الAS Program on Fundamental Physics (FP 2025) المعادية (FP 2025)

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary an Discussion

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Jan 15, 2025

2411.16304 with S. Girmohanta, Y. Nakai, Z. Zhang

Wiggly dilaton/radion a landscape o spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary an Discussion

I. Introduction

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶ ◆○ ◆

Wiggly dilaton/radion a landscape o spontaneously broken scale invariance

Yu-Cheng QIU

Introduction Setup Landscape?

Summary an Discussion

Figure: Sheldon Lee GLASHOW at HKUST 2018.

Wiggly dilaton/radion a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary an Discussion On a quest of a naturally light dilaton, we accidentally found a wiggly dilaton potential.

うせん 正則 ふゆやえゆや (日本)

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary and Discussion

• "These are transformations that would be exact invariances of the world if all elementary particle masses vanishes. ... " (Dilatations by Coleman (1971))

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion

- "These are transformations that would be exact invariances of the world if all elementary particle masses vanishes. · · · " (Dilatations by Coleman (1971))
- Dilaton naturally arise in the string theory.
- Naturally light dilaton is tightly related to the cosmological constant. (Sundrum (2003))
- The existence of a naturally light dilaton, as the pNGB of spontaneous symmetry breaking of dilatation, is the question.

Spontaneous breaking of scale invariance (SBSI)

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary an Discussion Dilatation is scale transformation.

The Goldstone theorem indicates that the SI manifest itself nonlinearly after SBSI by

$$au(x) o au(\lambda x) + \log \lambda$$
 .

The SI potential of a canonically normalized dilaton $\chi = f e^{\tau}$ is $V = \lambda \chi^4$. (2)

الله المعاملة المعاملة المعاملة (SBSI) المعاملة المعاملة (SBSI)

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary an Discussion Dilatation is scale transformation.

The Goldstone theorem indicates that the SI manifest itself nonlinearly after SBSI by

$$au(x) o au(\lambda x) + \log \lambda$$
 .

The SI potential of a canonically normalized dilaton $\chi = f e^{\tau}$ is $V = \lambda \chi^4$. (2)

If $\lambda \neq 0$, χ cannot be stabilized unless $f \rightarrow 0$. Thus, the exact SBSI only happens if $\lambda \rightarrow 0$.

• Dilaton mass measures the explicit breaking of SI.

Naturally light dilaton

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion

- Dilatation is part of conformal transformations.
- SBSI in 4D \rightarrow Stabilization of the *radion* in 5D. (AdS/CFT Correspondence Maldacena (1997))
- $\bullet~\textit{Radion} \rightarrow$ the size of the compactified 5th dim.
- \bullet A naturally light dilaton \rightarrow a naturally light radion

🛞 हैक्षे अन्द्रम 5D Radion stabilization

Wiggly dilaton/radion a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary an Discussion

5D Radion stabilization

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary and Discussion

- The 5D model is based on RS1 model. (Randall & Sundrum (1999)) $V(\chi) = 0$ under the tuning $\Lambda_{\rm UV} = -\Lambda_{\rm IR} = -\Lambda_{\rm bulk}/k$.
- The RS1 geometry can be stabilized via GW mechanism. (Goldberger & Wise (1999))

A bulk scalar ϕ with Dirichlet boundary conditions has a nontrivial profile $\phi(y)$ along the 5th-dim.

Backreation to the metric is neglected.

• The backreaction of the GW scalar to the metric can be included. (Csaki, Erlich, Grojean, Hollowood (2000))

5D Radion stabilization

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion

- The 5D model is based on RS1 model. (Randall & Sundrum (1999)) $V(\chi) = 0$ under the tuning $\Lambda_{\rm UV} = -\Lambda_{\rm IR} = -\Lambda_{\rm bulk}/k$.
- The RS1 geometry can be stabilized via GW mechanism. (Goldberger & Wise (1999))

A bulk scalar ϕ with Dirichlet boundary conditions has a nontrivial profile $\phi(y)$ along the 5th-dim.

