

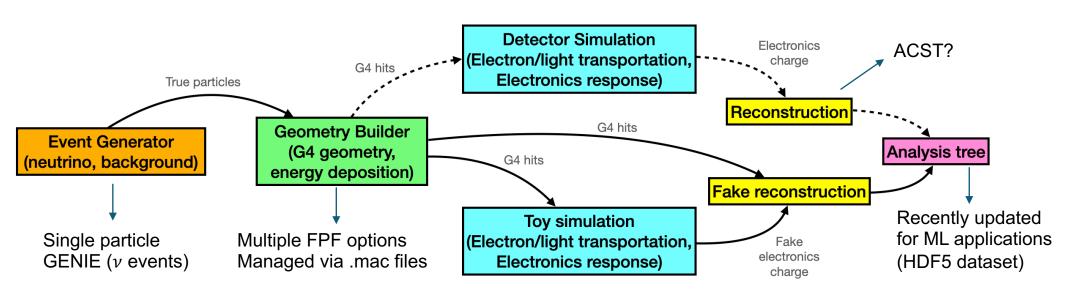
Status update on FLArE simulations

Matteo Vicenzi, Wenjie Wu

April 2nd, 2024 FLArE Technical Meeting

Technical note in progress

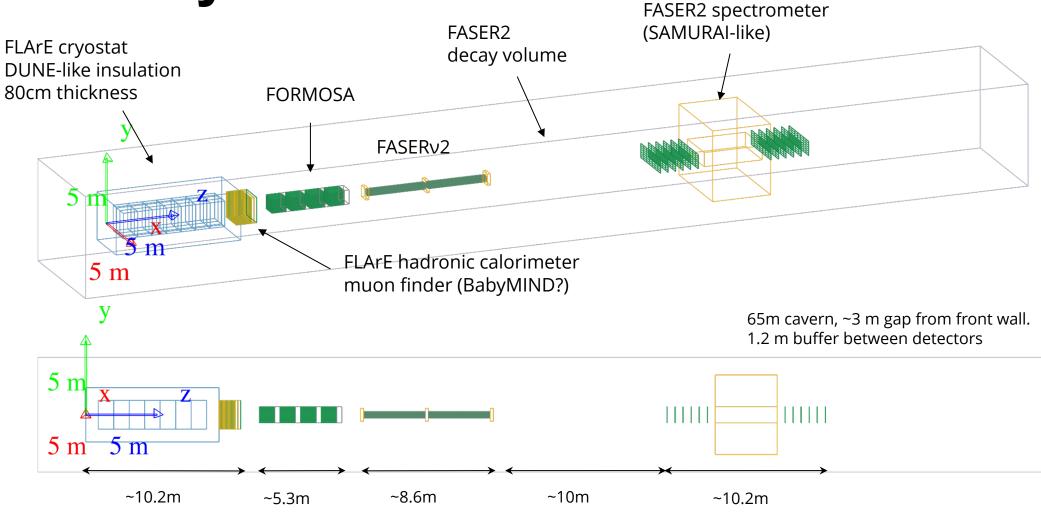
- We have a draft of the technical note on the simulation studies: <u>https://www.overleaf.com/16255216</u> <u>14bgrvrfzsgqhx#2c82dd</u>
- Currently a collection of semiindependent studies, lacks a common theme.
- Some sections need to be finalized (e.g: momentum reconstruction).
- Clear conclusions for the studies need to be drawn.


10	U	onu	ents								
11	1	Intro	oducti	on	3						
12	²² 2 Simulation Framework [Wenjie W.]										
13	n 3 Simulation of neutrino events [Wenjie W.]										
14	4	Stud	lies fo	r the energy containment [Wenjie W.]	6						
15	5	FPF	' confi	gurations [Matteo V.]	9						
16		5.1	Option	1 0: Reference hall	9						
17		5.2	Option	1 1: FORMOSA off-axis	11						
18		5.3	Option	1 2: FASER ν 2 first	12						
19		5.4	Magne	t options	13						
20	6	Muc	on acc	eptance and reconstruction [Matteo V.]	15						
21		6.1	Input	sample	15						
22		6.2	Accep	tance	16						
23			6.2.1	Dependence on FLArE fiducial volume	19						
24			6.2.2	Dependence on FLArE B-field	20						
25		6.3	Mome	ntum reconstruction	22						
26			6.3.1	FLArE algorithm and performance	22						
27			6.3.2	FASER2 algorithm and performance	24						

	<u>C(</u>	ONTI	ENTS		C	Cont	tents
28	7	Eve	nt and	particle identification [Wenjie W.]			28
29		7.1	Tau n	eutrino identification			28
30			7.1.1	Tau decay mode			28
31			7.1.2	Generation of the simulation sample			29
32			7.1.3	Hadronic decay channel			31
33			7.1.4	Leptonic decay channel			34
34		7.2	Effect	of the pixel size on particle identification			35
35			7.2.1	Generation of the single particle sample			35
36			7.2.2	Detector response variations with different pixel sizes			36

