Knotted Cosmic Strings and Gravitational Wave

Yu Hamada (DESY)

based on <u>arXiv:2407.11731</u> w/

Minoru Eto (Yamagata U.) and Muneto Nitta (Keio U.)

IAS Program on Fundamental Physics, 15th Jan 2025@HKUST

Introduction

Cosmic string

[Abrikosov '58] [Nielsen-Olesen '73]

2

Example of cosmic string

• Abelian-Higgs model

$$\mathscr{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\phi|^{2} + m^{2} |\phi|^{2} - \lambda |\phi|^{4}$$

• Field configuration in polar coordinate:

$$\phi(x) = v f(r) e^{i\theta} \qquad \overrightarrow{A}(x) = g^{-1} a(r) \overrightarrow{e_{\theta}}$$

$$\phi's \text{ phase has winding \# = 1}$$

[Abrikosov '58] [Nielsen-Olesen '73]

2

Example of cosmic string

• Abelian-Higgs model

$$\mathscr{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\phi|^{2} + m^{2} |\phi|^{2} - \lambda |\phi|^{4}$$

• Field configuration in polar coordinate:

$$\phi(x) = v f(r) e^{i\theta} \qquad \overrightarrow{A}(x) = g^{-1} a(r) \overrightarrow{e_{\theta}}$$

$$\phi's \text{ phase has winding \# = 1}$$

[Nielsen-Olesen '73]

[Abrikosov '58]

Example of cosmic string

• Abelian-Higgs model

$$\mathscr{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\phi|^{2} + m^{2} |\phi|^{2} - \lambda |\phi|^{4}$$

• Field configuration in polar coordinate:

$$\phi(x) = v f(r) e^{i\theta} \qquad \overrightarrow{A}(x) = g^{-1} a(r) \overrightarrow{e_{\theta}}$$

$$\phi's \text{ phase has winding \# = 1}$$

• Non-trivial solution of EOMs exist

2.5

2.

Energy density

0.5

0

5

y

[Abrikosov '58] [Nielsen-Olesen '73]

Example of cosmic string

• Abelian-Higgs model

$$\mathscr{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\phi|^{2} + m^{2} |\phi|^{2} - \lambda |\phi|^{4}$$

• Field configuration in polar coordinate:

$$\phi(x) = v f(r) e^{i\theta} \qquad \overrightarrow{A}(x) = g^{-1} a(r) \overrightarrow{e_{\theta}}$$

$$\phi's \text{ phase has winding \# = 1}$$

• Non-trivial solution of EOMs exist

• Magnetic flux:
$$B = \frac{2\pi}{g}$$
 (supercond)

(from Hindmarsh-Kibble '95)

2.5

2.

Energy density

0.5

0

5

y

[Abrikosov '58] [Nielsen-Olesen '73]

Example of cosmic string

• Abelian-Higgs model

$$\mathscr{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\phi|^{2} + m^{2} |\phi|^{2} - \lambda |\phi|^{4}$$

• Field configuration in polar coordinate:

$$\phi(x) = v f(r) e^{i\theta} \qquad \overrightarrow{A}(x) = g^{-1} a(r) \overrightarrow{e_{\theta}}$$

$$\phi's \text{ phase has winding \# = 1}$$

• Non-trivial solution of EOMs exist

• Magnetic flux:
$$B = \frac{2\pi}{g}$$
 (supercond)

• No magnetic flux for global U(1)

2.5

2.

Energy density

0.5

y

Cosmic string

SSB in early universe → network of cosmic string in universe

from slide by Takashi Hiramatsu

• continuously radiates gravitational wave

Future prospect of GW

age of GW & cosmic string!?

Common knowledge: $U(1) \rightarrow \text{cosmic string}$

What about two U(1)?

Common knowledge: $U(1) \rightarrow cosmic string$

What about two U(1)?

→ new stable soliton appears!

Common knowledge: $U(1) \rightarrow \text{cosmic string}$

What about two U(1)?

→ new stable soliton appears!

More is different!

Our result in a nutshell

Model: SSB of global $U(1)_{PQ}$ and gauge $U(1)_{B-L}$ symmetries

- → two kinds of cosmic strings
- → combining them to obtain a new soliton
 - knotted cosmic strings = Knot soliton!

They could have been abundant in the early universe.

