Reactor Neutrino Flux and Spectrum

Chao Zhang Brookhaven National Laboratory

On behalf of the Daya Bay Collaboration

Reactor Neutrino: Largest Background to Geoneutrino

Reactor Neutrinos!

Calculate yourself: how much reactor neutrino background does my geoneutrino experiment have?

https://geoneutrinos.org/reactors/

Barna, A.M. and Dye, S.T., "Web Application for Modeling Global Antineutrinos," arXiv:1510.05633 (2015).

Nuclear Reactor as Antineutrino Source

- Nuclear reactors produce pure v_e from beta decays of fission daughters
 - Low energy: < 10 MeV</p>
- \Box ~6 \overline{v}_e / fission
- \Box 2 x 10²⁰ \overline{v}_{e} / sec per GW_{th} (free for physicists)

- Commercial reactors in Nuclear Power Plants have low-enriched uranium (LEU) cores
 - Mixture of fissions: ²³⁵U (~55%), ²³⁹Pu (~30%), ²³⁸U (~10%), ²⁴¹Pu (~5%)
 - Large power: ~3 GW_{th}
- Research reactors have highly-enriched uranium (HEU) cores
 - ²³⁵U fission fraction ~99%
 - Lower power, few tens of MW_{th}
 - compact size

History of Reactor Neutrino Experiments

Discovery of v Solving solar v problem on Earth Discovery of smallest oscillation angle θ_{13} Currently hold the best precision of • Δm_{21}^2 (KamLAND)
 θ₁₃ (Daya Bay)
 Comparable precision to accelerator-based experiments

| Δm²₃₂ | (Daya Bay)

Fundamental properties of neutrinos due to quantum mixture of mass eigenstates
 For geoneutrino: important to correctly predict reactor neutrino flux at distances

10/21/2019

Measure Reactor Antineutrino Spectrum

Reactor Models

□ Summation (ab initio) method

- Calculate the spectrum of each betadecay branch using nuclear databases: <u>fission yields</u>, <u>decay schemes</u>
- ~10% uncertainty

Conversion Method

- Measure total outgoing beta-decay electron energy spectra.
 (Experiments done for ²³⁵U, ²³⁹Pu, ²⁴¹Pu at ILL in the 1980s)
- Predict
 - corresponding antineutrino spectra with >30 virtual branches
- Default model by most reactor neutrino experiments
 - Considered to be more precise: ~2.5% uncertainty

- Recent re-analyses in 2011 increased prediction by ~5%
 - Conversion +3%
 - Neutron lifetime +1%
 - Non-equilibrium isotopes +1%

Model vs. Measurements: Disagreement

Recent reactor neutrino experiments have revealed at least three disagreements with model predictions

- Integrated flux deficit: often called "Reactor Antineutrino Anomaly (RAA)"
- Spectral shape difference: often called "5 MeV bump"
- Individual isotope spectra: through the study of "fuel evolution"
- Daya Bay is leading these flux and spectrum measurements due to its largest statistics and best control of systematic uncertainties
 - also measured by RENO, Double Chooz, and other short-baseline (SBL) experiments

Ling Ao II Cores

Ling Ao I Cores

8 operating detectors

160 t total target mass

■ 17.4 GW_{th} power

The Daya Bay Neutrino Experiment

Timeline

Far Hall 1540 m from Ling Ao I 1910 m from Daya Bay 324 m overburden

> 3 Underground **Experimental Halls**

Entrance

Ling Ao Near Hall 470 m from Ling Ao I 558 m from Ling Ao II 100 m overburden

Daya Bay Near Hall 363 m from Daya Bay 93 m overburden

Daya Bay Cores

2003: Experiment proposed □2006: Collaboration **Established 2011.8**: First near hall data taking □2011.12: 3-hall data taking □2012.3: Discovery of non-zero θ_{13} □Latest data set: 2011.12 - 2017.9(1958 days)

Daya Bay Detectors

Energy resolution: $\sigma_E/E \approx 8.5\%/\sqrt{E(MeV)}$

NIM A811, 133 (2016)

Double purpose: shield the ADs and veto cosmic ray muons

NIM A773, 8 (2015)

Antineutrino Detector
(AD)

- Inner: 20-ton GdLS (target volume)
- Mid: 20-ton LS (gamma catcher)
- Outer: 40-ton mineral oil (buffer)

Muon Veto System

- Water Cherenkov: optically separated inner/outer region
- RPC: independent tagging

A Low Background Experiment

□IBD Events

- Near site: ~600 /day
- Far site: ~75 /day

Accidental background to signal: ~2%
 Correlated background to signal: ~0.5%

Background	Near	Far	Uncertainty	Method
Accidentals	1.4%	2.3%	negligible	statistically calculated from uncorrelated singles
AmC source	0.03%	0.2%	~50%	MC benchmarked with single gamma and strong AmC source
Li-9 / He-8	0.4%	0.4%	~30%	measured with after-muon events
Fast neutron	0.1%	0.1%	~30%	measured from AD/water/RPC tagged muon events
Alpha-n	0.01%	0.1%	~50%	calculated from measured radioactivity

Unprecedented Reactor Antineutrino Sample 3.9 million inverse beta decay (IBD) interactions (0.5M at far site) Observed rate highly correlated with reactor operations