Simulation framework

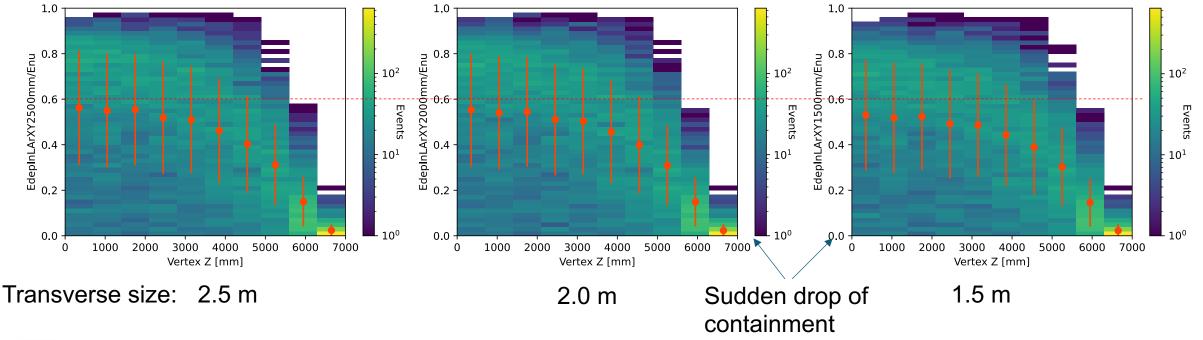
Current working strategy
 Ultimate goal



• Simulation package: GENIE + GEANT4 + toy/pseudo-reconstruction

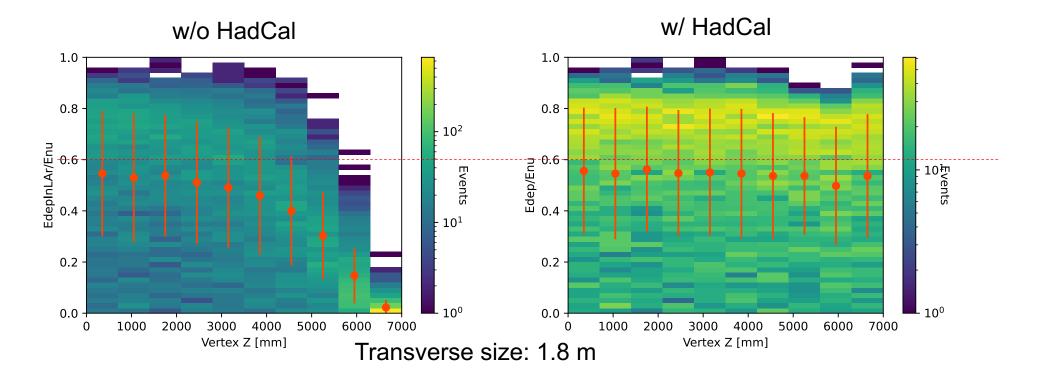
- No scintillation-light simulation, no charge transportation, no electronic simulation. Limits technical R&D, even if we had detailed geometry.
- Will soon need dedicated resources (machines, job cluster...)

Geometry



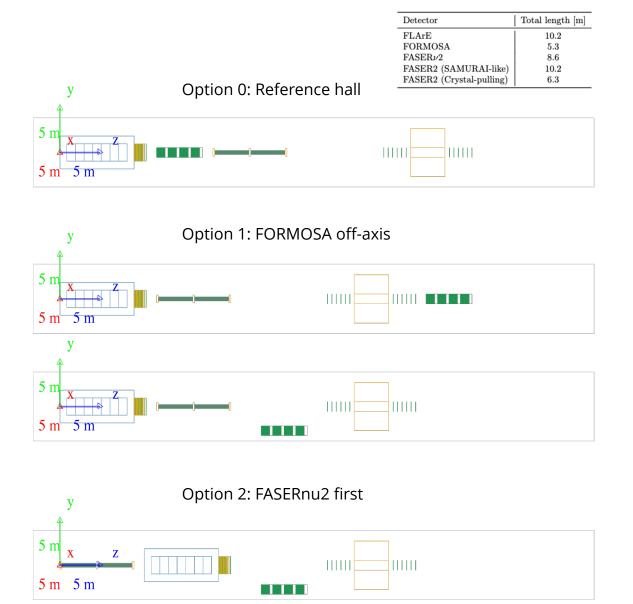
Overview of studies in the technical note

Energy containment


- Energy containment is guaranteed for 1x1x7 m³ fiducial volume, with no more than 2 meters in transverse direction.
 - Looking at v_{τ} events, fraction of contained energy as a function of the vertex z position:

Energy containment

 Hadronic calorimeter (15 layers, ~105cm total) is effective in recovering the missing energy from the downstream z bins.

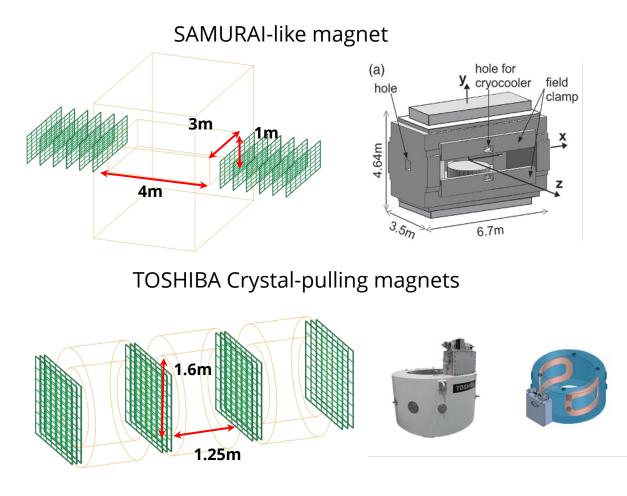


FPF configurations

- Qualitative description of several alternative FPF configurations implemented in the geometry.
- Already out-of-date?

FPF hall configurations									
Name	Comment	$\begin{array}{l} {\rm FLArE} \\ (y,z) \ [{\rm m}] \end{array}$	$\begin{array}{c} \text{FORMOSA} \\ (y,z) \ [\text{m}] \end{array}$	FASER $\nu 2$ (y, z) [m]	$\begin{array}{l} \text{FASER2} \\ (y, z) \ [\text{m}] \end{array}$				
Option 0	Reference hall with CrystalPulling magnets	(0, 4.3) (0, 4.3)	$(0, 13.9) \\ (0, 13.9)$	$(0, 22.0) \\ (0, 22.0)$	(0, 42.6) (0, 40.7)				
Option 1a	FORMOSA behind FASER2	(0, 4.3)	(0, 45.1)	(0, 15.5)	(0, 36.1)				
	with CrystalPulling magnets	(0, 4.3)	(0, 41.1)	(0, 15.5)	(0, 34.1)				
Option 1b	FORMOSA below decay volume	(0, 4.3)	(-2.5, 26.0)	(0, 15.5)	(0, 36.1)				
	with CrystalPulling magnets	(0, 4.3)	(-2.5, 26.0)	(0, 15.5)	(0, 34.1)				
Option 2	FASER _{ν2} before FLArE	(0, 14.1)	(-2.5, 26.0)	(0, 4.3)	(0, 36.1)				
	with CrystalPulling magnets	(0, 14.1)	(-2.5, 26.0)	(0, 4.3)	(0, 34.1)				

Table 1: Summary of the FPF configurations. The (y, z) positions of the on-axis detector centers are reported. A 1.2 m buffer between each experiment is assumed. The center of the coordinate system always corresponds to the front of the first detector, 3.1 m from the cavern wall. The z-axis represents the line of sight, while y is the vertical direction. The full length of the cavern is 65 m.


Magnet options

Two magnet designs for the FASER2 spectrometer magnet.