Knot soliton

The model

Lagrangian:

$$\mathscr{L} = |D_{\mu}\phi_{1}|^{2} + |\partial_{\mu}\phi_{2}|^{2} - \frac{1}{4}F_{\mu\nu}^{2} - V(\phi_{1},\phi_{2})$$
$$V(\phi_{1},\phi_{2}) = \lambda \left(|\phi_{1}|^{2} + |\phi_{2}|^{2} - \mu^{2} \right)^{2} - \kappa |\phi_{1}|^{2} |\phi_{2}|^{2} + \chi |\phi_{2}|^{4}$$

• Symmetries:

$$U(1)_{gauge} : \phi_1 \to e^{i\theta_1} \phi_1 \qquad U(1)_{global} : \phi_2 \to e^{i\theta_2} \phi_2$$
$$D_\mu \phi_1 \equiv (\partial_\mu - igA_\mu) \phi_1$$

• Both symmetries are broken at the vacuum:

$$\langle \phi_1 \rangle = v_1, \ \langle \phi_2 \rangle = v_2$$

 \rightarrow co-existence of two cosmic strings from $U(1)_{gauge}$ and $U(1)_{global}$

The model

• Natural setup: $U(1)_{gauge} = U(1)_{B-L} \& U(1)_{global} = U(1)_{PQ}$

• requires right-handed neutrino coupled w/ ϕ_1 : $y_R \phi_1^* \bar{\nu}_R \nu_R^c$

 $\rightarrow \langle \phi_1 \rangle$ gives Majorana mass \rightarrow type-I seesaw

[Minkowski '77] [Yanagida '79] [Gell-Mann+ '79] [Mohapatra-Senjanovic+ '80]

• phase of $\phi_2(a)$ is identified as QCD axion

[Peccei-Quinn '77] [Weinberg '78] [Wilczek '78]

→ solution of strong CP problem & Dark matter

$$\Rightarrow v_1 \sim v_2 \sim 10^{9-12} \,\mathrm{GeV}$$

Chern-Simons coupling

Lagrangian:

Chern-Simons coupling

$$\mathcal{L} = |D_{\mu}\phi_{1}|^{2} + |\partial_{\mu}\phi_{2}|^{2} - \frac{1}{4}F_{\mu\nu}^{2} - V(\phi_{1},\phi_{2}) + \frac{c}{16\pi^{2}}aF_{\mu\nu}\tilde{F}^{\mu\nu}$$

$$V(\phi_{1},\phi_{2}) = \lambda \left(|\phi_{1}|^{2} + |\phi_{2}|^{2} - \mu^{2} \right)^{2} - \kappa |\phi_{1}|^{2} |\phi_{2}|^{2} + \chi |\phi_{2}|^{4}$$

$$a \equiv -i \arg(\phi_{2}) \qquad D_{\mu}\phi_{1} = (\partial_{\mu} - igA_{\mu})\phi_{1}$$

• At the broken phase, CS coupling is induced by triangle anomaly. $\mathcal{N}^{A_{\mu}}$

The coefficient *c* depends on matter sector,

but we take it as free parameter in this talk.

Rewriting CS coupling

$$\frac{c}{16\pi^2} a F_{\mu\nu} \tilde{F}^{\mu\nu} \longrightarrow -\frac{c}{16\pi^2} \left(\partial_i a\right) A_0 B^i$$

 $B_i \equiv \epsilon_{ijk} \partial^j A^k$

"magnetic B - L field"

- Rewriting CS coupling $\frac{c}{16\pi^2} aF_{\mu\nu}\tilde{F}^{\mu\nu} \longrightarrow -\frac{c}{16\pi^2} (\partial_i a) A_0 B^i$ $B_i \equiv \epsilon_{ijk} \partial^j A^k$
 - → Gauss law:

"magnetic B - L field"

$$\frac{\delta \mathscr{L}}{\delta A_0} = \partial_i E_i - g^2 J^0 + \frac{g^2 c}{16\pi^2} \overrightarrow{\nabla} a \cdot \overrightarrow{B} = 0$$

• Rewriting CS coupling $\frac{c}{16\pi^2} aF_{\mu\nu}\tilde{F}^{\mu\nu} \longrightarrow -\frac{c}{16\pi^2} (\partial_i a) A_0 B^i$ $B_i \equiv \epsilon_{ijk}\partial^j A^k$ $B_i \equiv \epsilon_{ijk}\partial^j A^k$ "magnetic B - L field" $\frac{\delta \mathscr{L}}{\delta A_0} = \partial_i E_i - g^2 J^0 + \frac{g^2 c}{16\pi^2} \nabla a \cdot \vec{B} = 0$ "electric B - L field"

• Rewriting CS coupling $\frac{c}{16\pi^2} aF_{\mu\nu}\tilde{F}^{\mu\nu} \longrightarrow -\frac{c}{16\pi^2} (\partial_i a) A_0 B^i$ $B_i \equiv \epsilon_{ijk}\partial^j A^k$ $B_i \equiv \epsilon_{ijk}\partial^j A^k$ "magnetic B - L field" $\frac{\delta \mathscr{L}}{\delta A_0} = \partial_i E_i - g^2 J^0 + \frac{g^2 c}{16\pi^2} \nabla a \cdot \vec{B} = 0$ "electric B - L field" $\nabla a \cdot \vec{B}$ sources "electric field"

