Search for short strings in e^+e^- -annihilation

M. E. Kozhevnikova In collaboration with: O. V.Teryaev A. G. Oganesian

Joint Institute for Nuclear Research

Grodno, August 2018

[Introduction](#page-1-0) The fitting of experimental cross-sections data on +e[−]-ann<mark>i</mark>hilation to hadrons The calculation of D-function and the analysis of coefficients

Plan of the presentation

- **1** Operator product expansion and short strings.
- \bullet The fitting of experimental data on e^+e^- -annihilation to hadrons
- **3** PT and APT
- ⁴ Adler function and the Borel transform
- **Extraction of the power corrections in the OPE of D-function** related to short strings. Corellation between short string and gluon condensate.

つくい

6 Conclusions

Introduction

Zakharov's short string 1 leads to the corrections in annihilation cross-section (or Adler function). In Cornell potential

$$
V(r) \approx -\frac{4\alpha_s(r)}{3r} + kr
$$

the second part kr describes short string potential and leads to the correction \sim k $\overline{Q^2}$, in OPE the first correction to e^+e^- -annihilation cross-section is $\sim \frac{\langle G_{\mu\nu}G^{\mu\nu}\rangle}{\Omega^4}$ $\frac{1}{Q^4}$. $[k] = [M^2]$ Our purpose is an accurate analysis of Adler function and search for existing correction with dimension 2.

 1 K.G. Chetyrkin, S. Narison, V.I. Zakharov, "Short-distance tachyonic gluon mass and $1/Q^2$ corrections", Nucl.Phys. B550 (199[9\) 3](#page-1-0)[53](#page-3-0)[-3](#page-1-0)[74](#page-2-0) ORO M. E. Kozhevnikovaln collaboration with: O. V. Teryaev A [Search for short strings in](#page-0-0) e⁺e⁻-annihilation

[Introduction](#page-1-0)

The fitting of experimental cross-sections data on e⁺e[−]-ann**ihilation to hadron to hadrons** The calculation of D-function and the analysis of coefficients

Introduction

Fig.: String potential from lattice QCD (M.I. [Po](#page-2-0)l[ika](#page-4-0)[rp](#page-2-0)[ov](#page-3-0) [e](#page-4-0)[t](#page-0-0) [a](#page-1-0)[l.](#page-4-0)[\)](#page-5-0)

E

 299

Introduction

QCD description of e^+e^- -annihilation cross-section at low Q^2 . Operator product expansion and condensates. Gluon and quark condensate and corrections:

$$
C_4 = \frac{2\pi^2}{3}\left\langle\frac{\alpha_s GG}{\pi}\right\rangle, \quad C_6 = \frac{448\pi^3}{27}\alpha_s \left\langle \bar{q}q\right\rangle^2 \approx -0.116 \text{ GeV}^6
$$

New condensate connected with Zakharov's short string is possible. Gluon field compose the string configuration and leads to confinement

 200

Construction of the model of the data

The using data is obtained on the detectors CMD, CMD-2, BaBar, SND, M3N, DM1, DM2, OLYA, GG2:

$$
e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}
$$
 (CMD and OLYA detectors),
\n
$$
e^{+}e^{-} \rightarrow 2\pi^{+}2\pi^{-}
$$
 (BaBar),
\n
$$
e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}2\pi^{0}
$$
 (OLYA, CMD2, SND, DM2, Frascati-ADONE-GAN
\n
$$
e^{+}e^{-} \rightarrow 3\pi^{+}3\pi^{-}
$$
 (BaBar),
\n
$$
e^{+}e^{-} \rightarrow 2\pi^{+}2\pi^{-}2\pi^{0}
$$
 (BaBar).
\n
$$
\chi^{2}
$$
-functional:
\n
$$
\chi^{2}(a_{1},...,a_{d}) = \frac{1}{N_{d.f.}} \sum_{n=1}^{N} \frac{(f_{exp}(s_{n}) - f_{th}(s_{n}; \{a_{1},...,a_{d}\}))^{2}}{\delta f_{exp}(s_{n})^{2}},
$$

 QQ

where $\left\{\left(s_{i}, f_{\mathsf{exp}}(s_{i})\right)\right\}_{i=1,...,N}$ is an experimental points set, $f_{\text{th}}(s; \{a_1, ..., a_d\})$ - the analytic function.