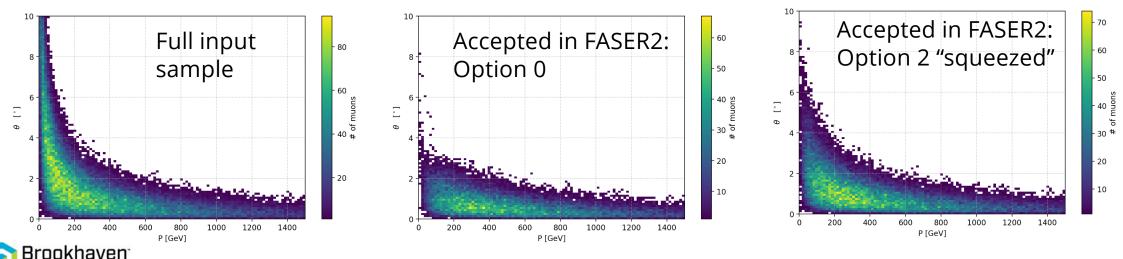
SAMURAI-style:

<u>Pro</u>: 4 Tm, great Pt resolution. <u>Con</u>: Huge yoke, procurement time and cost, installation.

Crystal-pullers: <u>Pro</u>: Cheap, readily available, small and modular. <u>Con</u>: 0.75 Tm each, worse Pt resolution.

Magnet option	Qnty	Size	Window	Length	Field	Field integral
SAMURAI-like Crystal-pulling	1 3	$\begin{array}{c} 6\mathrm{m}\times5\mathrm{m}\times4\mathrm{m} \\ 2.4\mathrm{m}\times2.4\mathrm{m}\times1.25\mathrm{m} \end{array}$	$3 \mathrm{m} imes 1 \mathrm{m}$ ø1.6 m	$4 \mathrm{m}$ $1.25 \mathrm{m}$	1 T 0.6 T	$4\mathrm{Tm}$ 0.75 Tm
Tracking stations	Sets	Number per set	Size	Thickness	Gap to magnet	Spacing
SAMURAI-like Crystal-pulling	$\begin{vmatrix} 2\\ 4 \end{vmatrix}$	6 3	$\begin{array}{c} 3\mathrm{m}\times3\mathrm{m} \\ 1.6\mathrm{m}\times1.6\mathrm{m} \end{array}$	$2\mathrm{cm}$ $2\mathrm{cm}$	$0.5\mathrm{m}$ $0.25\mathrm{m}$	$0.5\mathrm{m}$ $0.1\mathrm{m}$

Muon acceptance: SAMURAI (1m gap)


Muons is accepted into FASER2 if:

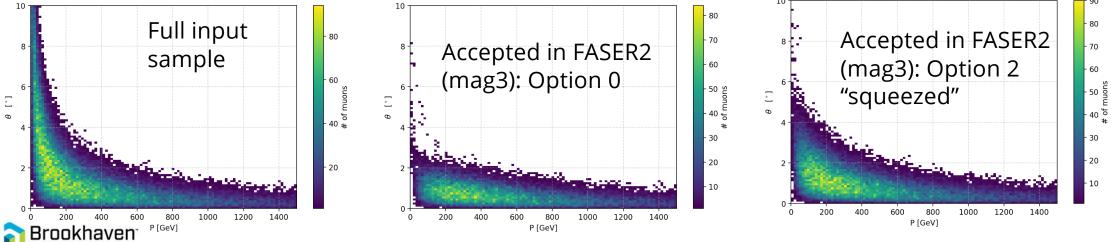
- 1. >0 pre-magnet trackers crossed
- 2. >2 post-magnet trackers crossed

FASER2 SAMURAI-like magnet $3\,\mathrm{m}\times1\,\mathrm{m}\times4\,\mathrm{m}$

Option	Distance [m]	FLArE volume	Total	HadCat + MF	FASER2
FLArE + FASER2 only	38.3	All fiducial	76699	66899 (87.2%) 73486 (95.8%)	23760 (31.0%) 30808 (40.2%)
Option 0: Reference hall	38.3	fiducial	76699	73486 (95.8%)	30668 (40.0%)
Option 1a: FORMOSA last Option 1b: FORMOSA below	31.6	fiducial	76699	73486 (95.8%)	34188 (44.5%)
Option 2: FASER ν 2 first	22	fiducial	76699	73461 (95.8%)	41027 (53.5%)
Option 2 "squeezed"	17	fiducial	76699	73309 (95.6%)	45952 (59.9%)

Table 5: Muon acceptances for the FLArE magnetized spectrometer and the FASER2 "SAMURAI-like" magnet $(3 \text{ m} \times 1 \text{ m} \times 4 \text{ m})$ for different configurations of the FPF cavern. FLArE fiducial volume is $1 \text{ m} \times 1 \text{ m} \times 7 \text{ m}$. The magnetic field both in the FLArE spectrometer and in the FASER2 magnet is 1 T. The distance is computed from the center of the FLArE liquid Argon volume to the center of the FASER2 magnet window.

Muon acceptance: Crystal-pullers

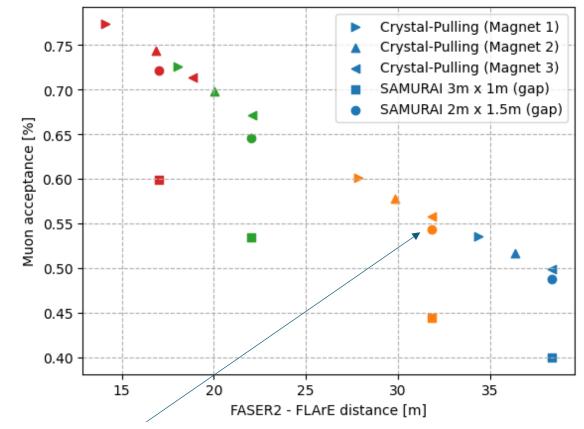

Muons is accepted into FASER2 if:

- 1. >0 pre-magnet trackers crossed
- 2. >2 post-magnet trackers crossed

Each magnet is independent. However mag3 ≅ mag3 && mag1 && mag2

FASER2 crystal-pulling magnets									
Option	Distance [m]	Total	FASER2 Mag. 1	FASER2 Mag. 2	FASER2 Mag. 3				
Option 0: Reference hall	36.4	76699	41048 (53.5%)	39645 (51.7%)	38281 (49.9%)				
Option 1a: FORMOSA last Option 1b: FORMOSA below	29.8	76699	46077 (60.1%)	44360 (57.8%)	42764 (55.7%)				
Option 2: FASER ν 2 first	20	76699	55689 (72.6%)	53514 (69.8%)	51502 (67.1%)				
Option 2 "squeezed"	16.8	76699	59351 (77.4%)	57001 (74.3%)	54749 (71.4%)				

Table 6: Muon acceptances for the FASER2 "crystal-pulling" magnets for different configurations of the FPF cavern. FLArE fiducial volume is $1 \text{ m} \times 1 \text{ m} \times 7 \text{ m}$. The magnetic field in the FLArE spectrometer is 1 T, while the field in each FASER2 magnet is 0.6 T. The distance is computed from the center of the FLArE liquid Argon volume to the center of the FASER2 magnet assembly.