Backreation to the metric is neglected.

- The backreaction of the GW scalar to the metric can be included. (Csaki, Erlich, Grojean, Hollowood (2000))
- A holographic formulation of a naturally light dilaton emerge (?). Named CPR framework.

([unpublished] Contino, Pomarol, Rattazzi (2010)) (Coradeschi, Lodone, Pappadopulo, Rattazzi, Vitale (2013)) (Bellazzini, Csaki, Hubisz, Serra, Terning (2013))

العندة Dilaton/radion potentials المعندة ال

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary an Discussion

Figure: From 1305.3919 (Bellazzini, Csaki, Hubisz, Serra, Terning).

포네크

· 李世道将京可 Ison, Duotee Issurere	The CPR framework				
Yu-Cheng QIU		CFT4		AdS5	
ntroduction Setup	marginal	λ	\longleftrightarrow	ϕ	GW scalar with ϵ mass
	near marginal	$eta(\lambda) \ll 1$	\longleftrightarrow	$ \delta \phi(y) \ll 1$	slow-varying profile
		$F[\lambda]$	\longleftrightarrow	$V_{IR}(\phi)$	IR brane tension

The CPR framework in 5D

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion

The 5D formulation of CPR scenario includes:

- 1. a bulk scalar ϕ whose mass is parametrically small $\epsilon,$
- 2. Dirichlet boundary conditions $\phi(y_{UV/IR}) = v_{UV/IR}$, and
- 3. it backreacts to the metric.

The resulting dilaton/radion χ has

$$\frac{m_{\chi}}{\langle \chi \rangle} \propto \sqrt{\epsilon} , \quad \langle \chi \rangle = \left(\frac{v_{\mathsf{UV}}}{v_{\mathsf{IR}} + \xi}\right)^{1/\epsilon} + \mathcal{O}(\epsilon) \tag{3}$$

The CPR framework in 5D

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion The 5D formulation of CPR scenario includes:

- 1. a bulk scalar ϕ whose mass is parametrically small $\epsilon,$
- 2. Dirichlet boundary conditions $\phi(y_{UV/IR}) = v_{UV/IR}$, and
- 3. it backreacts to the metric.

The resulting dilaton/radion χ has

$$\frac{m_{\chi}}{\langle \chi \rangle} \propto \sqrt{\epsilon} , \quad \langle \chi \rangle = \left(\frac{v_{\rm UV}}{v_{\rm IR} + \xi}\right)^{1/\epsilon} + \mathcal{O}(\epsilon) \tag{3}$$

Two questions/comments:

- 1. what is the origin of ϵ ? ϕ can be a pNGB.
- 2. one has to fine-tune the $v_{\rm UV}$ and $v_{\rm IR}$ to get a reasonable $\langle\chi\rangle$ for small $\epsilon.$

Our journey

Wiggly dilaton/radion a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion The idea:

The bulk profile back-reacts to the boundary.

Hopefully, some relaxation may happen to resolve the fine-tuning in $\langle \chi \rangle$ between $v_{\rm UV}$ and $v_{\rm IR}.$

Our journey

Wiggly dilaton/radion a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion The idea:

The bulk profile back-reacts to the boundary.

Hopefully, some relaxation may happen to resolve the fine-tuning in $\langle \chi \rangle$ between $v_{\rm UV}$ and $v_{\rm IR}.$

The result:

A wiggly dilaton !