Construction of the model of the data

The 3-resonance model was used, the form factor of each resonance was calculated according to the Breit-Wigner model.

$$
F^{\text{BW}}(s, m_V, \Gamma_V) = \frac{m_V^2(1 + d \cdot \Gamma_V/m_V)}{m_V^2 - s + f(s, m_V, \Gamma_V) - i \, m_V \Gamma_V(s)},
$$

\nwhere $\Gamma_V(s) = \Gamma_V \left(\frac{k(s)}{k(m_V^2)}\right)^3$, $k(s) = \frac{\sqrt{s - 4m_\pi^2}}{2}$,
\n $f(s, m_V, \Gamma_V) = \Gamma_V \frac{m_V^2}{k(m_V^2)^3} \left[k^2(s)(h(s) - h(m_V^2)) - (s - m_V^2)k^2(m_V^2)h'(m_V^2)\right]$,
\n $h(s) = \frac{2}{\pi} \frac{k(s)}{\sqrt{s}} ln(\frac{\sqrt{s} + 2 m_\pi}{2 m_\pi}), \quad h'(m_V^2) = h'(s)|_{s = m_V^2}$,

 200

there ${\cal F}^{\rm BW}(0,m_V,\Gamma_V)=1$ automatically. The resonances ρ , ω and ρ' .

Construction of the model of the data

For cross-sections of the processes $e^+e^- \rightarrow 2\pi^+2\pi^-,$ $e^+e^-\rightarrow\pi^+\pi^-2\pi^0$, $e^+e^-\rightarrow2\pi^+2\pi^-2\pi^0$, and $e^+e^-\rightarrow3\pi^+3\pi^$ the description in the form of sum of three Gaussian curves, describing wide resonances, is assumed:

$$
F_{\text{Gauss}}\left(s,\{M_i,\sigma_i,\alpha_i\}\right)=\sum_{i=1}^3\,\alpha_i\,\mathrm{e}^{-(\sqrt{s}-M_i)^2/(2\sigma_i^2)}\,;
$$

$$
\sigma\left(s,\left\{M_i,\sigma_i,\alpha_i\right\}\right)[\mathsf{nb}] = \theta(s-4m_\pi^2)\,0.3839\cdot 10^6\,\mathsf{F}_\mathsf{Gauss}^2\,\frac{\pi\,\alpha_\mathsf{em}}{3s}\,\left(1-\frac{4m_\pi^2}{s}\right)^{3/2}
$$

.

Fitting. Results.

Fig.: Experimental and analytical dependencies of square pion form factor (left), of cross section (right) on the energy for the process $e^+e^- \to \pi^+\pi^-$, $\chi^2 = 1.05$.

Data is taken from CMD and OLYA detectors².

Fitting. Results.

Fig.: Experimental and analytical dependencies of cross section on the energy for the process $e^+e^-\to 2\pi^+2\pi^-$, $\chi^2=1.85$. The fitting functions are taken as the sum of three Gaussian curves.

Data for $e^+e^- \to 2\pi^+2\pi^-$ is taken from BaBar³.

 $3B$. Aubert et al. (BABAR Collaboration) Phys. [Re](#page-8-0)v[.](#page-10-0) [D](#page-8-0) H [,](#page-10-0) [0](#page-4-0)[5](#page-5-0)[20](#page-14-0)[0](#page-15-0)[1](#page-4-0) [\(](#page-5-0)[2](#page-14-0)0[05](#page-0-0)[\).](#page-29-0) QQ M. E. Kozhevnikovaln collaboration with: O. V. Teryaev A. Search for short strings in e^+e^- -annihilation

Fitting. Results.

Fig.: Experimental and analytical dependencies of cross section on the energy for the process $e^+e^-\to \pi^+\pi^-2\pi^0$, $\chi^2=$ 8.45.