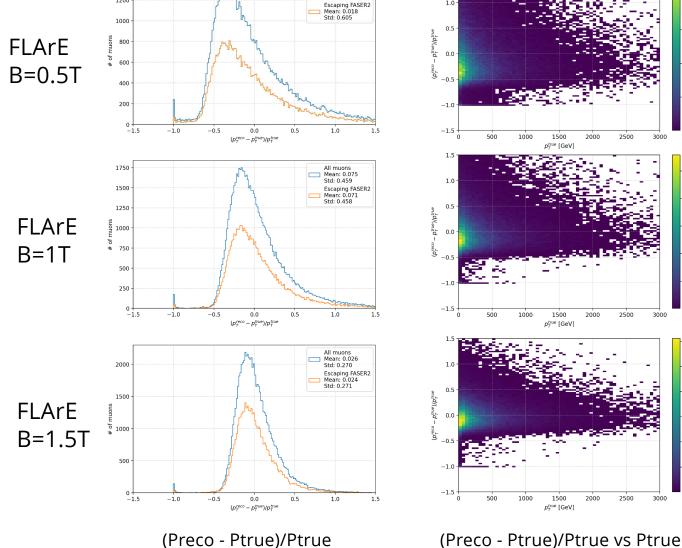

Matteo Vicenzi - FLArE Technical Meeting - April 2nd, 2024

Acceptance vs distance

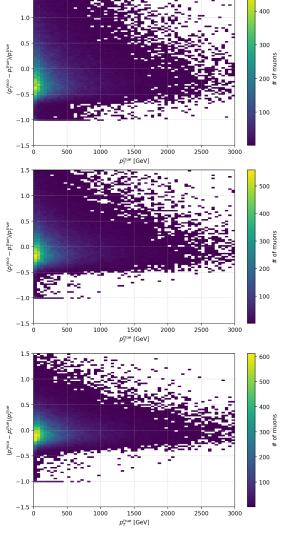
Acceptance is mainly driven by the FLArE-FASER2 distance, which depends on the FPF configuration.

- Blue: reference option
- Orange: option 1a/1b
- Green: option 2
- Red: option 2 "squeezed"

The crystal-pulling magnets (Ø1.6 m) and the SAMURAI-like magnet (1.5m gap) are comparable!



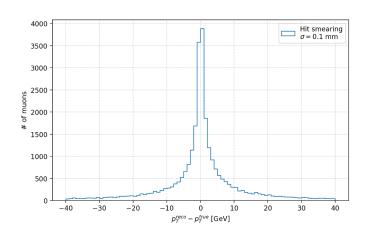
Small difference to be investigated.. bias due to the corners of tracking stations?

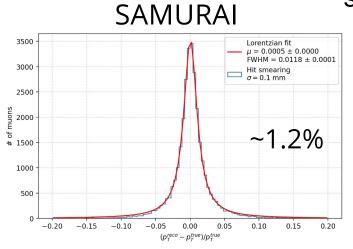


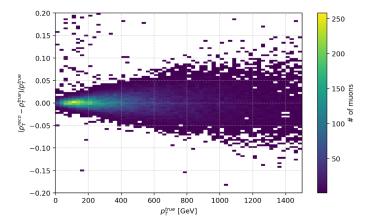
Momentum @ FLArE

- Momentum resolution @ FLArE is poor.
- Simulation step is 0.5mm. • Expected displacement ~1mm for average muon.
- Curvature is not visible, • radius is overestimated, large positive tail
- **Optimization is needed:** BabyMIND or NuTeV-like detector?