• Rewriting CS coupling $\frac{c}{16\pi^2} aF_{\mu\nu}\tilde{F}^{\mu\nu} \longrightarrow -\frac{c}{16\pi^2} (\partial_i a) A_0 B^i$ $B_i \equiv \epsilon_{ijk} \partial^j A^k$ ss law: $\frac{\delta \mathscr{L}}{\delta A_0} = \partial_i E_i - g^2 J^0 + \frac{g^2 c}{16\pi^2} \overrightarrow{\nabla} a \cdot \overrightarrow{B} = 0$ "electric B - L field" $\overrightarrow{\nabla} a \cdot \overrightarrow{B} \text{ sources "electric field"}$ → Gauss law: • Mathematically, $\int d^3x \overrightarrow{\nabla} a \cdot \overrightarrow{B}$ is nothing but linking # of strings

- Rewriting CS coupling $\frac{c}{16\pi^2} aF_{\mu\nu}\tilde{F}^{\mu\nu} \longrightarrow -\frac{c}{16\pi^2} (\partial_i a) A_0 B^i$ $B_i \equiv \epsilon_{iik} \partial^j A^k$ ss law: $\frac{\delta \mathscr{L}}{\delta A_0} = \partial_i E_i - g^2 J^0 + \frac{g^2 c}{16\pi^2} \overrightarrow{\nabla} a \cdot \overrightarrow{B} = 0$ "electric B - L field" $\overrightarrow{\nabla} a \cdot \overrightarrow{B} \text{ sources "electric field"}$ → Gauss law: • Mathematically, $\int d^3x \overrightarrow{\nabla} a \cdot \overrightarrow{B}$ is nothing but linking # of strings
 - → linking strings acquires "electric B L charge" → stabilizes the linking configuration

Numerical solution

$\lambda/g^2 = 10^3$, $\kappa/g^2 = 0.0008$, $\chi = 0$, C = 400

Application to cosmology

Knot solitons decay due to quantum effects into SM particles \rightarrow reheat thermal bath again (secondary reheating T_{rh})

GW spectrum from cosmic strings is affected by knot domination

 \rightarrow We can probe knot soliton via GW!

[Cui+, 1711.03104]

Testability with gravitational wave

- GW spectrum is flat without knot solitons in UV
- Knot domination tilts the spectrum to be $f^{-1/3}$ in UV

→ discrimination the existence of knot domination via GW

showed a new soliton made of two kinds of cosmic strings

knotted cosmic strings = Knot soliton!

- gauge $U(1)_{B-L}$ & global $U(1)_{PQ}$ symmetries
- → natural setup
- implying "knot dominated era" in early universe
- can be probed/tested via GW!
- (possible to have non-thermal leptogenesis from knot)

Backup

Local vs Global strings

- SSB of gauged U(1) sym \rightarrow local string
 - → magnetic flux in string (eg. magnetic flux in supercond.)

$$\int d^2 x B = 2\pi/g$$

• SSB of global U(1) sym \rightarrow global string

→ w/o magnetic flux

The phase of ϕ is physical NG boson (eg. axion)

GW & string network

• current GW spectrum:

$$\frac{\rho_{\text{GW},0}(f)}{\rho_{\text{tot},0}} \sim (G\mu)^2 \int_{t_i}^{t_0} dt \left(\frac{a(t)}{a(t_0)}\right)^4 \Delta(t, f_{\text{emit}})$$

$$f = \frac{a(t)}{a(t_0)} f_{\text{emit}} \quad ds^2 = -dt^2 + a(t)^2 dr_3^2 \qquad \text{GW spectrum function}$$

$$G\mu \simeq v_{\text{st.}}^2 / M_{\text{pl.}}^2$$
depends on cosmology

- scale factor a(t): $\dot{a}(t)/a(t) \simeq \sqrt{\rho_{\text{tot}}'(t)}/M_{\text{pl}}$
- → GW from cosmic string "knows" what happened in past universe
- → if detected, new probe of cosmological history

Cosmic string network

- Cosmic strings form network in universe
- The network continuously produces small loops of strings
- String loops shrink by emitting GW or light particles (axion etc)

Knot stability

• can decay by delinking?

$$\rightarrow \lambda \gg g^2, \kappa, \chi \text{ prevents delink}$$

$$V(\phi) = \lambda \left(|\phi_1|^2 + |\phi_2|^2 - \mu^2 \right)^2 - \kappa |\phi_1|^2 |\phi_2|^2 + \chi |\phi_2|^4$$

$$\rightarrow \text{ non-linear } \sigma \text{-model w/ } O(4) \text{ sym.} \rightarrow O(3) \text{ sym.}$$

linking # = skyrmion # [Gudnason-Nitta '20]

• Loop of ϕ_2 string can shrink infinitely?