Data for $e^+e^- \to \pi^+\pi^-2\pi^0$ is taken from⁴.

⁴M. R. Whalley. J. Phys. G: Nucl. Part. Phys. 29,A1-A133 (2003), OLYA: L. M. Kurdadze et al. J. Exp. Theor. Phys. Lett. 43, 643-645 (1986), CMD2: R. R. Akhmetshin et al. Phys. Lett. B466, 392-402 (1999), ND: Dolinsky et al. , Phys. Rep. 202(1991) 99, OrsayDCI-DM2: B. Bisello et al. Preprint LAL-90-35 (1990), OrsayDCI-M3N: G. Cosme et al. Nucl. Phy[s. B](#page-9-0)[15](#page-11-0)[2,](#page-9-0) [2](#page-10-0)15[\(1](#page-5-0)[9](#page-4-0)[7](#page-15-0)9[\),](#page-5-0) [SN](#page-15-0)[D](#page-0-0). つくへ M. E. Kozhevnikovaln collaboration with: O. V.Teryaev A Search for short strings in e⁺e[−]-annihilation

Fitting. Results.

Fig.: Experimental and analytical dependencies of cross section on the energy for the processes $e^+e^-\to 3\pi^+3\pi^-$ (left), $\chi^2=$ 0.62, $e^+e^-\to 2\pi^+2\pi^-2\pi^0$ (right), $\chi^2=1.03$. The fitting functions are taken as the sum of three Gaussian curves.

Data is taken from BaBar ⁵.

 $5B$. Aubert et al. Phys. Rev. D73, 052003 (2006[\).](#page-10-0) $\Box \rightarrow \Box \rightarrow \Box \rightarrow \Box$ QQ M. E. Kozhevnikovaln collaboration with: O. V. Teryaev A. Search for short strings in e^+e^- -annihilation

Fitting. Results.

Таблица: The fitting results for particular e^+e^- -annihilation channels

 200

 $d = 0.408 + 0.151$ Data from PDG: $m_{\rho} = 0.77526 \pm 0.00025$ GeV; $\Gamma_{\rho} = 0.1491 \pm 0.0008$ GeV; $m_{\omega} = 0.78265 \pm 0.00012$ GeV; $\Gamma_{\omega} = 0.00849 \pm 0.00008$ GeV;

Fitting. Results.

Таблица: The fitting results for particular e^+e^- -annihilation channels

イロト イ母ト イヨト イヨト

 2990

э

[Introduction](#page-1-0) The fitting of experimental cross-sections data on e⁺e[−]-annimidations at the power corrections at the power co
The calculation of *D-*function and the analysis of coefficients at the power corrections in the OPE of OP

Fitting. Results.

Таблица: The fitting results for particular e^+e^- -annihilation channels

 $1.7.1$ $1.7.7$

イヨメ イヨメ

 2990

э

R-ratio

By definition R -ratio is:

$$
R(s) = \frac{\sigma_{e^+e^- \to \text{hadrons}}(s)}{\sigma_{e^+e^- \to \mu^+ \mu^-}(s)}.
$$

The full R -ratio is equal to the sum of R -ratios of particular channels.

At $s \leq s_0$ we use $R(s)$, obtained using experimental data, and at $s > s_0$ we use the theoretical form.

 200

[Introduction](#page-1-0)

The fitting of experimental cross-sections data on e⁺e[−]-ann**ihilation to hadron to hadrons** The calculation of D-function and the analysis of coefficients

R-ratio

Fig.: The full R-ratio (R_{exp}) in dependence on energy \sqrt{s} at $\sqrt{s} \leq 3$ GeV (black), the experime[nta](#page-15-0)l data (blue) and the theoretical representati[on](#page-17-0) $R_{\text{th}}(s)$ $R_{\text{th}}(s)$ $R_{\text{th}}(s)$ $R_{\text{th}}(s)$ $R_{\text{th}}(s)$ $R_{\text{th}}(s)$ $R_{\text{th}}(s)$ ([red](#page-29-0)[\).](#page-14-0)
 $\epsilon_0 \approx 1.54^2 \text{ GeV}^2$ $s_0 \approx 1.54^2 \text{ GeV}^2$