Wiggly dilaton/radion a landscape o spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary an Discussion II. Setup

The setup

Wiggly dilaton/radion a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion

The topology of the compactified extra dimension is S^1/Z_2 . The UV/IR brane locates at y_0/y_1 . The 5D action is

$$S = \overbrace{\int d^4 x dy \left(-\frac{R}{2\kappa^2} + \frac{1}{2\kappa^2} (\partial a)^2 - V(a) \right)}^{\text{bulk}} - \underbrace{\int d^4 x \sqrt{g_0} V_0(a)}_{\text{UV brane}} - \underbrace{\int d^4 x \sqrt{g_1} V_1(a)}_{\text{IR brane}} .$$

Warped metric ansatz is

$$ds^{2} = e^{-2T(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^{2} .$$
 (5)

<□> <圕> <필> < 글> < 글> < 글> < 글|= のへ(~ 15/25

(4)

The EOMs

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion

The equations of motion are

$$4T'^{2} - T'' + \frac{2\kappa^{2}}{3}V = 0$$
(6)

$$T'^{2} - \frac{1}{12}a'^{2} + \frac{\kappa^{2}}{6}V = 0$$
(7)

$$a'' - 4T'a' - \kappa^{2}\frac{\partial V}{\partial a} = 0$$
(8)

The boundary condition for a are

$$2T'|_{y_0,y_1} = \pm \frac{\kappa^2}{3} V_{0,1}(a)|_{y_0,y_1} , \quad 2a'|_{y_0,y_1} = \pm \kappa^2 \frac{\partial V_{0,1}}{\partial a}|_{y_0,y_1}$$
(9)

The dilaton/radion potential

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion The bulk and brane potentials for the axion are

$$V = \Lambda_5 - \epsilon \frac{2k^2}{\kappa^2} a^2$$
(10)
$$V_i = \Lambda_i + \epsilon_i \frac{k}{\kappa^2} \left[1 - \cos(a - v_i)\right]$$
(11)

Note that

- For $\epsilon_i \to \infty$, one recovers Dirichlet boundary conditions.
- For $\epsilon_i \rightarrow 0$, one has Neumann boundary conditions.

The dilaton/radion is $\chi = e^{-ky_1}$.

The dilaton/radion potential is obtained by performing $\int dy(\cdots)$.

The boundary condition

dilaton/radion a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion

The effective dilaton/radion potential is determined by the IR boundary potential

$$V_{\rm eff} = \chi^4 F \;, \quad F = F(V_1(a(y_1)))$$
 (12)

Suppose at the boundaries $a(y_0) = \tilde{v}_0$ and $a(y_1) = \tilde{v}_1$, the BCs give

$$2\epsilon \tilde{\nu}_0 = \epsilon_0 \sin(\tilde{\nu}_0 - \nu_0) \tag{13}$$

$$-4\sqrt{3}\sinh(2\beta) = \epsilon_1\sin(\tilde{\nu}_1 - \nu_1) \tag{14}$$

$$eta = rac{1}{\sqrt{3}} \left(ilde{ extbf{v}}_1 - ilde{ extbf{v}}_0 \chi^{-\epsilon}
ight)$$

一 李世道将充于 ISCNO DUCTER INSTITUTE

The dialton/radion potential

Wiggly dilaton/radion a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape?

Summary and Discussion

$$V_{\text{eff}}(\chi) = \chi^4 F[\beta(\chi)]$$
$$F[\beta(\chi)] = [-1 + \xi \Delta(\beta) + \xi \cosh(2\beta)] \operatorname{sech}^2 \beta$$
$$\Delta(\beta) = \frac{\epsilon_1}{6} \left[1 - \eta \sqrt{1 - \frac{48}{\epsilon_1^2} \sinh^2(2\beta)} \right]$$

The function β can be given in the small ϵ_1 limit,

$$\beta(\chi) = \frac{\epsilon_1}{8\sqrt{3}} \sin\left(v_1 - \tilde{v}_0 \chi^{-\epsilon}\right) + \mathcal{O}(\epsilon_1^2) .$$
 (16)

• $|\tilde{v}_0| \le |\epsilon_0/2\epsilon|$ is essentially a free parameter.

The potential is determined by parameters $\{\epsilon, \epsilon_1, v_1, \tilde{v}_0\}$.

