] LHCb [24]

32 P1(B ! K⇤µµ)[2.5� 4] LHCb [24]

33 P2(B ! K⇤µµ)[2.5� 4] LHCb [24]

34 P3(B ! K⇤µµ)[2.5� 4] LHCb [24]

35 P 0
4(B ! K⇤µµ)[2.5� 4] LHCb [24]

36 P 0
5(B ! K⇤µµ)[2.5� 4] LHCb [24]

37 P 0
6(B ! K⇤µµ)[2.5� 4] LHCb [24]

38 P 0
8(B ! K⇤µµ)[2.5� 4] LHCb [24]

39 FL(B ! K⇤µµ)[4� 6] LHCb [24]

40 P1(B ! K⇤µµ)[4� 6] LHCb [24]

ID Observable Exp

41 P2(B ! K⇤µµ)[4� 6] LHCb [24]

42 P3(B ! K⇤µµ)[4� 6] LHCb [24]

43 P 0
4(B ! K⇤µµ)[4� 6] LHCb [24]

44 P 0
5(B ! K⇤µµ)[4� 6] LHCb [24]

45 P 0
6(B ! K⇤µµ)[4� 6] LHCb [24]

46 P 0
8(B ! K⇤µµ)[4� 6] LHCb [24]

47 FL(B ! K⇤µµ)[6� 8] LHCb [24]

48 P1(B ! K⇤µµ)[6� 8] LHCb [24]

49 P2(B ! K⇤µµ)[6� 8] LHCb [24]

50 P3(B ! K⇤µµ)[6� 8] LHCb [24]

51 P 0
4(B ! K⇤µµ)[6� 8] LHCb [24]

52 P 0
5(B ! K⇤µµ)[6� 8] LHCb [24]

53 P 0
6(B ! K⇤µµ)[6� 8] LHCb [24]

54 P 0
8(B ! K⇤µµ)[6� 8] LHCb [24]

55 FL(B ! K⇤µµ)[15� 19] LHCb [24]

56 P1(B ! K⇤µµ)[15� 19] LHCb [24]

57 P2(B ! K⇤µµ)[15� 19] LHCb [24]

58 P3(B ! K⇤µµ)[15� 19] LHCb [24]

59 P 0
4(B ! K⇤µµ)[15� 19] LHCb [24]

60 P 0
5(B ! K⇤µµ)[15� 19] LHCb [24]

61 P 0
6(B ! K⇤µµ)[15� 19] LHCb [24]

62 P 0
8(B ! K⇤µµ)[15� 19] LHCb [24]

63 107 ⇥Br(B0 ! K0⇤µµ)[0.1� 0.98] LHCb [25]

64 107 ⇥Br(B0 ! K0⇤µµ)[1.1� 2.5] LHCb [25]

65 107 ⇥Br(B0 ! K0⇤µµ)[2.5� 4] LHCb [25]

66 107 ⇥Br(B0 ! K0⇤µµ)[4� 6] LHCb [25]

67 107 ⇥Br(B0 ! K0⇤µµ)[6� 8] LHCb [25]

68 107 ⇥Br(B0 ! K0⇤µµ)[15� 19] LHCb [25]

69 107 ⇥Br(B0 ! K+⇤µµ)[0.1� 2] LHCb [23]

70 107 ⇥Br(B0 ! K+⇤µµ)[2� 4] LHCb [23]

71 107 ⇥Br(B0 ! K+⇤µµ)[4� 6] LHCb [23]

72 107 ⇥Br(B0 ! K+⇤µµ)[6� 8] LHCb [23]

73 107 ⇥Br(B0 ! K+⇤µµ)[15� 19] LHCb [23]

74 P1(Bs ! �µµ)[0.1� 2] LHCb [26]

75 P 0
4(Bs ! �µµ)[0.1� 2] LHCb [26]

76 P 0
6(Bs ! �µµ)[0.1� 2] LHCb [26]

77 FL(Bs ! �µµ)[0.1� 2] LHCb [26]

78 P1(Bs ! �µµ)[2� 5] LHCb [26]

79 P 0
4(Bs ! �µµ)[2� 5] LHCb [26]

80 P 0
6(Bs ! �µµ)[2� 5] LHCb [26]

Table 11: List of observables used in the fit.
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Summary
• Visualisation and systematic comparison provide more 

complete picture of the fit, also in observable space

• Correlations should be considered when judging the impact of 

each observable in a global fit, e.g. angular observables appear 
less relevant when including correlation