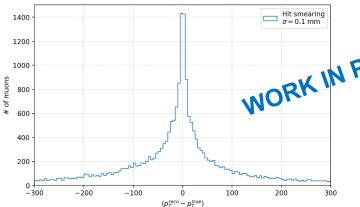
All muons Mean: 0.022 Std: 0.605

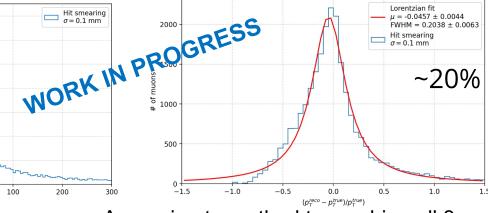


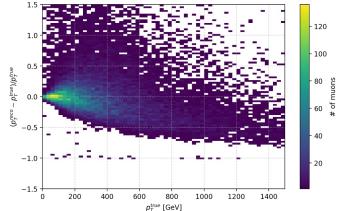



Matteo Vicenzi - FLArE Technical Meeting - April 2nd, 2024

Momentum @ FASER2

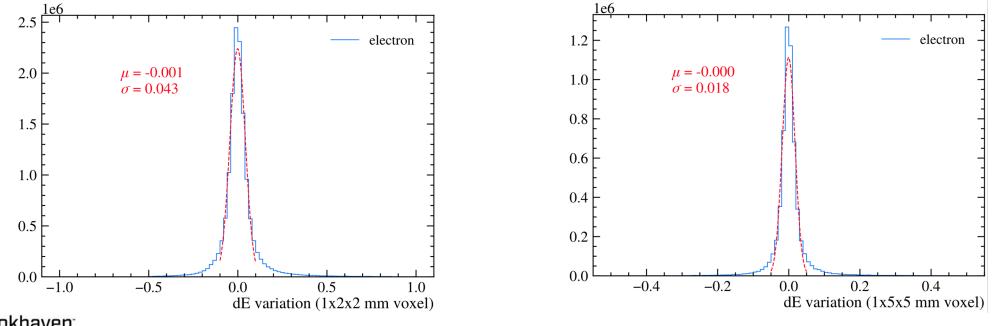

Momentum resolution with sigma=0.1mm Gaussian smearing




3 combined crystal-pullers

Brookhaven

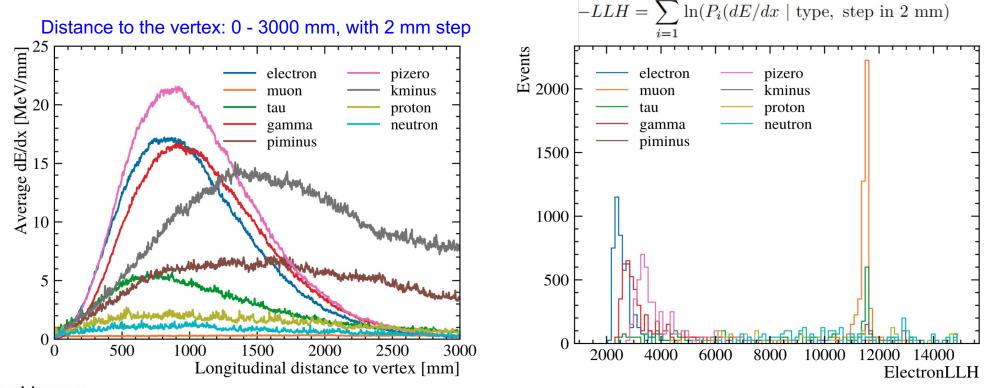
National Laboratory



Approximate method to combine all 3 magnets starting from total deflection angle —> needs full treatment + add another magnet?

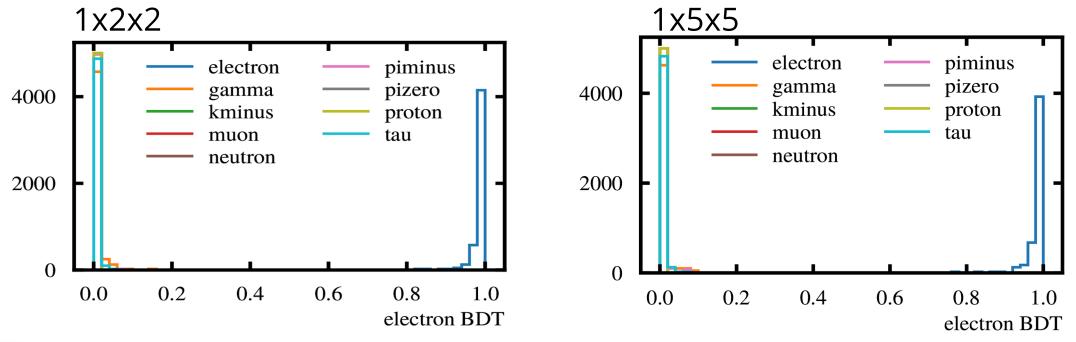
Pixel size studies

- The distribution of collected electrons depends on the diffusion effect and the pixel size.
- Emulate different pixel sizes by using different binning of the Y-Z plane
 - 5x5 mm²: a similar size to DUNE ND-LAr's configuration
 - 2x2 mm²: limited by the large amount of readout channels
- Variation of electron dE/dx in each voxel, for different voxel size.

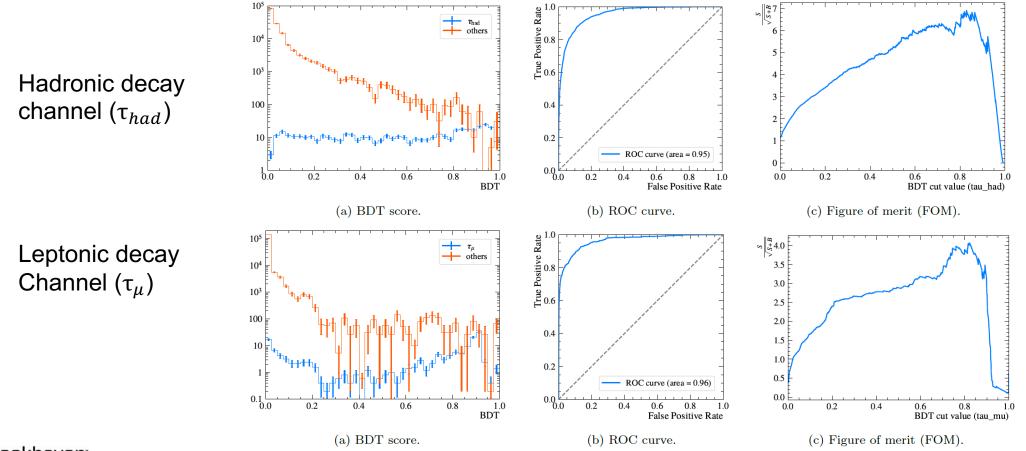


Matteo Vicenzi - FLArE Technical Meeting - April 2nd, 2024

Particle ID from dE/dx


- Different types of particles have various of ways to deposit energies in liquid argon.
- Construct a log-likelihood based on the dE/dx distribution in the longitudinal direction of each type of particle (in total 9 types of particles)
- Use these 9 log-likelihood functions as the input of a boosted decision tree for particle identification

BDT score


- The BDT output the scores of 9 classes, as the prediction probability of the particle to be each type of the particles
 - Will quantify the identification capability
 - Will extend this method for neutrino identification