つくへ

PT and APT

In ordinary Perturbaton Theory (PT) the non-physical pole (Landau-pole) exists because In (Q^2/Λ^2) has singularity in $Q=\Lambda,$ and running coupling has the form:

$$
\alpha_s(Q^2) = \frac{4\pi}{b_0} \frac{1}{\ln(Q^2/\Lambda^2)}.
$$

In Analytical Perturbaton Theory (APT) (Shirkov, Solovtsov) the coupling contains an additional term, excluding the pole:

$$
\mathcal{A}_s(Q^2) = \frac{4\pi}{b_0} \left[\frac{1}{\ln(Q^2/\Lambda^2)} - \frac{\Lambda^2}{Q^2 - \Lambda^2} \right]
$$

.

つくへ

[Introduction](#page-1-0)

The fitting of experimental cross-sections data on e⁺e[−]-ann**ihilation to hadron to hadrons** The calculation of D-function and the analysis of coefficients

PT and APT

Fig.: The ordinary (blue) and analytical (orange) running couplings in $\frac{1}{18}$. The ordinary (blue) and analytical (c $-10⁻¹⁰$ \equiv

つくへ

D-function

Adler function (D-function). The dispersion relation for D-function:

$$
D_{\text{Disp}}(Q^2) = Q^2 \int_0^\infty \frac{R_{\text{exp-th}}(s) ds}{(s+Q^2)^2}
$$

$$
R_{\text{exp-th}}(s) = R_{\text{exp}}(s) \,\theta(s < s_0) + R_{\text{th}}(s) \,\theta(s > s_0).
$$

The operator product expansion (OPE):

$$
D_{\text{PT+OPE}}(Q^2) = N_c \sum_q e_q^2 \left[1 + \frac{\alpha_s(Q^2)}{\pi} + \sum_{n \ge 1} \Gamma(n) \frac{c_n}{Q^{2n}} \right],
$$

$$
D_{\text{APT+OPE}}(Q^2) = N_c \sum_q e_q^2 \left[1 + \frac{\mathcal{A}_s(Q^2)}{\pi} + \sum_{n \ge 1} \Gamma(n) \frac{\tilde{c}_n}{Q^{2n}} \right], N_c = 3.
$$

The Borel transform. Sum rules.

$$
\Phi(M^2) = \hat{B}_{Q^2 \to M^2} [D(Q^2)] = \lim_{n \to \infty} \frac{(-Q^2)^n}{\Gamma(n)} \left[\frac{d^n}{dQ^{2n}} D(Q^2) \right]_{Q^2 = nM^2}
$$

The Borel transform is applied to the both forms of $D(Q^2)$:

$$
\Phi_{\text{exp-th}}(M^2) = \int_0^\infty R_{\text{exp-th}}(s) \left(1 - \frac{s}{M^2}\right) e^{-s/M^2} \frac{ds}{M^2},
$$

$$
\Phi_{\text{PT+OPE}}(M^2) = \frac{3}{2} \left\{ \hat{B}_{Q^2 \to M^2} \left[\frac{\alpha_s(Q^2)}{\pi} \right] + \frac{C_2}{M^2} + \frac{C_4}{M^4} + \frac{C_6}{M^6} \right\},\
$$

$$
\Phi_{\text{APT+OPE}}(M^2) = \frac{3}{2} \left\{ \hat{B}_{Q^2 \to M^2} \left[\frac{\mathcal{A}_1(Q^2)}{\pi} \right] + \frac{\tilde{C}_2}{M^2} + \frac{\tilde{C}_4}{M^4} + \frac{\tilde{C}_6}{M^6} \right\}.
$$

The sum rules are:

$$
\Phi_{\text{PT+OPE}}(M^2) = \Phi_{\text{exp-th}}(M^2), \quad \Phi_{\text{APT+OPE}}(M^2) = \Phi_{\text{exp-th}}(M^2).
$$

 200

The Borel transform. Sum rules.