• When applicable the Hessian approximation allows discussion 
of fit uncertainties, relating parameter directions to observables
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two principal components capturing most of the total variance in the distribution (right panel).
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Figure 10: Comparison of SM prediction (green), BF prediction (brown) and fit uncertainty (pur-

ple) for the proposed observables listed in Table 13.

excellent opportunities for setting more precise constraints on the Wilson coe�cients encoding

possible NP e↵ects. As a caveat we note that our observations could change when correlations are

included.
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Figure 1: Feynman diagrams in the SM of the B0! K⇤0`+`� decay for the (top left) electroweak
penguin and (top right) box diagram. Possible NP contributions violating LU: (bottom left) a
tree-level diagram mediated by a new gauge boson Z 0 and (bottom right) a tree-level diagram
involving a leptoquark LQ.

bin at 6.0 GeV2
/c

4 is chosen to reduce contamination from the radiative tail of the J/ 

resonance.
The measurement is performed as a double ratio of the branching fractions of the

B
0! K

⇤0
`
+
`
� and B

0! K
⇤0

J/ (! `
+
`
�) decays

RK⇤0 =
B(B0! K

⇤0
µ
+
µ
�)

B(B0! K
⇤0

J/ (! µ
+
µ
�))

�
B(B0! K

⇤0
e
+
e
�)

B(B0! K
⇤0

J/ (! e
+
e
�))

,

where the two channels are also referred to as the “nonresonant” and the “resonant” modes,
respectively. The experimental quantities relevant for the measurement are the yields
and the reconstruction e�ciencies of the four decays entering in the double ratio. Due
to the similarity between the experimental e�ciencies of the nonresonant and resonant
decay modes, many sources of systematic uncertainty are substantially reduced. This
helps to mitigate the significant di↵erences in reconstruction between decays with muons
or electrons in the final state, mostly due to bremsstrahlung emission and the trigger
response. The decay J/ ! `

+
`
� is measured to be consistent with LU [24]. In order to

avoid experimental biases, a blind analysis was performed. The measurement is corrected
for final-state radiation (FSR). Recent SM predictions for RK⇤0 in the two q

2 regions are
reported in table 1. Note that possible uncertainties related to QED corrections are only
included in Ref. [26], and these are found to be at the percent level. The RK⇤0 ratio is
smaller than unity in the low-q2 region due to phase-space e↵ects.

The remainder of this paper is organised as follows: section 2 describes the LHCb
detector, as well as the data and the simulation samples used; the experimental challenges
in studying electrons as compared to muons are discussed in section 3; section 4 details

2

B0 ! K⇤0`+`�

SM

NP

Taken from arXiv:1705.05802
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Anomalies observed

Table 5: Measured RK⇤0 ratios in the two q2 regions. The first uncertainties are statistical and
the second are systematic. About 50% of the systematic uncertainty is correlated between the
two q2 bins. The 95.4% and 99.7% confidence level (CL) intervals include both the statistical
and systematic uncertainties.

low-q2 central-q2

RK⇤0 0.66 + 0.11
� 0.07 ± 0.03 0.69 + 0.11

� 0.07 ± 0.05

95.4% CL [0.52, 0.89] [0.53, 0.94]

99.7% CL [0.45, 1.04] [0.46, 1.10]
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Figure 10: (left) Comparison of the LHCb RK⇤0 measurements with the SM theoretical predic-
tions: BIP [26] CDHMV [27–29], EOS [30, 31], flav.io [32–34] and JC [35]. The predictions are
displaced horizontally for presentation. (right) Comparison of the LHCb RK⇤0 measurements
with previous experimental results from the B factories [4, 5]. In the case of the B factories the
specific vetoes for charmonium resonances are not represented.

of 3 fb�1 of pp collisions, recorded by the LHCb experiment during 2011 and 2012, are
used. The RK⇤0 ratio is measured in two regions of the dilepton invariant mass squared
to be

RK⇤0 =

(
0.66 + 0.11

� 0.07 (stat) ± 0.03 (syst) for 0.045 < q
2

< 1.1 GeV2
/c

4
,

0.69 + 0.11
� 0.07 (stat) ± 0.05 (syst) for 1.1 < q

2
< 6.0 GeV2

/c
4
.

The corresponding 95.4% confidence level intervals are [0.52, 0.89] and [0.53, 0.94]. The
results, which represent the most precise measurements of RK⇤0 to date, are compatible
with the SM expectations [26–35] at 2.1–2.3 standard deviations for the low-q2 region
and 2.4–2.5 standard deviations for the central-q2 region, depending on the theoretical
prediction used.