→ $v_2/v_1 \ll 1$ prevents shrinking typically $v_2 \lesssim 0.1v_1$

classically stable under these two conditions

Vortex string in many systems

- Magnetic flux tube in **superconductor**
- Superfluid vortex in **neutron star**

- Vortex string in the universe: **Cosmic string**
 - Gravitational wave
 - strong evidence of new physics, but haven't yet been discovered.

The model

• $\mathscr{L} \supset y_R \phi_1^* \bar{\nu}_R \nu_R^c \rightarrow \langle \phi_1 \rangle$ gives Majorana mass \rightarrow type-I seesaw

[Minkowski '77] [Yanagida '79] [Gell-Mann+ '79] [Mohapatra-Senjanovic+ '80]

• phase of $\phi_2(a)$ is identified as QCD axion

[Peccei-Quinn '77] [Weinberg '78] [Wilczek '78]

→ solution of strong CP problem & Dark matter

Numerical calculation

Static energy in Coulomb gauge:

$$\mathscr{E} = |D_i \phi_1|^2 + |\partial_i \phi_2|^2 + V(\phi_1, \phi_2) + \frac{1}{2g^2} (\partial_i A_j)^2$$
$$-g^2 |\phi_1|^2 A_0^2 - \frac{1}{2g^2} (\partial_i A_0)^2 - \frac{g^2 c}{16\pi^2} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

• Not positive definite \rightarrow remove A_0 by solving Gauss law:

$$\frac{\delta \mathscr{L}}{\delta A_0} = \partial_i^2 A_0 - 2g^2 |\phi_1|^2 A_0 + \frac{g^2 c}{16\pi^2} (\overrightarrow{\nabla} a) \cdot \overrightarrow{B} = 0$$

Substitute
$$A_0 = \frac{g^2 c}{16\pi^2} \frac{(\overrightarrow{\nabla} a) \cdot \overrightarrow{B}}{-\partial_i^2 + 2g^2 |\phi_1|^2}$$
 into energy functional.

Numerical calculation

Energy in Coulomb gauge:

$$\mathscr{E} = |D_i\phi_1|^2 + |\partial_i\phi_2|^2 + V(\phi_1, \phi_2) + \frac{1}{2g^2}(\partial_iA_j)^2 + \frac{g^2c}{32\pi^2}(\overrightarrow{\nabla} a \cdot \overrightarrow{B})A_0$$
$$w/A_0 = \frac{g^2c}{16\pi^2}\frac{(\overrightarrow{\nabla} a) \cdot \overrightarrow{B}}{-\partial_i^2 + 2g^2|\phi_1|^2}$$

- positive definite -> no obstacle
- Minimizing energy via gradient-flow method
- CPU 3584-cores parallelizing on YITP computer cluster
- lattice spacing = $0.2/gv_1$, $N = 256^3$, converged w/ O(1) days

Relation to Skyrmion

For
$$\lambda \gg g^2$$
, κ , χ ,

$$V(\phi) = \lambda \left(|\phi_1|^2 + |\phi_2|^2 - \mu^2 \right)^2 - \kappa |\phi_1|^2 |\phi_2|^2 + \chi |\phi_2|^4$$

$$\to \lambda \left(|\phi_1|^2 + |\phi_2|^2 - \mu^2 \right)^2$$

→ non-linear sigma model w/ O(4) symmetry, which breaks into O(3)

There exists Skyrmion defined by winding number:

$$N_{sk} = \int d^3x \,\epsilon^{ijk} \,\mathrm{Tr} \begin{bmatrix} U^{\dagger} \partial_i U U^{\dagger} \partial_j U U^{\dagger} \partial_k U \end{bmatrix} \qquad U \equiv \begin{pmatrix} \operatorname{Re} \phi_1 & \operatorname{Im} \phi_2 \\ -\operatorname{Im} \phi_1 & \operatorname{Re} \phi_2 \end{pmatrix}$$

The link is nothing but the Skyrmion!

[Gudnason-Nitta '20]

Decay of link soliton

$$\frac{M_{\rm pl}}{v_{EW}^2} < \tau < \frac{M_{\rm pl}}{(1 {\rm MeV})^2}$$

$$\lambda < 4\pi$$
$$g < \sqrt{24\pi}$$

$$\Leftrightarrow \log \frac{gv_1}{10^{11} \text{GeV}} + 60 \lesssim \frac{4}{3} \sqrt{\frac{\lambda v_1}{gv_2}} \lesssim \log \frac{gv_1}{10^{11} \text{GeV}} + 82$$

$$\therefore 100 \lesssim \frac{\lambda}{g} \lesssim 190$$