(15)

Wiggly dilaton/radion a landscape o spontaneously broken scale invariance

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary and Discussion

III. Landscape ?

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▼ ● ◆

A detailed investigation on the potential

Wiggly dilaton/radion a landscape o spontaneously broken scale invariance

Yu-Cheng QIU

Introductio

Landscape?

Summary an Discussion The mistune of IR brane tension and the bulk CC can be parametrized by $\xi = \Lambda_5/k\Lambda_1 \equiv 1 + \sigma$.

 $V_{\text{eff}}(\chi) = \chi^4 F[\beta(\chi)]$ $\epsilon = 0.3$, $\epsilon_1 = 0.2$, $\tilde{v}_0 = 1$, $v_1 = 3.3$ $--- \sigma = 0.1$ 0.15 $\sigma = 0$ 0.10 $\cdots \sigma = -0.02$ $F[\beta(\chi)]$ 0.05 $--- \sigma = -0.1$ 0.0-0.05-0.10 10^{-5} 10^{-4} 0.001 0.010 0.100 χ/μ_0 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dilaton landscape

Wiggly dilaton/radion a landscape of spontaneously broken scale invariance

· 李达道将完所 ISUNDWITE INSTITUTE

Yu-Cheng QIU

Introduction Setup

Landscape?

Summary and Discussion

$$\langle \chi \rangle^{(p)} \simeq \left(\frac{\tilde{v}_0}{v_1 - 2p\pi} \right)^{1/\epsilon} \left[1 - \frac{24\sigma}{\epsilon^2 \epsilon_1 (v_1 - 2p\pi)^2} + \mathcal{O}(\sigma^2) \right]$$
(17)

$$\left(\frac{m_{\chi}}{\langle\chi\rangle}\right)^{(\nu)} \simeq \frac{\epsilon\epsilon_1^{\nu/2}}{\sqrt{6}}|\nu_1 - 2p\pi| + \mathcal{O}(\sigma)$$
(18)

$$\langle V_{\text{eff}} \rangle^{(p)} \simeq \sigma \left(\frac{\tilde{v}_0}{v_1 - 2p\pi} \right)^{4/\epsilon} + \mathcal{O}(\sigma^2) \qquad p \in \mathbb{Z}$$
(19)

Dilaton landscape

Wiggly dilaton/radion a landscape of spontaneously broken scale invariance

Yu-Cheng QIU

Introductior

Setup

Landscape?

Summary and Discussion

Wiggly dilaton/radion: a landscape of spontaneously broken scale invariance

@ 李改道研究所

Yu-Cheng QIU

Introduction

Setup

Landscape

Summary and Discussion

- 1. We constructed a wiggly dilaton potential $V_{\rm eff}(\chi)$.
- 2. For $\sigma = 0$, it has infinite number of degenerate ground states, thus a landscape.
- 3. For $\sigma > 0$, the only true ground state is $\chi = 0$.
- 4. For $\sigma<$ 0, the only true ground state (if exists) is the local minimum that is closest to $\chi\rightarrow$ 1.
- 5. The limitation of its application is our imagination.
 - 5.1 relaxion
 - 5.2 PBH production
 - 5.3 · · ·

Summarv

Wiggly dilaton/radion a landscape o spontaneously broken scale invariance

Yu-Cheng QIU

Introductio

Setup

Landscape¹

Summary an Discussion

Thank you

Yu-Cheng QIU

The CPR framework

 $V(\chi) = \chi^4 F[\lambda(\chi)]$ ⁽²⁰⁾

To have a naturally light dilaton:

- 1. The CFT should be able to sample a direction with F = 0.
 - 2. The coupling λ should stays 'naturally' close to marginality throughout the RG evolution.
 - imagine g exactly marginal over finite range: manifold of fixed points
 - $V(\varphi) = e^{4\varphi} V_0(g)$
 - generically $\exists V_0(g_*) = 0$

Figure: From Rattazzi's talk (2010)

$\sigma_{\rm crit}$

Yu-Cheng QIU