Model-independent fits to the ensemble of FCNC data that allow for NP contribu-
tions [27–35] lead to predictions for RK⇤0 in the central-q2 region that are similar to the
value observed; smaller deviations are expected at low-q2. The larger data set currently
being accumulated by the LHCb collaboration will allow for more precise tests of these
predictions.
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Figure 8: The optimised angular observables in bins of q2, determined from a maximum likelihood
fit to the data. The shaded boxes show the SM prediction taken from Ref. [14].
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Correlation Map
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Figure 3: Correlation map derived from the full covariance matrix.

3.2 Pull

Here we compare all observables directly to the SM and the BF respectively in the top two panels

of Figure 4. We have highlighted in red those observables with Pull greater than 2. The Pull(SM)

metric simply updates known results from Ref. [2]: four of the largest over-predictions of the SM

occur for BR and R
K(?) LHCb measurements, whereas the largest under-predictions occur for P 0

5

measurements by three di↵erent experiments (IDs 44, 52, 108, 128).

The top-right panel of Figure 4 presents the Pull(BF) metric for all observables. We observe

that three of the standout points against the SM also stand out against the BF. Two of the P 0
5

measurements (IDs 52 and 108) are also above the BF prediction whereas an ATLAS P 0
4 (ID 127)

falls below both the SM and BF predictions by more than 2�.

In the bottom two panels of Figure 4 we show �(Pull) for all observables. The idea of this

metric is to highlight those observables in better agreement with the BF point than with the SM.

The results are shown both ignoring correlations (lower left panel) and including them (lower right

panel). The majority of the points are clustered at small values of�(Pull) (or��(Pull)), indicating

insignificant resolving power between the SM and the BF. The distribution shows, however, that

even among these points with small �(Pull) there is an average preference for positive values. This

is of course just the statement that the global fit prefers the BF to the SM, but the distribution

shows how much of this overall preference is built from many small di↵erences that go in the same

direction.

10
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Representative Points

• Direction six behaves di↵erently, with observable 98 (RK) having the most impact both

with and without correlations for direction 6+ and observable 100 (RK?) dominating along

direction 6�. Large q2 bins of Br(B ! K?µµ) (IDs 68 and 155) and Br(Bs ! µµ) (ID 172)

also play an important role in this direction.

• We catalogued the e↵ects of the new LFV observables proposed in the literature. We cor-

roborate the importance of Q1 for constraining on CNP
90µ,100µ and of B5,6s for constraining

CNP
10µ
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A Intersection of the one-sigma ellipsoid with its principal axes

SVD produces the twelve points shown in Table 9. The eigenvalues are numbered in decreasing

order. For comparison we list in the table the �2 di↵erence between these points and the best fit

calculated numerically and using the quadratic approximation where ��2 = 7.1 exactly (this is

the condition used to find the twelve points). The column ��2
exact lists the number extracted from

the code of Ref. [1]. The last column is used below to quantify a cut-o↵ for ‘large’ ��.

EV C7 C9 C10 C70 C90 C100 ��2
exact ��2

quad

P
�2�

1+ 0.0504 -1.06 0.341 0.0147 0.375 -0.0412 6.8 7.1 7.1

1� -0.0418 -1.07 0.342 0.0225 0.374 -0.0403 8.1 7.1 8.5

2+ 0.000137 -1.07 0.341 -0.0313 0.374 -0.0398 6.5 7.1 7.3

2� 0.00852 -1.06 0.342 0.0686 0.375 -0.0416 7. 7.1 7.1

3+ 0.011 -1.16 0.234 0.0267 0.248 0.253 4.9 7.1 7.2

3� -0.00239 -0.972 0.449 0.0106 0.501 -0.335 8.9 7.1 7.2

4+ 0.0118 -1.27 0.722 0.0185 0.289 -0.00429 7.7 7.1 6.6

4� -0.00315 -0.859 -0.0387 0.0188 0.46 -0.0772 6.3 7.1 7.7

5+ 0.0173 -1.54 0.13 0.0195 0.511 -0.21 4.9 7.1 9.6

5� -0.00866 -0.59 0.553 0.0178 0.238 0.129 9.1 7.1 6.7

6+ 0.00484 -1.03 0.595 0.0131 1.72 0.64 7.4 7.1 10.0

6� 0.00382 -1.1 0.0881 0.0241 -0.971 -0.722 8.6 7.1 11.5

Table 9: Parameter sets obtained with SVD along with their correspondent ��2 for displacements

(both ways +/�) away from the BF along the six eigenvector directions. The eigenvectors are

ordered by decreasing value of the corresponding eigenvalues of H.
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