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Motivation

• In many cases, the new physics contributions are sensitive to the
differential distributions.

• How to extract information from the differential distribution?
• If we have the full knowledge of dσ

dΩ , matrix element method,
Optimal Observables, etc. can be used.

• The ideal dσ
dΩ we can calculate is not the dσ

dΩ we can measure.
• Detector acceptance, measurement uncertainties,

ISR/beamstrahlung ...
• In practice we only have MC samples, not the analytical form, dσ

dΩ .

• How machine learning works?
• Black box.
• Input: MC samples, output: likelihood ratio.



Why e+e− → W+W−

• Focusing on e+e− → W+W−.

• An important part of the precision measurement program.

• Connected to the higgs couplings in the SMEFT.

• Can be measured very well at Higgs factories.



EFT Parameterization(TGCs)

• Focusing on tree-level CP-even dimension-6 contributions.

• e+e− → W+W− can be parameterized by

δg1z, δκγ , λγ , δg
Ze
L , gZe

R , δgWl
L , δm

• mW is better constrained, so we can simply set δm = 0.



e+e− → W+W− with Histogram

• New physics contribution are sensitive to the differential
distributions.

• One could do a fit to the binned distributions of all angles.
• Not the most efficient way of extracting information.
• Correlations among angles are sometimes ignored.



e+e− → W+W− with Optimal Observable

• What are Optimal Observables?
Diehl, M., Nachtmann, O., 1994. Zeitschrift Für Physik C Part Fields 62, 397–411.

• In the limit of large statistics (everything is Gaussian) and small
parameters (linear contribution dominates), the best possible
reaches can be derived analytically!

dσ

dΩ
= S0 +ΣiS1,igi, c−1

ij =

∫
dΩ

S1,iS1,j

S0
· L

• The optimal observable is a function of 5 angles and is given by
Oi =

S1,i

S0
.

https://link.springer.com/article/10.1007/BF01555899


Systematic Effects

• Initial state radiation
[2108.10261] Frixione, Mattelaer, Zaro, Zhao

Γe±/e±(z) =
e3β/4−γEβ

Γ(1 + β)
β(1− z)β−1 − β

2
h1(z)−

β2

8
h2(z),

h1(z) = 1 + z,

h2(z) =
1 + 3z2

1− z
ln(z) + 4(1 + z) ln(1− z) + 5 + z,

https://arxiv.org/abs/2108.10261


Systematic Effects

• Jet smearing
• Photon and neutral hadron energy resolutions.

• The system error are assumed to be Gaussian distributions.

• Detect effects
• Final state jets can not be distinguished.

• Neutrino cannot be directly measured.



Likelihood Inference

• Neyman-Pearson lemma says
the best statistics to test new
physics is the likelihood ratio
given data x and theory
parameters θ1 and θ0

r̂(x|θ0, θ1) =
p(x|θ0)
p(x|θ1)

=

∫
dz p(x, z|θ0)∫
dz p(x, z|θ1)

• The key thing is r̂(x|θ0, θ1).
• Analytical methods always
computational consuming and
ignore systematic effects.



Likelihood Inference

• Johann Brehmer et al. develop new simulation-based inference
techniques that are tailored to the structure of particle physics
processes.[1805.00013]Brehmer, Cranmer, Louppe, Pavez.

• Machine Learning method can extract more information from x to
predict the likelihood ratio.

https://arxiv.org/pdf/1805.00013.pdf


Particle-Physics Structure

• The likelihood function can be written as

p(x|θ) =
∫

dz p(x, z|θ) =
∫

dz p(x|z)p(z|θ)

• Here p(z|θ) = 1/σ(θ)dσ/dz is the parton level density distribution.

• p(x|z) describes the probabilistic evolution from the parton-level
four-momenta to observable particle properties

p(x|z) =
∫

dzd

∫
dzs

∫
dz p(x|zd)p(zd|zs)p(zs|z)



Particle-Physics Structure

• We can extract more information from the simulator by defining
joint likelihood ratio and joint score

r(x, z|θ0, θ1) =
p(x|z)p(z|θ0)
p(x|z)p(z|θ1)

=
p(z|θ0)
p(z|θ1)

α(x, z|θ0, θ1) = ∇θ0r(x, z|θ0, θ1)|θ0=θ1

• The loss function is

L[ĝ(x)] =
∫

dxdz p(x, z|θ)|g(x, z)− ĝ(x)|2

• The loss function is minimized when
ĝ(x) = 1

p(x|θ)
∫
dz p(x, z|θ)g(x, z)

• g(x, z) = r(x, z|θ0, θ1), and θ = θ1,ĝ(x) = r̂(x|θ0, θ1).



ML Algorithm: ALICE

• Approximate likelihood with improved crossentropy estimator

• Directly predict the likelihood ratio.

• Loss function L is

L(ŝ) ∝
∑
x

[s(x, z|θ0, θ1) log(ŝ(x)) + (1− s(x, z|θ0, θ1)) log(1− ŝ(x))]

• Here s(x, z|θ0, θ1) = 1
1+r(x,z|θ0,θ1) .

• r̂(x|θ0, θ1) can be reconstructed by ŝ(x) = 1
1+r̂(x|θ0,θ1) .



ML Algorithm: SALLY

• Score approximates likelihood locally

• Likelihood ratio can also be parameterized by Wilson coefficients.

r̂(x|θ) = 1 +
∑
i

α̂i(x)θi

• And we can predict αi term as well.

• Loss function L is

L ∝
∑
i

|α̂i(x)− αi(x, z|θ0, θ1)|2



Prediction of Likelihood Ratio:ALICE
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• ALICE method offers a precise way to predict the likelihood ratio
directly.



Prediction of Likelihood Ratio:SALLY
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Prediction of Likelihood Ratio:SALLY
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• We can construct the r̂(x|θ0, θ1) by predicting the alpha term and
give an analytical expression of r̂(x|θ0, θ1).



Estimation of the Boundary:Compared with Histogram
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• No bias.

• Precise bounds along individual directions.

• Weak constraints in other directions.



Estimation of the Boundary:Compared with OO
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• Once you get the r̂(x|θ0, θ1), χ2 = −2
∑

i log(r̂(xi|θ0, θ1)).
• Semileptonic channel, jet smearing + ISR, 3-aTGC fit

• Naively applying optimal observables could lead to a large bias.
• It is easier for machine learning to take care of systematic effects.



Conclusion

• Future colliders will generate large amount of data, ML will
benefit it a lot.

• By machine learning, we can construct 6D likelihood ratio to
improve the global fit result.

• Machine Learning can easily take care of systematic effects as long
as the MC simulation is accurate.

• Machine learning is (likely to be) the future.



Thanks!



Backup Slides:e+e− → W+W− parameterization

LTGC = ig{(W+
µνW

−µ −W−
µνW

+µ)[(1 + δg1z)cθZ
ν + sθA

ν ]

+
1

2
W+

[µ,W
−
ν] [(1 + δκz)cθZ

µν + (1 + δκγ)sθA
µν ]

+
1

m2
W

W+ν
µ W−ρ

ν (λzcθZ
µ

ρ + λγsθA
µ
ρ )}

• Imposing Gauge invariance one obtains δκZ = δg1,Z − t2θwδκγ and
λZ = λγ

• δg1z, δκγ , λγ , δg
Ze
L , gZe

R , δgWl
L , δm


