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Introduction — problems

* Numerical treatment of relativistic particles in Boltzmann (or
Uehling-Ulenbeck) equations represent a problem as spectral
methods does not work due to non-Abelian nature of Lorentz
group of boosts

* Mildly relativistic case needs exact QED matrix elements as
limiting expressions are not working there

* There is no general solution to take into account BE and FD
corrections for the reaction rates, especially difficult this
problem is for MC methods
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Uehling-Ulenbeck Equations
I(b’l)+ 11(B,) <> 11(B) + IV (B,)
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Discretization of U-U Equations

Introducing cells in phase spaces p, € Q" we get unification of the RHS

|d°p, f <ﬁl>,Jd35 £ (B, [4%5s i (Bo), [ 475, f, ()} =
[ d*p.d*p,d*pd’p,
><|:W(34|12) ,”(pg) flv(p4)( fl(ql))(li fll([_jz)j

2h~
D N 1:III 3 fIV _>4
T

besides the difference in the integration limits —
that also vanishes in the individual differential terms of integration sums




Reaction-oriented approach

= use the sums of differential terms
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Particle splitting technique

W's include o-functions related to the conservation laws
of energy-momentum, they should be represented by special treatment

As distribution function in every phase space cell is prescribed to be
a constant, naive scheme of putting final particles into the cells
where they just fall violates energy and momentum conservation

We can join the problems to solve them —
o-functions can be represented by an interpolation scheme,
effectively splitting final particles into several adjacent cells

so that conservation laws are satisfied (proposed by A. Aksenov)




Particle splitting example

In the case of symmetries some components of
momentum conservation law are satisfied automatically

Spherical symmetry nullifies all 3 average momentum components =
only energy conservation should be treated

For the grid of central energies of cells {¢,} we getwith ¢, > &> ¢,

-

gk+1 —&

for g,
Exi1 T Gk

o(es-&") — D(g)=1 for &,

E T i
0 for all other {¢,

S



Collision integrals in spherical symmetry

Usual approach: p — {&,u=c0s6,¢4}, d°p=c pededudy
and exclude all parameters of the particle 111 and energy of IV,
parametrizing integrals by directional angles of particle IV g, and ¢,

Problem of the usual approach: excluded parameters are not defined
unigely by x, and ¢, — two roots for ¢,, some of them extraneous

Our approach: change of coordinate system for particles Il and IV
to align z-axis with their total momentum p, = p, — p, and use

as parameters energy and azimuth angle of particle IV ¢, and ¢,
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Our approach to integration
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g, and ¢, define other parameters in unique way, Kinematics gives
simply defined limits of integration: all ¢, for &, e (A— B, A+ B)

Al mi-mi) o _cep [, (m-m)*)(, (m,+m,)’
2 P.P ) 2 P.P P.P )

P.P=g?/c*—p?/c?

Bad for CM case — produce 0/0, but of measure 0 (as usual approach)
M.A. Prokopenya, I.A. Siutsou, G.V. Vereshchagin.

In preparation | \\



Structure of collision coefficients

For U-U equation collision integrals depend on
all the particles in reaction = store all the particles

It is enough to split 2 of the final particles (and only final,
Initial particle spliting leads to negative densities) =

It destroys symmetry of direct and inverse reaction

and thus gives a cross-check of the scheme accuracy

BE and FD quantum corrections coefficients for splitted particles
are taken as min of coefs in cells for splitting (otherwise densities

can overcome FD limit)
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Computational complexity

Even in spherically symmetric case — (3N _)° 2p-interactions and

(3N ,)* 3p = ~10° reactions for N_ =60 energy cells

Limit of angle integration — is given by the total number of cases

needs to be sampled: spherical symmetry use kills 3 angles,
amount of work halved by P-symmetry of QED and reduced
for some reactions even more by particle quantum indistinguishability

Finally (3N,)*x N7 x N7 /2 ~10°N; ~ 10" vector sets sampled
forN, =N, =N,/2=32 = CPU time needed ~10° s, GPU ~10""" s/}

- . . 2 .
Double precision is essential for |[M|* calculations



Tests of the code in 2p interactions
Q——le

Table 2: Values of @ for selected number of angular grid nodes (amar = 40, kimazr = 27max)-

calc th |

Process/jaz | 16 32 64 128

CS 0.0855 | 0.0403 0.0207 0.0145
PA 0.0231 | 0.00693 | 0.00313 | 0.00138
PC 0.146 | 0.0657 | 0.0303 | 0.0116

Table 3: CPU time (in seconds) of each reaction initial angular integration for selected number
of angular grid nodes (amaxr = 40, Kpnax = 2Jmaz), and its exponent of computational cost
()(JHLHJ j

Process/ jmax | 16 32 64 128 n

CS 2.215 | 14.48 | 113.2 | 590.1 || 2.7
PA 2.106 | 14.73 | 100.2 | 543.1 || 2.7
PC 0.031 | 3.619 | 28.82 | 223.2 || 2.9
MS 2.418 | 16.87 | 130.5 | 1030 || 2.9
BS 3.354 | 22.74 | 178.6 | 1113 || 2.8




GPGPU calculations

Feature list needed

* 64—bit atomic operations (doubles reduction)
 Large number of computing units
« Reasonable price

Best choice for the tight budget:

« AMD Graphic Core Next (GCN) architecture of Tahiti family
(280X, 280, 7990, 7970, 7950, 7870 XT) — 0.75+2.0 TFLOPS of FP64
Careful error-handling is implemented to overcome known problems

Alternatives:

* Nvidia GeForce Titan series — only Titan (1.5), Titan Black (1.8),
Titan Z (2.7) and Titan V (6.1 TFLOPS) — overpriced, hard to find

« AMD GCN of later families — Hawalii, Fiji, Polaris, Vega —
0.4+1.4 TFLOPS of FP64 — overpriced for the same performance

« Some professional cards, like AMD W9100, W8100, S9150, S10000,
Nvidia Tesla K40, K20, V100, Quadro GP100, etc. — 1.2+7.4 TFLOPS of
FP64 — overpriced for the same performance — best for lavish budget




Conclusions

* We constructed and successfully adopted
fast numerical scheme for treatment of
binary and triple interactions in relativistic
plasma in Uehling-Ulenbeck equations

* The scheme implementation in C/C++ will
be made available under a free license after
some improvements of current realization
(several OpenCL devices handling,
automatic error correction)




Thank you for your attention

Questions?




