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Motivation

¢ In many cases, the new physics contributions are sensitive to the
differential distributions.
® How to extract information from the differential distribution?
® [f we have the full knowledge of g—g, matrix element method,
Optimal Observables, etc. can be used.

® The ideal % we can calculate is not the < dQ we can measure.

® Detector acceptance, measurement uncertainties,
ISR /beamstrahlung ...
® In practice we only have MC samples, not the analytical form

do
» dQ-
¢ How machine learning works?

¢ Black box.
® Input: MC samples, output: likelihood ratio.



Why efe — W~

® Focusing on ete™ — WTW ™.,

An important part of the precision measurement program.

Connected to the higgs couplings in the SMEFT.

Can be measured very well at Higgs factories.



EFT Parameterization(TGCs)
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® Focusing on tree-level CP-even dimension-6 contributions.

® ¢cte™ — WTIW ™ can be parameterized by
6912, 5/{’}/5 >"ya 5.9%6’ gIZ%ev 592”3 5m

® my is better constrained, so we can simply set d,, = 0.



ete” — WTW~ with Histogram

e New physics contribution are sensitive to the differential
distributions.

® One could do a fit to the binned distributions of all angles.

® Not the most efficient way of extracting information.
® Correlations among angles are sometimes ignored.



ete” — WTIW~ with Optimal Observable

¢ What are Optimal Observables?
Diehl, M., Nachtmann, O., 1994. Zeitschrift Fiir Physik C Part Fields 62, 397-411.
® In the limit of large statistics (everything is Gaussian) and small
parameters (linear contribution dominates), the best possible
reaches can be derived analytically!
do 1 S1.:51 j
@—50‘1’2511927 Cij = dQT‘E
® The ogtlmal observable is a function of 5 angles and is given by
0; =

So


https://link.springer.com/article/10.1007/BF01555899

Systematic Effects

® Initial state radiation

[2108.10261] Frixione, Mattelaer, Zaro, Zhao



https://arxiv.org/abs/2108.10261

Systematic Effects

® Jet smearing
® Photon and neutral hadron energy resolutions.

® The system error are assumed to be Gaussian distributions.

® Detect effects
® Final state jets can not be distinguished.

® Neutrino cannot be directly measured.



Likelihood Inference

¢ Neyman-Pearson lemma says
the best statistics to test new
physics is the likelihood ratio
given data x and theory
parameters 61 and 6

Parton Shower: final state radiatigy
o

f(x]é?o, 91) =

® The key thing is 7(x|6g, 61).
® Analytical methods always

computational consuming and
ignore systematic effects.




Likelihood Inference
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Simulation Machine Learning Inference

e Johann Brehmer et al. develop new simulation-based inference
techniques that are tailored to the structure of particle physics
processes.[1805.00013|Brehmer, Cranmer, Louppe, Pavez.

® Machine Learning method can extract more information from x to
predict the likelihood ratio.


https://arxiv.org/pdf/1805.00013.pdf

Particle-Physics Structure

® The likelihood function can be written as

p(xl6) = / dz plx, 2160) = / dz p(a]2)p(219)

® Here p(z|6) = 1/0(0)do/dz is the parton level density distribution.

® p(x|z) describes the probabilistic evolution from the parton-level
four-momenta to observable particle properties

pal2) = [ dza [ dz [z plaleapledzptal)



Particle-Physics Structure

® We can extract more information from the simulator by defining
joint likelihood ratio and joint score

p(z|2)p(z100) _ p(z[bo)
(z[2)p(z]61)  p(z]61)

a(x, 2|00, 01) = V,r(, 2|00, 01)]g,=0,

r(x, 2|00, 01) =

The loss function is

ammk=/¢wzmaamwa»—mmF

The loss function is minimized when
§(2) = sk [ dzpla, 216)g(a, )
g(l', Z) - T‘(CL’, 2‘907 91)7 and 0 = 91,@(1’) = ’f‘($|90, 01)



ML Algorithm: ALICE

® Approximate likelihood with improved crossentropy estimator
® Directly predict the likelihood ratio.

® [oss function £ is

L(8) Z[s(x, z|6p, 61) log(5(x)) + (1 — s(x, 2|6p, 61)) log(1 — 5(z))]

x

_ 1
e Here S(./E,Z|00,01) = W
1

® 7(x|0y,01) can be reconstructed by §(x) = TG



ML Algorithm: SALLY

® Score approximates likelihood locally

Likelihood ratio can also be parameterized by Wilson coefficients.
Pz]0) = 14> ai(x)0;

® And we can predict «; term as well.

Loss function L is

Lo > |ai(x) — ai(x, 2[00, 01)[



Prediction of Likelihood Ratio:ALICE

logr(x, 2|60, 61) vs. logr(x|6o, 61)
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e ALICE method offers a precise way to predict the likelihood ratio
directly.



Prediction of Likelihood Ratio:SALLY
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Prediction of Likelihood Ratio:SALLY

logr(x, z|6o, 61) vs. 10gF(x|60, 61)
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e We can construct the 7#(x|0y, 61) by predicting the alpha term and
give an analytical expression of 7(x|6y, 61).



Estimation of the Boundary:Compared with Histogram
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¢ No bias.
® Precise bounds along individual directions.

® Weak constraints in other directions.



Estimation of the Boundary:Compared with OO
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® Once you get the 7(z|0y,01), X2 =-2 > log(7(x4]60,61))-
® Semileptonic channel, jet smearing + ISR, 3-aTGC fit

® Naively applying optimal observables could lead to a large bias.
® [t is easier for machine learning to take care of systematic effects.



Conclusion

e Future colliders will generate large amount of data, ML will
benefit it a lot.

¢ By machine learning, we can construct 6D likelihood ratio to
improve the global fit result.

® Machine Learning can easily take care of systematic effects as long
as the MC simulation is accurate.

e Machine learning is (likely to be) the future.



T rnds



Backup Slides:ete™ — WTIW ™ parameterization

Lrac = ig{(W+ WH — W/;/W+“)[(1 +0g12)coZ" + sgA”]

+ TWJ”W;P(Azc@Zp“ + AysoA )
myy,

(14 652)co 2" + (1 + 5y sp AP

® Imposing Gauge invariance one obtains dxz = 6g1,7 — tgw 0k~ and
Az =N\,

® §g12, 0k, Ay, 0g7 SgWt 6,
91z, Yo Ny gL 7gR 0971,