The construction of the D-function using the data and subsequent application of the Borel transform leads to the **double smearing** of the data.

That method excludes the leading term in perturbative part (the Born contribution) in R-ratio, which is important in usual applications of QCD sum rules allowing one to observe the quark-hadron duality and get the accurate description of the properties of hadrons. At the same time, that method allows one to extract non-perturbative corrections (including that due to short strings) more accurately.

[Introduction](#page-1-0)

The fitting of experimental cross-sections data on e⁺e[−]-ann**ihilation to hadron to hadrons** The calculation of D -function and the analysis of coefficients

Results: $PT \cdot \Lambda = 0.25$ GeV

TABLE III: The fitting results for different intervals of M^2 in the PT, statistical errors are only in χ^2 , $\Lambda = 0.25$ GeV. In the fifth column the σ -level where $C_2 = 0$ is shown. In the sixth column the (anti)correlation between gluon condensate (g.c) and C_2 , $g.c.(GeV^4) = A(GeV^2) \cdot C_2(GeV^2) + B(GeV^4)$, is shown.

Range of M^2 , GeV	C_2 , GeV^2	$\frac{<\alpha_sGG>}{<\alpha_eV^4}$	χ^2	σ -level	(Anti)correlation
[10/20, 160/20]	-0.093 ± 0.054	0.025 ± 0.008	0.758	3	$-0.153 C_2 + 0.011$
[11/20, 120/20]	-0.076 ± 0.052	0.023 ± 0.008	0.553	3	$-0.154C_2 + 0.011$
[12/20, 100/20]	-0.065 ± 0.052	$0.021 + 0.008$	0.406	$\overline{2}$	$-0.154C_2 + 0.011$
[13/20, 90/20]	-0.058 ± 0.053	0.020 ± 0.008	0.323	$\overline{2}$	$-0.154C_2 + 0.011$
[14/20, 80/20]	-0.052 ± 0.053	0.019 ± 0.008	0.265		$-0.155C_2 + 0.011$
[15/20, 70/20]	-0.047 ± 0.052	0.018 ± 0.008	0.212		$-0.155C_2 + 0.011$
[16/20, 60/20]	-0.042 ± 0.051	0.017 ± 0.008	0.156		$-0.155 C_2 + 0.011$
[17/20, 50/20]	-0.037 ± 0.048	0.016 ± 0.007	0.097		$-0.156 C_2 + 0.011$
[18/20, 40/20]	-0.032 ± 0.044	0.016 ± 0.007	0.041		$-0.156 C_2 + 0.011$
[19/20, 30/20]	-0.027 ± 0.036	0.015 ± 0.006	0.005		$-0.156 C_2 + 0.011$

Fig.: The fitting results for different intervals of M^2 in PT, $\Lambda=$ 0.25 GeV

イロメ イ母メ イヨメ イヨメー

性

 Ω

[Introduction](#page-1-0)

The fitting of experimental cross-sections data on e⁺e[−]-ann**ihilation to hadron to hadrons** The calculation of D -function and the analysis of coefficients

Results: $APT \cdot \Lambda = 0.25$ GeV

TABLE IV: The fitting results for different intervals of M^2 in the APT, statistical errors are only in χ^2 , $\Lambda = 0.25$ GeV. In the fifth column the σ -level where $C_2 = 0$ is shown. In the sixth column the (anti)correlation between gluon condensate (g.c) and C_2 , $G_c(GeV^4) = A(GeV^2) \cdot C_2(GeV^2) + B(GeV^4)$, is shown.