Calibration System

Three fully Automated Calibration Units (ACUs) per detector, weekly calibration

- 3 sources for each z axis on a turn-table
 - ⁶⁸Ge (2 x 0.511 MeV γ)
 - ⁶⁰Co (1.173 + 1.332 MeV γ) + ²⁴¹Am¹³C (neutron)
 - LED for PMT gain and timing
- Special calibration campaign with temporary sources for energy and efficiency study
 ¹³⁷Cs. ⁵⁴Mn, ⁴⁰K, ²⁴¹Am⁹Be, ²³⁹Pu¹³C
- $\hfill One-time 4-\pi$ manual calibration system in one AD for position dependence study
- In-situ calibration
 - PMT gain: dark noise
 - Energy scale: spallation neutrons

Antineutrino Detection efficiency

Previous IBD efficiency values

ϵ	$\delta\epsilon/\epsilon$
-	0.92%
99.98%	0.01%
98.70%	0.12%
99.81%	0.10%
84.17%	0.95%
92.7%	0.97%
104.9%	1.00%
80.6%	1.93%
	ϵ 99.98% 98.70% 99.81% 84.17% 92.7% 104.9% 80.6%

Phys. Rev. D 100, 052004 (2019)

 Gd capture fraction: neutron capture on other target (e.g. hydrogen) or outside GdLS region (spill out)
 nGd detection efficiency: low energy tail from capture gammas escaping GdLS+LS
 Spill in: IBD interaction outside of GdLS but neutron capture inside GdLS

- Special calibration in 2016 with neutron sources (²⁴¹Am-¹³C and ²⁴¹Am-⁹Be)
- Systematic Monte-Carlo study with different models to constrain neutron detection efficiency

Energy Nonlinearity Calibration

Scintillator response: modeled by Birks formula and Cherenkov contribution
 Electronics response: measured by dedicated FADC system in one AD
 Nominal model determined by combined fit to mono-energetic gamma peaks and ¹²B beta-decay spectrum

 Cross-validated by: ²¹²Bi, ²¹⁴Bi, ²⁰⁸TI beta-decay spectrum, Michel electron spectrum, and standalone bench-top Compton scattering measurement.

Reactor Antineutrino Flux

Daya Bay's measured absolute flux σ_f = (5.91 ± 0.09) x 10⁻⁴³ cm²/fission
 4.8% deficit compared with the most recent Huber (²³⁵U, ²³⁹Pu, ²⁴¹Pu) plus Muller (²³⁸U) model

 $\frac{Data}{Model (Huber + Muller)} = 0.952 \pm 0.014 (exp.) \pm 0.023 (model.)$

Consistent with previous short baseline reactor experiments in the 80-90s

 ~2σ deficit could come from issues in the reactor model and/or eV-scale sterile neutrino oscillation

Reactor Antineutrino Spectral Shape

- □5.3σ discrepancy with Huber-Muller model overall (0.7 – 8 MeV)
- $\Box 6.3\sigma$ discrepancy in the 4 6 MeV region (often referred to as the "bump")
 - Bump events have all the IBD characteristics and are correlated with reactor power
 - Bump does not appear in ¹²B or other beta-decay spectra (cannot be explained by detector effects)
- This shape anomaly cannot be explained by sterile neutrino mixing

Evolution with Fuel Composition

Question: can these anomalies be traced to a particular isotope?

 Study of how the total flux changes with fuel composition allowed to extract the individual antineutrino yield of ²³⁵U and ²³⁹Pu

PRL 118, 251801 (2017)

Daya Bay data suggest ²³⁵U is the primary contributor to the flux anomaly

Extraction of Individual ²³⁵U and ²³⁹Pu Spectra

- Similarly, the individual ²³⁵U and ²³⁹Pu spectra can be simultaneously extracted from the evolution of the spectrum with fuel composition
- Similar bump excess seen with both ²³⁵U and ²³⁹Pu. Local deviations:

4σ for ²³⁵U

- 1.2σ for ²³⁹Pu (larger uncertainty)
- ~ 4% uncertainty for ²³⁵U and 9% for ²³⁹Pu at 3 MeV

This is the first measurement of the individual ²³⁵U and ²³⁹Pu spectra with commercial reactors

Phys. Rev. Lett. 123, 111801 (2019)

Future Improvement

- Daya Bay will continue taking data until end of 2020
 - Larger statistics will help the extraction of individual isotope spectrum
- ²³⁵U-only spectrum measurement from short baseline experiments with HEU research reactors
 - PROSPECT, STEREO, SoLid, etc.
 - Combined analysis with Daya Bay and other commercial reactor experiments will help the extraction of ²³⁹Pu spectrum

Future high-resolution experiments

JUNO, JUNO-TAO, etc.

Phys. Rev. Lett. 122, 251801 (2019)

Summary

- Reactor neutrino is one of the largest backgrounds for geoneutrino detection
- At present, reactor neutrino models still have relatively large uncertainties
- However, reactor neutrino flux and spectrum have been precisely measured by recent experiments, in particular by Daya Bay to ~1.5% for flux and 0.5-4% for spectral shape
 - Individual spectra from ²³⁵U and ²³⁹Pu were also extracted
- These precision measurements are important inputs to future geoneutrino experiments

Backup Slides

Low Energy (<1.8 MeV) Spectrum

□ Inverse Beta Decay (IBD) $\bar{\nu}_e + p \rightarrow e^+ + n$

- Relatively large cross section
- Distinctive coincidence signature
- 2/3 of reactor flux are below the 1.8 MeV threshold

Neutrino-electron Elastic Scattering

(ES)
$$\bar{\nu}_e + e \rightarrow \bar{\nu}_e + e$$

- No threshold
- Reasonable event rate: smaller cross section but larger flux and more targets
- Background challenge: a single electron recoil event

