Contribution ID: 1 Type: Poster

Towards Economic Zero Boil-Off Technology for Liquid Hydrogen Storage

Wednesday 29 October 2025 14:00 (1 minute)

Hydrogen is increasingly recognized as a cornerstone of the transition to sustainable energy systems. Storing hydrogen in liquefied form (LH₂) is particularly advantageous due to its relatively high energy density and scalability for storage and transport. However, managing boil-off rates (BOR) during storage and transportation remains a significant challenge. Hydrogen boil-off leads to safety concerns, environmental impacts, and economic losses, highlighting the critical need for zero boil-off (ZBO) systems. Depending on the size and application, the BOR ranges from 0.05-0.2% per day for large-scale, stationary, spherical storage tanks (>500 m³) to 0.3-1% per day for stationary cylindrical vessels (1–100 m³), and even up to 1.5% per day for 0.1 m³ tanks typically used in mobile applications.

Advances in passive insulation technologies, such as vacuum-insulated multi-layer insulation (MLI) and variable density MLI (VDMLI), have shown potential to reduce BOR further compared to conventional vacuum-perlite. However, passive measures alone are insufficient due to the high liquefaction energy costs (~30% of hydrogen's energy capacity) of LH2. This underscores the need for active cooling systems to achieve ZBO in LH₂ storage and transport applications. While existing ZBO systems in aerospace demonstrate feasibility, their high energy requirements and costs limit large-scale industrial deployment.

An in-depth review of the current state of LH_2 storage technologies was conducted, focusing on BOR mitigation strategies and their limitations. A framework for the design and development of economic ZBO systems is proposed, with an emphasis on bridging the gap between laboratory-scale solutions and practical implementation. This work is part of the HyTROS program under the Dutch GroenvermogenNL initiative to advance hydrogen storage and transport technologies.

Submitters Country

The Netherlands

Are you a student?

Yes

Author Affiliations & Email Addresses

I confirm that valid email addresses and affiliations have been added for all co-authors.

Co-Author Affirmation

By clicking here, I, the submitting author, affirm that all co-authors know of and concur with the submission of this abstract.

Authors: BEENS, Harro (University of Twente); Prof. VANAPALLI, Srini (University of Twente)

Presenter: BEENS, Harro (University of Twente)

Session Classification: Poster session

Track Classification: Liquid Hydrogen Technologies