Range of M^2 , GeV	C_2 , GeV^2	$\sqrt{\frac{<\alpha_sGG>}{<\alpha_sQ}}$, GeV ⁴	χ^2	σ -level	(Anti)correlation
[10/20, 160/20]	-0.067 ± 0.053	0.026 ± 0.008	0.723	$\overline{2}$	$-0.159C_2 + 0.016$
[11/20, 120/20]	-0.048 ± 0.053	0.023 ± 0.008	0.508		$-0.159C_2 + 0.016$
[12/20, 100/20]	-0.036 ± 0.054	0.021 ± 0.009	0.368		$-0.159C_2 + 0.016$
[13/20, 90/20]	-0.028 ± 0.057	0.020 ± 0.009	0.296		$-0.159C_2 + 0.016$
[14/20, 80/20]	-0.022 ± 0.058	0.019 ± 0.009	0.244		$-0.159C_2 + 0.016$
[15/20, 70/20]	-0.017 ± 0.059	0.018 ± 0.009	0.195		$-0.159C_2 + 0.016$
[16/20, 60/20]	-0.012 ± 0.058	0.017 ± 0.009	0.142		$-0.159C_2 + 0.016$
[17/20, 50/20]	-0.006 ± 0.055	0.017 ± 0.009	0.086		$-0.160 C_2 + 0.016$
[18/20, 40/20]	-0.000 ± 0.051	0.016 ± 0.008	0.035		$-0.160 C_2 + 0.016$
[19/20, 30/20]	0.006 ± 0.045	0.015 ± 0.007	0.004		$-0.160 C_2 + 0.016$

Fig.: The fitting results for different intervals of M^2 in APT, $\Lambda = 0.25$ GeV

イロメ イ母メ イヨメ イヨメー

性

 200

Results: Results: PT vs APT, $\Lambda = 0.25$ GeV

The regions $\chi^2 \leq \chi^2_{\sf min} + 1$, $\chi^2 \leq \chi^2_{\sf min} + 2$ and $\chi^2 \leq \chi^2_{\sf min} + 3$ and the regions of existing data on gluon condensate (horizontal lines).

Fig.: Regions for PT (left), APT (right), $\Lambda = 0.25$ GeV. The different ellipses are for different ranges on M^2

Results: Results: PT vs APT, $\Lambda = 0.35$ GeV

The regions $\chi^2 \leq \chi^2_{\sf min} + 1$, $\chi^2 \leq \chi^2_{\sf min} + 2$ and $\chi^2 \leq \chi^2_{\sf min} + 3$ and the regions of existing data on gluon condensate (horizontal lines).

Fig.: Regions for PT (left), APT (right), $\Lambda = 0.35$ GeV. The different ellipses are for different ranges on M^2

医骨盆 医骨盆

Results: Results: PT vs APT, $\Lambda = 0.45$ GeV

The regions $\chi^2 \leq \chi^2_{\sf min} + 1$, $\chi^2 \leq \chi^2_{\sf min} + 2$ and $\chi^2 \leq \chi^2_{\sf min} + 3$ and the regions of existing data on gluon condensate (horizontal lines).

Fig.: Regions for PT (left), APT (right), $\Lambda = 0.45$ GeV. The different ellipses are for different ranges on M^2

SACTO STATE OF ST

Analysis

- \bullet A new analysis is performed. C_2 has negative sign and its compatibility to zero depends on the interval of \mathcal{M}^{2} , value of Λ and may happen only for lowest values of local gluon condensate. Dimension 2 operator is more close to zero for APT.
- (Anti)Corellation between short strings and local gluon condensate is found.
- We changed Λ and take valued 0.25 GeV, 0.35 GeV and 0.45 GeV. The C_2 region is shifted from zero to negative values more at larger Λ.

 $\mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A}$

Conclusions

- The resonance contribution fitting model is developed, the Adler function with Borelization is obtained. Double smearing of the data - D-function and Borel transform.
- Short string strongly depends on gluon condensate. The range of M^2 is varied. At different ranges of of M^2 there are a bit different results of C_2 and gluon condensate, however the properties are common - (anti)corellation between C_2 and gluon condensate.
- Short string also depends on choice of either standard (PT) or modified (APT) pQCD. The APT results are shifted towards zero of C_2 in comparison with PT results. APT make results more similar to well-known.

イロト イタト イモト イモト

 Ω

Thank you for your attention!

M. E. Kozhevnikovaln collaboration with: O. V. Teryaev A. Search for short strings in e^+e^- -annihilation 200