Tau neutrino ID

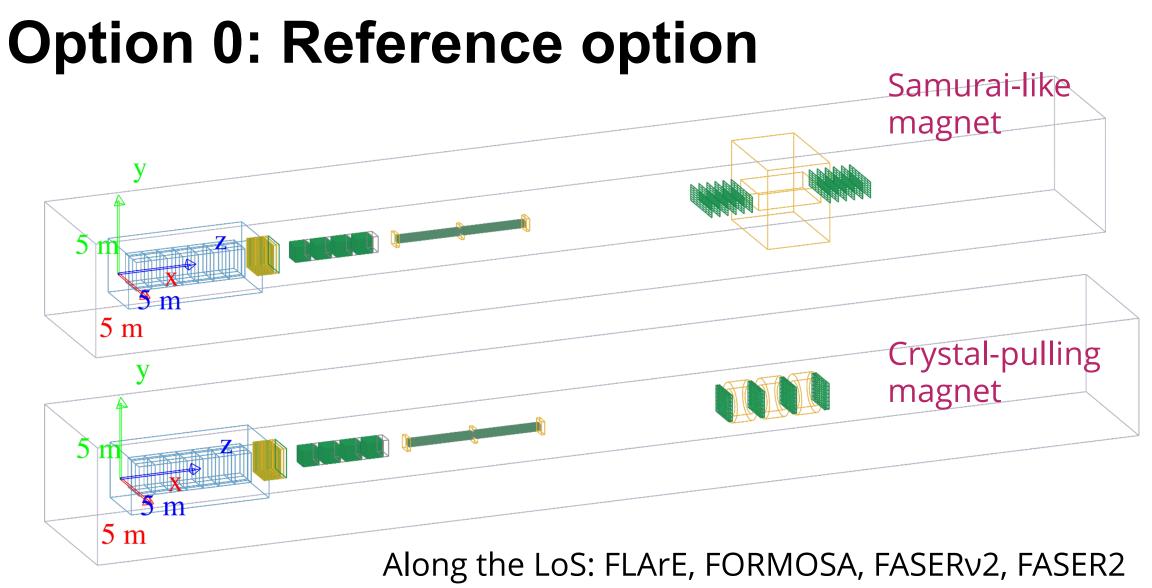
- Two BDTs based on kinematics variables of the final state particles, one per decay channel (hadronic, leptonic).
 - Using true information from G4.

Matteo Vicenzi - FLArE Technical Meeting - April 2nd, 2024

Next steps

What's next

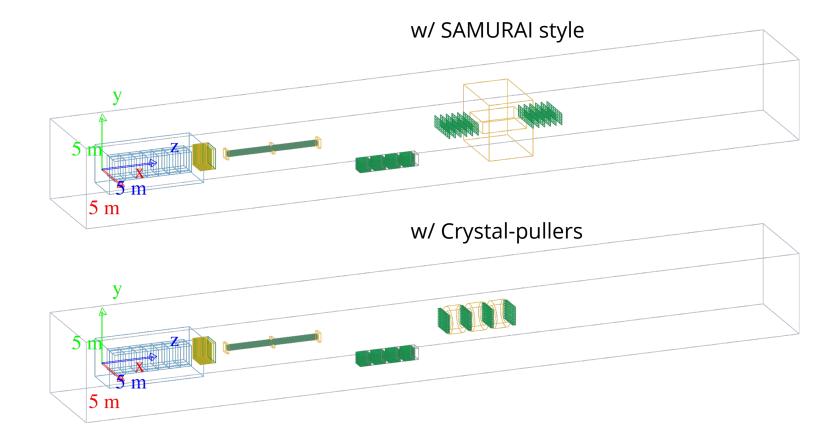
- Finalizing the tech-note studies
 - Wrap-up muon acceptance/reconstruction studies
- Calculation of muon-induced background rates for γ , n, etc.
 - Develop "background muons" generator.
 - Sample from fluence/flux histograms and re-shoot them in GEANT4.


Long-term goals

- Develop tools for full electronics/light simulation (electron transportation, electronics response, etc).
 - Find and allocate adequate computing resources!
- Develop interface for integration with ACST reconstruction package.
 - Framework useful for all FPF detectors!

Back-up

Option 1(b): FORMOSA off-axis


Moving FORMOSA in a pit below the decay volume:

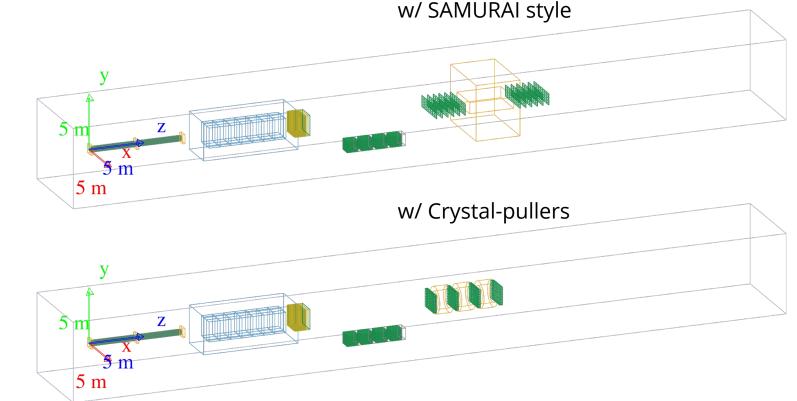
PRO:

- No need to be on-axis for mCPs
- Shorter distance between FLArE and FASER2
- Optimization of "dead" volume.
- Muon background cold spots?

CON:

- Degraded background rejection w/ FLArE
- Degraded common searches w/ FLArE ?

Option 2: FASERv2 first

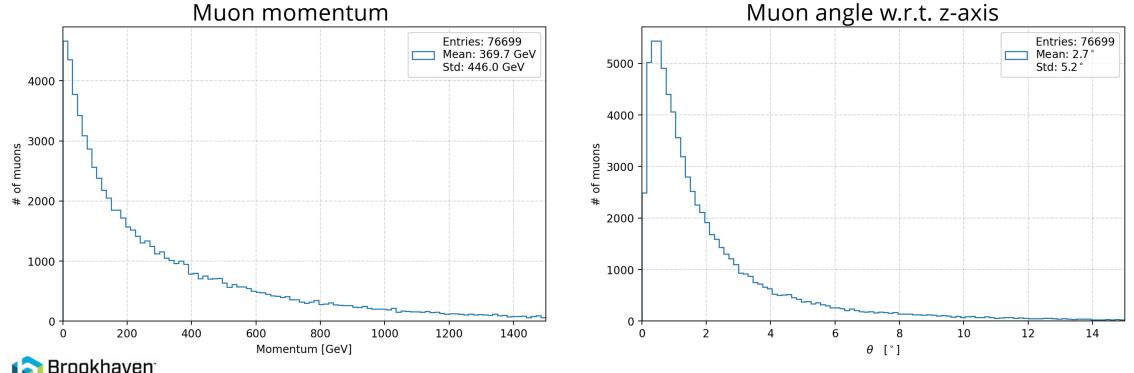

Moving FASERv2 in the front of the cavern, FORMOSA in the decay volume pit

PRO:

- Shorter distance between FLArE and FASER2
- No need for magnetized FLArE muon finder?
- FLArE as tracker for FASERv2

CON:

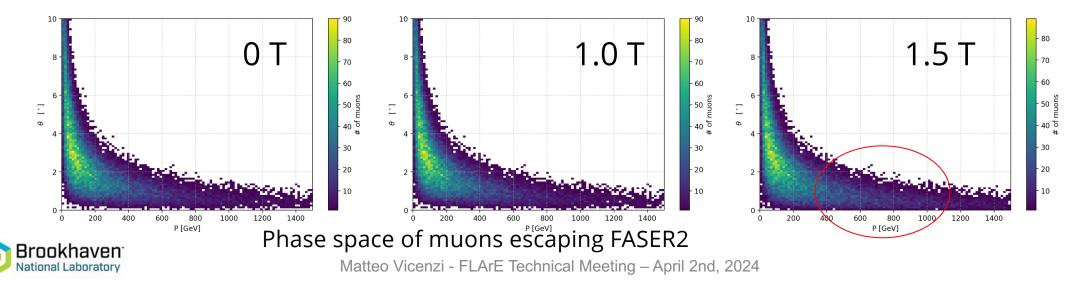
- Degraded synergy between FASERv2 and FASER2
- ;



Input sample

National Laboratory

- Muons from numu interactions in FLArE fiducial volume (1m x 1m x 7m).
- 100k numu \rightarrow 76.7k muons (CC fraction)
- Average muon momentum ~370 GeV



Dependence on FLArE B-field

- The nominal B-field @ FLArE magnetized calorimeter/spectrometer is 1T.
- Stronger fields start affecting the muon acceptance by sweeping away muons

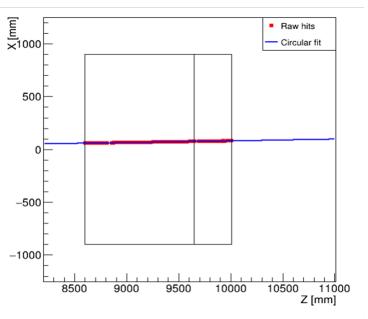
Option	Distance [m]	B[T]	FLArE volume	Total	HadCat + MF	FASER2
FLArE + FASER2 only	38.3	$\begin{array}{c} 0 \\ 0.5 \\ 1 \\ 1.5 \end{array}$	fiducial	76699	$\begin{array}{c} 73284 \ (95.5\%) \\ 73487 \ (95.8\%) \\ 73486 \ (95.8\%) \\ 69440 \ (90.5\%) \end{array}$	30680 (40.0%) 30837 (40.2%) 30808 (40.2%) 26381 (34.4%)

Table 8: Muon acceptances for the FLArE magnetized spectrometer and the FASER2 "SAMURAI-like" magnet for different magnetic fields in the FLArE spectrometer.

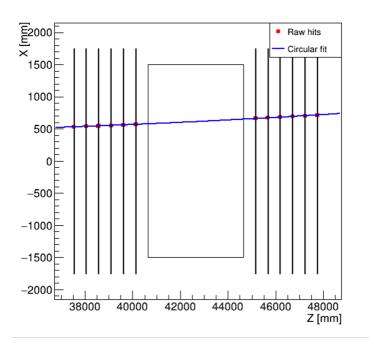
Dependence on FLArE fiducial volume

SAMURAI-like magnet window is 3 m x 1 m. Cuts on x-axis have small effect, cuts on y-axis dominate the acceptance.

Option	Distance [m]	FLArE volume	Total	HadCat + MF	FASER2
		All	76699	66899 (87.2%)	23760 (31.0%)
FLArE + FASER2 only	38.3	$1\mathrm{m} imes 1\mathrm{m} imes 7\mathrm{m}$	76699	73486~(95.8%)	30808~(40.2%)
F EALE + FASEIZ Only	30.5	$1\mathrm{m} imes 1.8\mathrm{m} imes 7\mathrm{m}$	42554	38885 (91.4%)	13364~(31.4%)
		$1.8\mathrm{m}\times1\mathrm{m}\times7\mathrm{m}$	42799	39061~(91.3%)	16917 (39.5%)


Table 7: Muon acceptances for the FLArE magnetized spectrometer and the FASER2 "SAMURAI-like" magnet for different definitions of the FLArE fiducial volume.

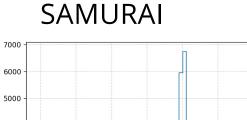
```
Full volume \rightarrow 31.0%
|x| < 0.5m \rightarrow 31.4%
|y| < 0.5m \rightarrow 39.5%
|x| < 0.5m && |y| < 0.5m \rightarrow 40.2%
```

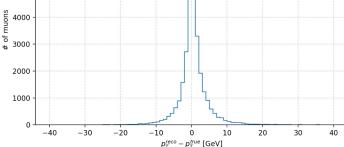


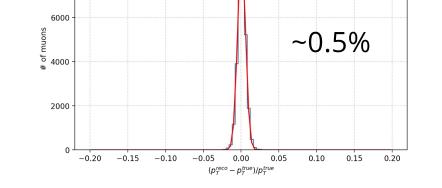
Momentum reconstruction

FLArE HadCat+MF: analytical circular fit on the raw hits to extract curvature radius Avg muon P = 300 GeV B = 1T, total length = 1.41m Expected deflection: ~0.08 deg Expected displacement: ~1mm (!!)

FASER2: linear fits to the tracking stations, analytical computation of the circumference tangent to both lines Avg muon P = 300 GeV B = 1T, total length = 4m (SAMURAI) Expected deflection: ~0.23 deg Expected displacement: **~8mm**

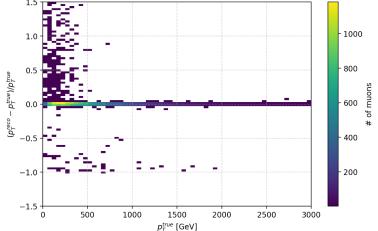



Momentum @ FASER2

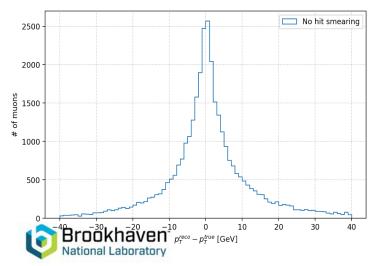

No hit smearing

8000

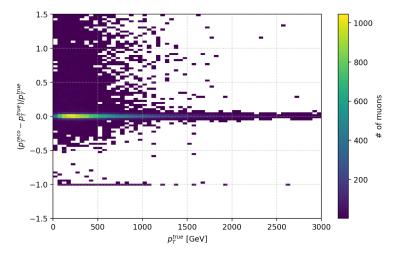
Momentum resolution on raw hits (no smearing, unrealistic)

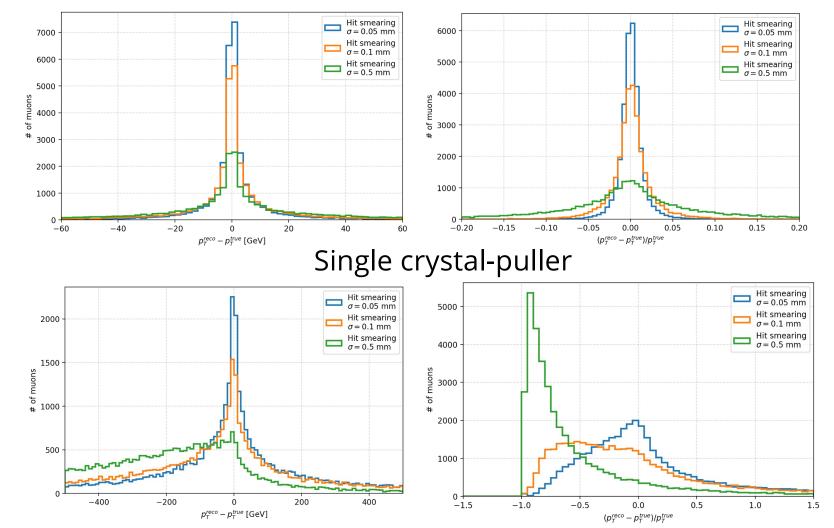


Gaussian fit


No hit smearing

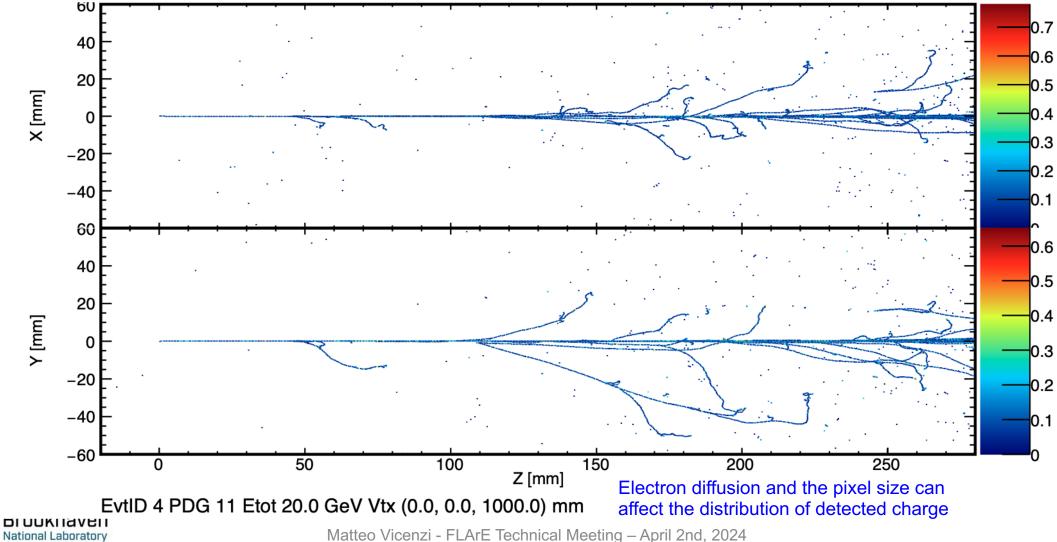
 $\mu = 0.0006 \pm 0.0000$


 $\sigma = 0.0052 \pm 0.0000$



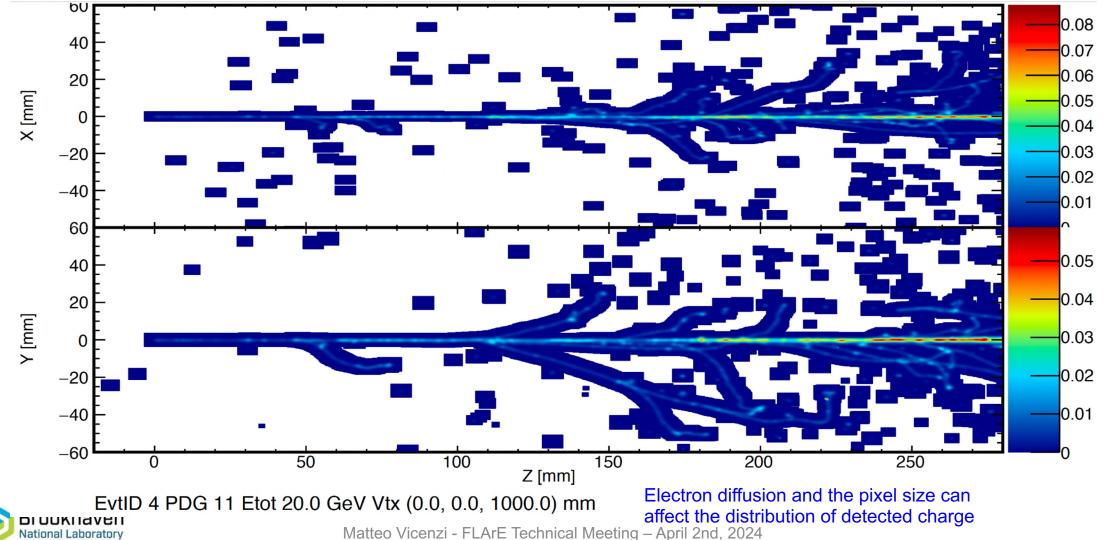
Gaussian hit smearing

- LHCb SciFi tracker modules ~ 0.1 mm spatial resolution.
- Gaussian smearing of simulated hits, slowly increasing.
- Performance of a single crystal puller degrades quickly.
- Current algorithm doesn't readily support combining multiple magnets.



A single electron

.


0.2 mm x 0.2 mm

Electron with diffusion

https://lar.bnl.gov/properties/

Electron transverse diffusion coefficient @ 500 V/cm: 13.2 cm²/s Electron longitudinal diffusion coefficient @ 500 V/cm: 6.6 cm²/s

